

Topic 3: Dynamic Programming

Dynamic Programming

- Dynamic program is not a specific algorithm, but a technique (like divide-and-conquer).
- Dynamic programming, like divide-and-conquer, solves problems by combining the solutions to subproblems.
- Programming means a "tabular method."
- Dynamic programming applies when the subproblems overlap. That is when subproblems share subsubproblems.
 - A dynamic programming algorithm solves each subsubproblem just once and then saves its answer in a table.
 - The adopted tabular method avoids recomputing the answer every time it solves each subsubproblem.
 - In this kind of problems, a divide-and-conquer algorithm does more work than necessary.
 - Divide-and-conquer algorithms partition the problem into *disjoint subproblems*, solve the problem recursively, and then combine their solutions to solve the original problem.

Dynamic Programming (Cont.)

- Dynamic programming is typically applied to solve *optimization problems*.
- Four-step method to find an optimal solution (maximization or minimization) with dynamic programming:
 - Characterize the structure of an optimal solution.
 - Recursively define the value of an optimal solution.
 - Compute the value of an optimal solution, typically in a bottom-up fashion.
 - Construct an optimal solution from computed information.

Outline

- Rod Cutting
- Matrix-Chain Multiplication
- Elements of Dynamic Programming
- Longest Common Subsequence
- Optimal Binary Search Trees

Rod Cutting

Rod Cutting

- How to cut steel rods into pieces in order to maximize the revenue you can get?
 - Each cut is free.
 - Rod lengths are always an integral number of inches.

• Input:

-A length *n* and table of prices p_i , for i = 1, 2, ..., n.

• Output:

 The maximum revenue obtainable for rods whose lengths sum to n, computed as the sum of the prices for the individual rods.

An Example of Rod Cutting

 An *n-inch* rod of can be cut up in 2ⁿ⁻¹ ways, because we can choose to cut or not cut after each of the first n-1 inches.

length <i>i</i>	1	2	3	4	5	6	7	8
price p_i	1	5	8	9	10	17	17	20

• Example: A 4-inch rod

The best way is to cut it into two 2-inch pieces, getting a revenue of $p_1 + p_2 = 5 + 5 = 10$

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of Rod Cutting (Cont.)

- Let r_i be the maximal revenue for a rod of length i. The optimal revenues r_i for the example, by inspection:
- To determine the optimal revenue r_n by taking the maximum of
 - p_n: the price of no cut
 - $r_1 + r_{n-1}$: the maximum revenue from a rod of 1 inch and a rod of n-1 inches,
 - $r_2 + r_{n-2}$: the maximum revenue from a rod of 2 inches and a rod of *n*-2 inches, ...
 - r_{n-1} + r_1 : the maximum revenue from a rod of n-1 inches and a rod of 1 inch.

 $r_n = max (p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$

length	i	1	2	3	4	5	6	7	8				
price p	\mathcal{D}_i	1	5	8	9	10	17	17	20				
i	$i r_i$					optimal solution							
1		1		1	(no	o cut	s)						
2		5		2	(no	o cut	s)						
3		8		3	(no	o cut	s)						
4]	0		2	+	2	-						
5]	13		2	+	3							
6	1	17		6	(no	o cut	s)						
7]	8		1	+ (6 or	2+	2+	- 3				
8	2	22		2	+ (6							

Optimal Substructure

- After making a cut, we have two subproblems.
 - The optimal solution to the original problem incorporates optimal solutions to the subproblems. We may solve the subproblems independently.
- Example: For n = 7, one of the optimal solutions makes a cut at 3 inches, giving two subproblems, of lengths 3 and 4.
 - We need to solve both of them optimally.
 - The optimal solution for the problem of length 4 *(cutting into 2 pieces, each of length 2)* is used in the optimal solution to the original problem with length 7.

A Simpler Decomposition

- Every optimal solution has a leftmost cut.
 - In other words, there's some cut that gives a first piece of *length i* cut off the left end (*revenue p_i*), and a remaining piece of *length n i* on the right (*revenue r_{n-i}*).
 - Need to divide only the remainder, not the first piece.
 - Leave only one subproblem to solve, rather than two subproblems.
 - The solution with no cuts has first piece size i = n with revenue p_n , and remainder size 0 with revenue $r_0 = 0$.
 - Give a simpler version of the equation for **r**_n:

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

A Simpler Decomposition (Cont.)

- The call CUT-ROD(*p*, *n*) returns the optimal revenue *r_n*:
 - This procedure works, but it is terribly *inefficient*.
 - If you code it up and run it, it could take more than an hour for n = 40.
 Running time almost *doubles* each time *n* increases by 1.

Why so inefficient?

- CUT-ROD calls itself repeatedly, even on subproblems it has already solved.

$$CUT-ROD(p, n)$$
Adopt divide-and-conquer techniqueif $n == 0$ Cuteringreturn 0return 0 $q = -\infty$ for $i = 1$ to n $q = max(q, p[i] + CUT-ROD(p, n - i))$ return q

Copyright © All Rights Reserved by Yuan-Hao Chang

A Simpler Decomposition (Cont.)

- For n = 4:
 - Have lots of repeated subproblems.
 - Solve the subproblem for size 2 twice, for size 1 four times, and for size 0 eight times.

An edge from *a parent with label s* to *a child with label t* corresponds to cutting off an initial piece of size s - t and leaving a remaining subproblem of size *t*.

A Simpler Decomposition (Cont.)

Exponential growth

- $a + ar + ar^{2} + ar^{3} + \dots + ar^{n} = \sum_{k=0}^{n} ar^{k} = a \frac{1 r^{n+1}}{1 r},$
- Let *T(n)* equal the number of calls to **CUT-ROD** with second parameter equal to *n*. Then

$$T(n) = \begin{cases} 1 & \text{if } n = 0, \\ (1) + \sum_{j=0}^{n-1} T(j) & \text{if } n \ge 1. \end{cases}$$

Geometric series

- The initial 1 is for the call at the root.
- T(j) counts the number of calls due to the call CUT-ROD(p, n-i), where j = n i.
- Solution to recurrence is $T(n) = 2^n$.

```
CUT-ROD(p, n)

if n == 0

return 0

q = -\infty

for i = 1 to n

q = \max(q, p[i] + CUT-ROD(p, n - i))

return q
```

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Programming Solution

- Instead of solving the same subproblems repeatedly, arrange to solve each subproblem just once.
 - Save the solution to a subproblem in a *table*, and refer back to the table whenever we revisit the subproblem.
 - "Store, don't recompute" \Rightarrow time-memory trade-off.
 - Turn an exponential-time solution into a polynomial-time solution.
- Two basic approaches:
 - Top-down with memoization, and
 - Bottom-up method.

Top-Down with Memoization

- Solve recursively, but store each result in a table.
- To find the solution to a subproblem, first look in the table.
 - If the answer is there, use it.
 - Otherwise, compute the solution to the subproblem and then store the solution in the table for future use.
- Memoized version of the recursive solution, storing the solution to the subproblem of length *i* in array entry *r[i]*

The array to store the optimal of the solved subproblems. MEMOIZED-CUT-ROD (p, n)The array to store the optimal of the solved subproblems. return MEMOIZED-CUT-ROD-AUX (p, n, r)MEMOIZED-CUT-ROD-AUX (p, n, r)if $r[n] \ge 0$ return r[n]if n = 0 q = 0else $q = -\infty$

for i = 1 to n $q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))$ r[n] = qreturn q

Memoizing is remembering what we have computed previously.

Bottom-Up Method $\frac{\text{length } i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8}{\text{price } p_i \quad 1 \quad 5 \quad 8 \quad 9 \quad 10 \quad 17 \quad 17 \quad 20}$

- Sort the subproblems by size and solve the smaller ones first.
 - When solving a subproblem, the smaller subproblems we need have already solved.

```
BOTTOM-UP-CUT-ROD(p, n)

let r[0 ... n] be a new array

r[0] = 0

for j = 1 to n

q = -\infty

for i = 1 to j

q = \max(q, p[i] + r[j - i])

r[j] = q

return r[n]
```


October 20, 2010

Running Time

Both the top-down and bottom-up versions run in O(n²) time.

- Bottom-up:

- Doubly nested loops.
- Number of iterations of inner *for* loop forms an *arithmetic series*.

– Top-down:

- MEMOIZED-CUT-ROD solves each subproblem just **once**, and it solves subproblems for sizes *n*, *n*-1, ..., 0.
- To solve a subproblem of size *n*, the for loop iterates *n* times.
 ⇒ Over all recursive calls, total number of iterations forms an *arithmetic series*.

18

Subproblem Graphs

- Directed graph:
 - One *vertex* for each distinct subproblem.
 - A directed edge (x, y) if computing an optimal solution to subproblem x directly requires knowing an optimal solution to subproblem y.
 - **Example**: For rod-cutting problem with n = 4:
- We can think of the subproblem graph as a *collapsed* version of the tree of recursive calls, where
 - All nodes for the same subproblem are collapsed into a single vertex, and all edges go from parent to child.
- Because we solve each subproblem just once, the running time is sum of times needed to solve each subproblem.
 - Time to compute solution to a subproblem is typically linear in the *out-degree (number of outgoing edges) of its vertex*.
 - Number of subproblems equals number of vertices.

Thinking about a dynamic programming problem, we should understand how the set of subproblems involved and how subproblems depend on each other.

Reconstructing a Solution

- How to produce a choice that produces an optimal solution:
 - Extend the bottom-up approach to record not just optimal values, but optimal choices.
 - Save the optimal choices in a separate table.
 - Then use a separate procedure to print the optimal choices.

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
                                            PRINT-CUT-ROD-SOLUTION (p, n)
let r[0 \dots n] and s[0 \dots n] be new arrays
                                            (r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)
                                            while n > 0
r[0] = 0
                                                print s[n]
for j = 1 to n
                                                n = n - s[n]
    q = -\infty
                                             Print out the cuts made in an optimal solution
    for i = 1 to j
         if q < p[i] + r[j - i]
             q = p[i] + r[j - i]
             s[j] = i
                             s[j] holds the optimal size i of the first piece to cut
    r[i] = a
                             off when solving a subproblem of size j.
return r and s
```


October 20, 2010

Reconstructing a Solution (Cont.)

• Example:

length <i>i</i>	1	2	3	4	5	6	7	8
price p_i	1	5	8	9	10	17	17	20

- EXTENDED-BOTTOM-UP-CUT-ROD returns

i	(0)	4	2	3	4	5	6	7	
r[i]	0	1	5	8	-10	13	17	18	22
s[i]	0	1	2	3	2	2	$\langle 6 \rangle$	1	(2)

- A call to PRINT-CUT-ROD-SOLUTION(*p*, 8) calls EXTENDED-BOTTOM-UPCUT-ROD to compute the above *r* and *s* tables.
- Then it prints 2, sets n to 6, prints 6, and finishes (because n becomes 0).

Matrix-Chain Multiplication

Matrix-Chain Multiplication

2

3

4

5

6

7

8

9

- A product of matrices is *fully parenthesized:*
 - If it is either a single matrix, or a product of two fully parenthesized matrix product surrounded by parentheses.
- Example:
 - Input:
 - A chain of matrices is $\langle A_1, A_2, A_3, A_4 \rangle$
 - Output:
 - Fully parenthesized matrices

 $(A_1(A_2(A_3A_4))),$ $(A_1((A_2A_3)A_4)),$ $((A_1A_2)(A_3A_4)),$ $((A_1(A_2A_3))A_4),$ $(((A_1A_2)A_3)A_4),$ $(((A_1A_2)A_3)A_4).$

MATRIX-MULTIPLY (A, B)

- if A. columns \neq B. rows
 - error "incompatible dimensions"
- else let C be a new A.rows \times B.columns matrix
 - for i = 1 to A.rows

for
$$j = 1$$
 to *B*. columns

$$c_{ij} = 0$$

for
$$k = 1$$
 to A. columns

$$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$$

return C

Matrix Multiplication

Copyright © All Rights Reserved by Yuan-Hao Chang

Matrix-Chain Multiplication (Cont.)

- If A is a p × q matrix and B is a q × r matrix, the result of multiplying A and B is a p × r matrix C.
 - The time to computer C is dominated by the number of scalar multiplications. That is p × q × r.

• Example:

- Given matrices $\langle A_1, A_2, A_3 \rangle$,
 - A_1 is a 10 × 100 matrix
 - A_2 is a 100 × 5 matrix
 - A_3 is a 5 × 50 matrix.
- $-A_1A_2 = 10 \cdot 100 \cdot 5 = 5,000$ multiplications to form a 10×5 matrix.
- $-A_2A_3 = 100 \cdot 5 \cdot 50 = 25,000$ multiplications to form a 100×50 matrix.
- $((A_1, A_2), A_3)$ = 5,000 + 10 · 5 · 50 = 7,500 multiplications to form a 10×50 matrix.
- $(A_1, (A_2, A_3))$ = 10 \cdot 100 \cdot 50 + 25,000 = 75,000 multiplications to form a 10 \times 50 matrix. Copyright © All Rights Reserved by Yuan-Hao Chang

Matrix-Chain Multiplication Problem

• Problem definition:

- Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of *n* matrices, where for *i* = 1, 2, ..., *n*, matrix A_i has dimension $p_{i-1} \times p_i$, fully parenthesize the product $A_1A_2...A_n$ in a way that minimizes the number of scalar multiplications.
- To represent the chain <A₁, A₂, ..., A_n>, the input sequence $p = \langle \mathbf{p}_0, p_1, ..., p_n \rangle$.
- Our goal is only to determine an order for multiplying matrices that has the lowest cost.

October 20, 2010

Counting the Number of Parenthesizations

- Exhaustively checking all possible parenthesizations does not yield an efficient algorithm.
- Let P(n) be the number of alternative parenthesizations of a sequence of n matrices.
 - When n = 1, only one way to fully parenthesize the matrix product.
 - When $n \ge 2$, a fully parenthesized matrix product is the product of two fully parenthesized matrix subproducts.
 - The split between the two subproducts may occur between the *k*th and (*k*+1)st matrics for any *k* = 1, 2, ..., n-1.

$$P(n) = \begin{cases} 1 & \text{if } n = 1\\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2 \end{cases}$$

The number of solutions is $\Omega(4^n/n^{3/2})$

Applying Dynamic Programming

• Use dynamic-programming method to determining how to optimally parenthesize a matrix chain.

• The four-step sequence is

- -1. Characterize the structure of an optimal solution.
- -2. Recursively define the value of an optimal solution.
- -3. Compute the value of an optimal solution.
- 4. Construct an optimal solution from computed information.

Step 1. The Structure of an Optimal Parenthesizatoin

- Let $A_{i..j}$ denote the result of evaluating the product $A_iA_{i+1}..A_j$, where $i \le j$.
- To parenthesize the product $A_i A_{i+1} ... A_j$, the product between A_k and A_{k+1} for some integer k in the range $i \le k < j$ is split. That is
 - Comput $A_i A_{i+1} \dots A_k$ and $A_{k+1} A_{K+2} \dots A_j$ then
 - Multiply them together.

Copyright © All Rights Reserved by Yuan-Hao Chang

28

Step 2 A Recursive Solution

- Let *m[i, j]* be the minimum number of scalar multiplications needed to compute the matrix *A_{i.j}*.
 - If i = j, m[i..j] = 0 because no scalar multiplications.
 - If i < j, split $A_i A_{i+1} \dots A_j$ into $A_i A_{i+1} \dots A_k$ and $A_{k+1} A_{K+2} \dots A_j$ where $i \le k < j$.
 - There are *j i* possible values for *k*.
 - m[i..j] equals the minimum cost for computing the A_{i..k} and A_{k+1..j}, plus the cost of multiplying these two matrices together.
- Since matrix A_i is $p_{i-1} \times p_i$, the product $A_{i..k} A_{k+1..j}$ takes $p_{i-1} \times p_k \times p_j$.
- The recursive definition for the minimum cost of parenthesizing the product $A_i A_{i+1} \dots A_i$ becomes:

$$m[i,j] = \begin{cases} 0 & i = j \\ \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & i < j \end{cases}$$

The lowest cost way to compute A_{1..n} is m[1..n].

This recursive algorithm takes *exponential time* (similar to rod cutting) without adopting the *tabular method*.

Step 3 Computing the Optimal Costs

- The number of choices for i and j satisfying $1 \le i \le j \le n$ is $C_2^n + n = n(n-1)/2 + n = n(n+1)/2 = \Theta(n^2)$.
- A tabular, bottom-up approach:
 - Table m[1..n, 1..n] is to store the m[i, j] costs.
 - Table s[1..*n*-1, 2..*n*] records the *k* value achieving the optimal cost in computing m[i, j].

Running time $O(n^3)$. Required space $\Theta(n^2)$.

MATRIX-CHAIN-ORDER(p)n = p.length - 11 let $m[1 \dots n, 1 \dots n]$ and $s[1 \dots n - 1, 2 \dots n]$ be new tables 3 for i = 1 to n m[i,i] = 04 5 for l = 2 to n // l is the chain length for i = 1 to n - l + 16 7 j = i + l - 1 $m[i, j] = \infty$ 8 for k = i to j - 19 $q = m[i,k] + m[k+1, j] + p_{i-1}p_kp_i$ 10 11 if q < m[i, j]12 m[i, j] = qs[i, j] = k13 14 return m and s

Copyright © All Rights Reserved by Yuan-Hao Chang

Step 3 Computing the Optimal Costs (Cont.)

$((A_1(A_2A_3))((A_4A_5)A_6)) \qquad $
j 4 11,875 10,500 3 i j 3 3 3 i i j 3 3 3 3 i i j 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
matrix A_1 A_2 A_3 A_4 A_5 A_6
dimension 30×35 35×15 15×5 5×10 10×20 20×25
$(m[2,2] + m[3,5] + p_1 p_2 p_5 = 0 + 2500 + 35 \cdot 15 \cdot 20 = 13,000,$
$m[2,5] = \min \left\{ m[2,3] + m[4,5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \cdot 5 \cdot 20 = 7125 \right\},$
$m[2,4] + m[5,5] + p_1 p_4 p_5 = 4375 + 0 + 35 \cdot 10 \cdot 20 = 11,375$
7125

Step 4 Constructing an Optimal Solution

- Each entry s[i, j] records a value of k such that an optimal parenthesization of $A_i A_{i+1} \dots A_j$, splits the product between A_k and A_{k+1} .
 - That is $A_{1..s[1, n]}A_{s[1,n]+1..n}$.
 - Find subproducts recursively:
 - $A_{1..s[1, n]}$ could be split at s[1, s[1, n]].
 - $A_{s[1, n]+1..n}$ could be split at s[s[1, n]+1, n].

```
PRINT-OPTIMAL-PARENS(s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS(s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)

6 print ")"
```


Elements of Dynamic Programming

Elements of Dynamic Programming

- Two key elements that an optimization problem could be solved by dynamic programming:
 - Optimal substructure
 - An optimal solution to the problem contains *within its optimal solution to subproblems*.
 - Whenever a problem exhibits optimal substructure, we have a good clue that dynamic programming might apply.
 - We build an optimal solution to the problem from optimal solutions to subproblems.

- Overlapping subproblems

- When a recursive algorithm *revisits the same problem repeatedly*, it has overlapping subproblems.
- The total number of distinct subproblems is a polynominal in the input size.
- In contrast, a problem for which a *divide-and-conquer approach* is suitable usually generates *brand-new problems* at each step of the recursion.

Common Pattens of Optimal Substructure

- A solution to the problem consists of *making a choice*, Making this choice leaves *one or more subproblems* to be solved.
- For a given problem, you are given the choice that leads to an optimal solution.
- Given this choice, you determine which subproblems ensue (接著發生) and how to best characterize the *resulting space of subproblems*.
- The solutions to the subproblems used within the optimal solution to the problem must themselves be optimal by using a "*cut-and-paste*" technique.
 - Cutting out the nonoptimal solution to each subproblem and pasting in the optimal one.

Key Points of Optimal Substructure

- Optimal substructure varies across problem domains in two ways:
 - How many subproblems are used in an optimal solution to the original problem.
 - How many choices we have in determining which subproblem(s) to use in an optimal solution.
- In rod cutting, O(n) subproblems overall, and at most n choices to exam for each $\rightarrow O(n^2)$ running time.
 - With subproblem graph, each vertex corresponds to a subproblem, and the choices for a problem are the edges incident to that subproblem.
- In maxtirx-chain multiplication, O(n²) subproblems overall, and at most n choices to exam for each → O(n³) running time.
 - With subproblem graph, there are $\Theta(n^2)$ vertices and each vertex would have degree at most n.

Subtleties

- One should be careful not to assume that optimal substructure applies when it does not.
- Consider the following two problems in which we are given a directed graph *G* = (*V*, *E*) and vertices *u*, *v* ∈ *V*.
 - Unweighted shortest path:
 - Find a path from *u* to *v* consisting of the fewest edges. Good for Dynamic programming.
 - Unweighted longest simple path:
 - Find a simple path from *u* to *v* consisting of the most edges. Not good for Dynamic programming.

Unweighted Shortest-Path Problem

- The unweighted shortest-path problem exhibits optimal substructure (*because subproblems do not share resources*).
 - Suppose that $u \neq v$. Any path *p* from *u* to *v* must contain an intermediate vertex *w*.
 - -Decompose $u \xrightarrow{p} v$ into subpaths $u \xrightarrow{p_1} w \xrightarrow{p_2} v$
 - Clearly, the number of edges in p equals the number of edges in p_1 plus that in p_2 .
 - Proof: If p_1 or p_2 is not optimal and p'_1 or p'_2 is optimal, then $p'_1 + p_2 < p$ or $p_1 + p'_2 Contradict that p is optimal.$

In matrix-chain multiplication, subchains are disjoint.

In rod-cutting, subproblems are disjoint.

Unweighted Longest-Path Problem

- Suppose that $u \neq v$. Any path *p* from *u* to *v* must contain an intermediate vertex *w*.
- Decompose $u \stackrel{p}{\frown} v$ into subpaths $u \stackrel{p_1}{\frown} w \stackrel{p_2}{\frown} v$
 - The p_1 might not be a longest path from u to w.
 - The p_2 might not be a longest path from w to v.
- *Example*: Simple path means no cycle in the path.
 - One simple longest simple path from q to t is $q \rightarrow r \rightarrow t$.
 - Subproblems:
 - $q \rightarrow r$ is not a simple longest path from from q to r. (Optimal: $q \rightarrow s \rightarrow t \rightarrow r$)
 - $r \rightarrow t$ is not a simple longest path from from r to t. (Optimal: $r \rightarrow q \rightarrow s \rightarrow t$)
 - Combine the above two suboptimals. The resulting path is not a simple path.
 - No optimal substructure exists because the subproblems in finding the longest simple path are *not independent*.
 - One subproblem affects the solution to another subproblem.
 - E.g., $q \rightarrow s \rightarrow t \rightarrow r$ let the other not be able to select s and t. (due to "simple" path) Copyright © All Rights Reserved by Yuan-Hao Chang

Overlapping Subproblems

- An optimization problem for dynamic programming to apply must have "small" number of subproblems.
- Dynamic-programming algorithms typically solves each subproblem once and then stores the solution in a table for the future lookup.
 - For example, in matrix-chain multiplication, *m[3, 4]* is referenced four times: during the computations of *m[2, 4]*, *m[1, 4]*, *m[3, 5]*, and *m[3, 6]*.

Overlapping Subproblems (Cont.)

 Good divide-and-conquer algorithms usually generate a brand new problem at each stage of recursion.

Recursive Matrix Chain

 Let T(n) denote the time to compute an optimal parenthesization of a chain of n matrices.

$$\begin{cases} T(1) \ge 1, & \text{Lines 1, 2} \\ T(n) \ge 1 + \sum_{k=1}^{n-1} (T(k) + T(n-k) + 1) & \text{for } n > 1 \end{cases} \implies T(n) \ge 2 \sum_{i=1}^{n-1} T(i) + n \end{cases}$$

- Prove that T(n) ≥ Ω(2ⁿ) using the substitution method:
 - Let T(n) $\ge 2^{n-1}$ T(1) $\ge 1 = 2^{0}$ for $n \ge 1$ $T(n) \ge 2\sum_{i=1}^{n-1} 2^{i-1} + n$ $= 2\sum_{i=0}^{n-2} 2^{i} + n$ $= 2(2^{n-1} - 1) + n$ $= (2^{n} - 2) + n \ge 2^{n-1}$
- RECURSIVE-MATRIX-CHAIN(p, i, j)1 **if** i == j Initial call: 2 **return** 0 RECURSIVE-MATRIX-CHAIN(p, 1, n)3 $m[i, j] = \infty$ 4 **for** k = i **to** j - 15 q = RECURSIVE-MATRIX-CHAIN(p, i, k) + RECURSIVE-MATRIX-CHAIN(p, k + 1, j) $+ p_{i-1}p_k p_j$ 6 **if** q < m[i, j] = q8 **return** m[i, j]

42

Memoization

- In general, if all subproblems must be solved at least once,
 - A bottom-up DP algorithm usually out the corresponding top-down memoiz algorithm by *a constant factor*.
 - The bottom-up algorithm has no ove recursion and less overhead for main the table.

if

3 4

5

6

8

- A memoized recursive algorithm maintains an entry in LOOK a table for the solution to each if subproblem. 2
- Time complexity: O(n³)
 - $\Theta(n^2)$ distinct subproblems.
 - Whenever a given call of LOOKUP-CHAIN makes recursive calls, it makes O(n) of them.

	MEMOIZED-MATRIX-CHAIN (p)
outperforms	1 n = p.length - 1
oized	2 let $m[1 \dots n, 1 \dots n]$ be a new table
	3 for $i = 1$ to n
verhead for	4 for $i = i$ to n initialize
aintaining	5 $m[i, i] = \infty$
Ū	6 return LOOKUP-CHAIN $(m \ p \ 1 \ n)$
	(m, p, 1, n)
if $m[i, j] < \infty$ return $m[$	If the corresponding table is filled, just look up the table.
if <i>i</i> == <i>j</i>	No mulplication when there
m[i, j] =	0 is only one matrix
else for $k = i$	to $j-1$
q = 1	LOOKUP-CHAIN (m, p, i, k)
-	- LOOKUP-CHAIN $(m, p, k+1, j) + p_{i-1}p_kp_i$
if $q <$	m[i, j]
n	[i, j] = q
return $m[i, j]$	

Longest Common Sequence

Longest Common Subsequence (LCS)

• *Input:* LCS is frequently adopted in DNA pattern matching.

- Given 2 sequences, $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$.

• Output:

- Find a subsequence common to both whose length is longest.

- Brute-force algorithm:
 - For every subsequence of X, check whether it's a subsequence of Y.
 - Time: Q(n2^m).
 - 2^m subsequences of X to check.
 - Each subsequence takes O(n) time to check: Scan Y for first letter, from there scan for second, and so on

October 20, 2010

Optimal Substructure

Notation:

- $X_i = \text{prefix} \langle x_1, \ldots, x_i \rangle$
- $Y_i = \text{prefix} \langle y_1, \dots, y_i \rangle$

Theorem (Optimal substructure of an LCS) Let $Z = \langle z_1, \ldots, z_k \rangle$ be any LCS of X and Y. 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} . 2. If $x_m \neq y_n$, then $z_k \neq x_m \Rightarrow Z$ is an LCS of X_{m-1} and Y. 3. If $x_m \neq y_n$, then $z_k \neq y_n \Rightarrow Z$ is an LCS of X and Y_{n-1} .

An LCS of two sequences contains as a prefix an LCS of prefixes of the sequences.

45

Optimal Substructure (Cont.)

1. First show that $z_k = x_m = y_n$. Suppose not. Then make a subsequence $Z' = \langle z_1, \ldots, z_k, x_m \rangle$. It's a common subsequence of X and Y and has length $k + 1 \Rightarrow Z'$ is a longer common subsequence than $Z \Rightarrow$ contradicts Z being an LCS.

Now show Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} . Clearly, it's a common subsequence. Now suppose there exists a common subsequence W of X_{m-1} and Y_{n-1} that's longer than $Z_{k-1} \Rightarrow$ length of $W \ge k$. Make subsequence W' by appending x_m to W. W' is common subsequence of X and Y, has length $\ge k + 1$ \Rightarrow contradicts Z being an LCS.

- 2. If $z_k \neq x_m$, then Z is a common subsequence of X_{m-1} and Y. Suppose there exists a subsequence W of X_{m-1} and Y with length > k. Then W is a common subsequence of X and Y \Rightarrow contradicts Z being an LCS.
- 3. Symmetric to 2.

■ (theorem)

Recursive Formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want c[m, n].

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1, j], c[i, j-1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$
Lots of repeated subproblems.
Instead of recomputing, store in a table.

Compute Length of Optimal Solution

LCS-LENGTH(X, Y, m, n)PRINT-LCS(b, X, i, j)let $b[1 \dots m, 1 \dots n]$ and $c[0 \dots m, o \dots n]$ be new tables **if** i = 0 or j = 0for i = 1 to m return c[i, 0] = 0**if** $b[i, j] == " \ "$ for j = 0 to n PRINT-LCS(b, X, i-1, j-1)c[0, j] = 0print x_i for i = 1 to m elseif $b[i, j] == "\uparrow"$ for j = 1 to nPRINT-LCS(b, X, i - 1, j)if $x_i = y_i$ else PRINT-LCS(b, X, i, j-1)c[i, j] = c[i-1, j-1] + 1 $b[i, j] = " \Sigma$ " Initial call is PRINT-LCS(b, X, m, n). ٠ else if $c[i - 1, j] \ge c[i, j - 1]$ b[i, j] points to table entry whose c[i, j] = c[i - 1, j]subproblem we used in solving LCS $b[i, j] = ``\uparrow"$ else c[i, j] = c[i, j-1]of X_i and Y_i . b[i, j] = " \leftarrow " When $b[i, j] = \mathbb{N}$, we have extended ٠ **return** c and b LCS by one character. So longest common subsequence = entries with \diagdown in them.

49

р

a

i

n

Demonstration (Cont.)

- ABCBDAB vs. BDCABA
- Answer: - **BCBA**
- Time:
 Θ(mn)

Optimal Binary Search Trees

October 20, 2010

Optimal Binary Search Trees (BST)

- Given sequence K = <k₁, k₂, ..., k_n> of n distinct keys, sorted (k₁ < k₂
 ...< k_n).
- Want to build a binary search tree from the keys.
- For k_i , have probability p_i that a search is for k_i .
- Want BST with minimum expected search cost.
- Actual cost = number of items examined.
 For key k_i, cost = depth_T(k_i) + 1, where depth_T(k_i) = depth of k_i in BST T.

$$E [search cost in T]$$

$$= \sum_{i=1}^{n} (depth_{T}(k_{i}) + 1) \cdot p_{i}$$

$$= \sum_{i=1}^{n} depth_{T}(k_{i}) \cdot p_{i} + \sum_{i=1}^{n} p_{i}$$

$$= 1 + \sum_{i=1}^{n} depth_{T}(k_{i}) \cdot p_{i}$$

Therefore, E [search cost] = 2.15. which tur

Therefore. E |search cost| = 2.10, which turns out to be optimal.

Observations

- Optimal BST might not have smallest height.
- Optimal BST might not have highest-probability key at root.
- Exhaustive checking:
 - Construct each n-node BST.
 - For each, put in keys.
 - Then compute expected search cost.
 - There are different $\Omega(4^n/n^{3/2})$ BSTs with *n* nodes.

Optimal Substructure

- Consider any subtree of a BST. It contains keys in a contiguous range k_i, ..., k_j for some 1 ≤ i ≤ j ≤ n.
- If *T* is an optimal BST and *T* contains subtree *T*' with keys k_i, ..., k_j, then *T*' must be an optimal BST for keys k_i, ..., k_j.

• Proof:

- Use optimal substructure
 - Given keys *k_i, ..., k_j*.
 - One of them, k_r , where $i \le r \le j$, must be the root.
 - Left subtree of k_r contains k_i, \ldots, k_{r-1} .
 - Right subtree of k_r contains k_{r+1}, \ldots, k_j .
- If we examine all candidate roots \mathbf{k}_r , for $i \le r \le j$, and
- we determine all optimal BSTs containing k_{j} , ..., k_{r-1} and containing k_{r+1} , ..., k_{j} .
- Then we're guaranteed to find an optimal BST for k_i, \ldots, k_j

Copyright © All Right: Ki

October 20, 2010

Recursive Solution

Subproblem domain:

- Find optimal BST for k_i, \ldots, k_j , where $i \ge 1, j \le n, j \ge i 1$.
- When j = i 1, the tree is empty.

Define e[i, j] = expected search cost of optimal BST for k_i, \ldots, k_j . If j = i - 1, then e[i, j] = 0. If $j \ge i$,

- Select a root k_r , for some $i \le r \le j$.
- Make an optimal BST with k_i, \ldots, k_{r-1} as the left subtree.
- Make an optimal BST with k_{r+1}, \ldots, k_j as the right subtree.
- Note: when r = i, left subtree is k_i, \ldots, k_{i-1} ; when r = j, right subtree is k_{j+1}, \ldots, k_j . e[j+1, j] = 0

Recursive Solution (Cont.)

- When a subtree becomes a subtree of a node:
 - Depth of every node in subtree goes up by 1.
 - Expected search cost increases by

$$w(i,j) = \sum_{l=i}^{J} p_l$$

• If k_r is the root of an optimal BST for k_i, \ldots, k_j :

$$w(i, j) = w(i, r - 1) + p_r + w(r + 1, j).$$

$$\begin{split} e[i,j] &= p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j)) \\ &= e[i,r-1] + e[r+1,j] + w(i,j). \end{split}$$

• Try all candidates, and pick the best one:

$$e[i, j] = \begin{cases} 0 & \text{if } j = i - 1, \\ \min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w(i, j)\} & \text{if } i \le j. \end{cases}$$

Computing an Optimal Solution

As "usual," we'll store the values in a table:

$$e[\underbrace{1..n+1}_{\text{can store}}, \underbrace{0..n}_{e[n+1,n]}]$$

 $e[1,0]$

- Will use only entries e[i, j], where $j \ge i 1$.
- Will also compute $root[i, j] = root \text{ of subtree with keys } k_i, \dots, k_j,$ for $1 \le i \le j \le n$.
- One other table: Table $w[1 \dots n + 1, 0 \dots n]$ w[i, i - 1] = 0 for $1 \le i \le n$ $w[i, j] = w[i, j - 1] + p_j$ for $1 \le i \le j \le n$

/right © All Rights Reserved by Yuan-Hao Chang

Computing an Optimal Solution (Cont.)

```
OPTIMAL-BST(p, q, n)
let e[1 \dots n + 1, 0 \dots n], w[1 \dots n + 1, 0 \dots n], and root[1 \dots n, 1 \dots n] be new tables
for i = 1 to n + 1
    e[i, i-1] = 0
                                When I = 1, compute e[i, i] and w[i, i] for i=1...n.
    w[i, i-1] = 0
                                When l = 2, compute e[i, i+1] and w[i, i+1] for
for l = 1 to n
                                i=1...n-1.
    for i = 1 to n - l + 1
         j = i + l - 1
         e[i, j] = \infty
         w[i, j] = w[i, j-1] + p_j
         for r = i to j
              t = e[i, r-1] + e[r+1, j] + w[i, j]
                                                         Try each candidate r
              if t < e[i, j]
                  e[i, j] = t
                  root[i, j] = r
                                                            Time complexity: \Theta(n^3)
return e and root
```

Copyright © All Rights Reserved by Yuan-Hao Chang

Computing an Optimal Solution (Cont.)

i

Copyright © All Rights Reserved by Yuan-Hao Chang

Construct an Optimal Solution

```
CONSTRUCT-OPTIMAL-BST(root)
r = root[1, n]
print "k", "is the root"
CONSTRUCT-OPT-SUBTREE (1, r - 1, r, \text{``left''}, root)
CONSTRUCT-OPT-SUBTREE (r + 1, n, r, "right", root)
CONSTRUCT-OPT-SUBTREE (i, j, r, dir, root)
if i \leq j
    t = root[i, j]
    print "k"<sub>t</sub> "is" dir "child of k"<sub>r</sub>
     CONSTRUCT-OPT-SUBTREE (i, t - 1, t, \text{``left''}, root)
    CONSTRUCT-OPT-SUBTREE (t + 1, j, t, "right", root)
```


October 20, 2010

Project 4

- Use C language to implement the rod-cutting problem with dynamic programming.
 - The input file should be retrieved through argv[1] of main() function.
 - Use *fscanf()* to get integers from the input file.
 - The first integer indicates the length of the rod to cut.
 - The first integer also indicates the number of input integers in this file. The *i*-th input integer indicates the revenue of the rod of length *i*.
 - E.g., "4 1 5 8 9" means there is a 4-inch rod. 1, 5, 8, and 9 are the revenue of the rod of 1, 2, 3, and 4 inches, respectively.
 - Find and output cuts and the maximal revenue.

- .E.g., **2, 2: 10**

- Deadline: 24:00, 2010.10.18
 - Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
 - Email title: Algo_P4_學號_姓名

- Use C language to implement the Matrix-chain multiplication problem with dynamic programming.
 - The input file should be retrieved through *argv[1]* of main() function.
 - Use *fscanf()* to get integers from the input file.
 - The first integer indicates the number of matrices.
 - E.g., "6 30 35 15 5 10 20 25" means there are 6 matrices (A1 to A6) and p₀ to p₆ are 30, 35, 15, 5, 10, 20, 25, respectively.
 - Find and output the minimal number of multiplications and the parenthesization of the matrices.
 - .E.g., 15125, ((A1(A2A3))((A4A5)A6))
- Deadline: 24:00, 2010.10.25
 - Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
 - Email title: Algo_P5_學號_姓名