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Dynamic Programming
• Dynamic program is not a specific algorithm, but a technique (like 

divide-and-conquer).
• Dynamic programming, like divide-and-conquer, solves problems by 

combining the solutions to subproblems.
• Programming means a “tabular method.”
• Dynamic programming applies when the subproblems overlap. That is 

when subproblems share subsubproblems.
– A dynamic programming algorithm solves each subsubproblem just once 

and then saves its answer in a table.
- The adopted tabular method avoids recomputing the answer every time it solves 

each subsubproblem.
– In this kind of problems, a divide-and-conquer algorithm does more work 

than necessary.
- Divide-and-conquer algorithms partition the problem into disjoint subproblems, 

solve the problem recursively, and then combine their solutions to solve the 
original problem.
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Dynamic Programming (Cont.)
• Dynamic programming is typically applied to solve 
optimization problems.

• Four-step method to find an optimal solution 
(maximization or minimization) with dynamic 
programming:
– Characterize the structure of an optimal solution.
– Recursively define the value of an optimal solution.
– Compute the value of an optimal solution, typically in a 

bottom-up fashion.
– Construct an optimal solution from computed information.
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Rod Cutting
• How to cut steel rods into pieces in order to 
maximize the revenue you can get?
– Each cut is free. 
– Rod lengths are always an integral number of inches.

• Input: 
–A length n and table of prices pi , for i = 1, 2, …, 

n.
• Output: 

– The maximum revenue obtainable for rods whose 
lengths sum to n, computed as the sum of the prices for 
the individual rods.
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An Example of Rod Cutting
• An n-inch rod of can be cut up in 2n-1 ways, because we can 

choose to cut or not cut after each of the first n-1 inches.

• Example: A 4-inch rod

The best way is to cut it into two 2-inch pieces, getting a revenue of 
p1 + p2 = 5 + 5 = 10
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An Example of Rod Cutting (Cont.)
• Let ri be the maximal revenue for a rod of length i. The 

optimal revenues ri for the example, by inspection:
• To determine the optimal 

revenue rn by taking the 
maximum of

– pn: the price of no cut
– r1 + rn-1: the maximum  revenue

from a rod of 1 inch and a rod of 
n-1 inches,

– r2 + rn-2: the maximum  revenue
from a rod of 2 inches and a rod 
of n-2 inches, …

– rn-1+ r1: the maximum  revenue
from a rod of n-1 inches and 
a rod of 1 inch.

rn = max (pn, r1 + rn-1, r2 + rn-2, …, rn-1 + r1)
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Optimal Substructure
• After making a cut, we have two subproblems.

– The optimal solution to the original problem incorporates 
optimal solutions to the subproblems. We may solve the 
subproblems independently.

• Example: For n = 7, one of the optimal solutions 
makes a cut at 3 inches, giving two subproblems, 
of lengths 3 and 4. 
– We need to solve both of them optimally. 

- The optimal solution for the problem of length 4 (cutting into 2 
pieces, each of length 2) is used in the optimal solution to the 
original problem with length 7.
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A Simpler Decomposition
• Every optimal solution has a leftmost cut. 

– In other words, there’s some cut that gives a first piece of 
length i cut off the left end (revenue pi), and a 
remaining piece of length n - i on the right (revenue rn-i).
- Need to divide only the remainder, not the first piece.
- Leave only one subproblem to solve, rather than two subproblems.
- The solution with no cuts has first piece size i = n with revenue pn, 

and remainder size 0 with revenue r0 = 0.
- Give a simpler version of the equation for rn:
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A Simpler Decomposition (Cont.)
• The call CUT-ROD(p, n) returns the optimal revenue rn:

– This procedure works, but it is terribly inefficient.
– If you code it up and run it, it could take more than an hour for n = 40. 

Running time almost doubles each time n increases by 1.

• Why so inefficient?
– CUT-ROD calls itself repeatedly, even on subproblems it has already solved.

Adopt divide-and-
conquer technique
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A Simpler Decomposition (Cont.)
• For n = 4:

– Have lots of repeated subproblems. 
– Solve the subproblem for size 2 twice, for size 1 four times, and for 

size 0 eight times.

An edge from a parent 
with label s to a child 
with label t corresponds 
to cutting off an initial 
piece of size s – t and 
leaving a remaining 
subproblem of size t.

s

t

1 2
s-t t

s
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A Simpler Decomposition (Cont.)
• Exponential growth

– Let T(n) equal the number of calls to CUT-ROD with second 
parameter equal to n. Then

– The initial 1 is for the call at the root.
– T(j) counts the number of calls due 

to the call CUT-ROD(p, n-i), 
where j = n - i.

• Solution to recurrence is T(n) = 2n.

Geometric 
series
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Dynamic Programming Solution
• Instead of solving the same subproblems repeatedly, 
arrange to solve each subproblem just once.
– Save the solution to a subproblem in a table, and refer 

back to the table whenever we revisit the subproblem.
– “Store, don’t recompute” ⇒ time-memory trade-off.
– Turn an exponential-time solution into a polynomial-time 

solution.

• Two basic approaches: 
– Top-down with memoization, and 
– Bottom-up method.
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Top-Down with Memoization
• Solve recursively, but store each 

result in a table.

• To find the solution to a subproblem, 
first look in the table.

– If the answer is there, use it.
– Otherwise, compute the 

solution to the subproblem
and then store the solution 
in the table for future use.

• Memoized version of the 
recursive solution, storing 
the solution to the subproblem
of length i in array entry r[i] 
⇒

Memoizing is remembering what we have computed previously.

The array to store 
the optimal of the 

solved 
subproblems.
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Bottom-Up Method
• Sort the subproblems by size and solve the smaller 
ones first.
– When solving a subproblem, the smaller subproblems

we need have already solved.
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Running Time
• Both the top-down and bottom-up versions run in 
O(n2) time.
– Bottom-up: 

- Doubly nested loops. 
- Number of iterations of inner for loop forms an arithmetic series.

– Top-down: 
- MEMOIZED-CUT-ROD solves each subproblem just once, and it 

solves subproblems for sizes n, n-1, …, 0.
- To solve a subproblem of size n, the for loop iterates n times.

⇒ Over all recursive calls, total number of iterations forms an 
arithmetic series.
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Subproblem Graphs
• Directed graph:

– One vertex for each distinct subproblem.
– A directed edge (x, y) if computing an optimal solution to 

subproblem x directly requires knowing an optimal solution to 
subproblem y.

– Example:  For rod-cutting problem with n = 4:

• We can think of the subproblem graph as a collapsed
version of the tree of recursive calls, where 

– All nodes for the same subproblem are collapsed into a single 
vertex, and all edges go from parent to child.

• Because we solve each subproblem just once, the running 
time is sum of times needed to solve each subproblem.

– Time to compute solution to a subproblem is typically linear in 
the out-degree (number of outgoing edges) of its vertex.

– Number of subproblems equals number of vertices.
Thinking about a dynamic programming problem, we should understand how the set of 
subproblems involved and how subproblems depend on each other.
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Reconstructing a Solution
• How to produce a choice that produces an optimal solution:

– Extend the bottom-up approach to record not just optimal values, but 
optimal choices.

– Save the optimal choices in a separate table.
– Then use a separate procedure to print the optimal choices.

s[j] holds the optimal size i of the first piece to cut 
off when solving a subproblem of size j.

Print out the cuts made in an optimal solution
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Reconstructing a Solution (Cont.)
• Example:

– EXTENDED-BOTTOM-UP-CUT-ROD returns

– A call to PRINT-CUT-ROD-SOLUTION(p, 8) calls EXTENDED-
BOTTOM-UPCUT-ROD to compute the above r and s tables.

– Then it  prints 2, sets n to 6, prints 6, and finishes (because n 
becomes 0).



Matrix-Chain MultiplicationMatrix-Chain Multiplication
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Matrix-Chain Multiplication
• A product of matrices is fully parenthesized:

– If it is either a single matrix, or a product of two fully 
parenthesized matrix product surrounded by parentheses.

• Example:
– Input: 

- A chain of matrices is 
<A1, A2, A3, A4>

– Output: 
- Fully parenthesized 

matrices

Matrix Multiplication
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Matrix-Chain Multiplication (Cont.)
• If A is a p × q matrix and B is a q × r matrix, the result of multiplying A

and B is a p × r matrix C.
– The time to computer C is dominated by the number of scalar 

multiplications. That is p × q × r.

• Example:
– Given matrices <A1, A2, A3>, 

- A1 is a  10 × 100 matrix
- A2 is a 100 × 5 matrix
- A3 is a 5 × 50 matrix.

– A1A2 = 10．100．5 = 5,000 multiplications to form a 10×5 matrix.
– A2A3 = 100．5．50 = 25,000 multiplications to form a 100×50 matrix.
– ((A1, A2), A3) 

= 5,000 + 10．5．50 = 7,500 multiplications to form a 10×50 matrix.
– (A1, (A2, A3)) 

= 10．100．50 + 25,000 = 75,000 multiplications to form a 10 ×50 matrix.
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Matrix-Chain Multiplication Problem
• Problem definition:

– Given a chain <A1, A2, …, An> of n matrices, where for i 
= 1, 2, …, n, matrix Ai has dimension pi-1×pi, fully 
parenthesize the product A1A2…An in a way that 
minimizes the number of scalar multiplications.

– To represent the chain <A1, A2, …, An>, the input 
sequence p = <p0, p1, …, pn>.

• Our goal is only to determine an order for 
multiplying matrices that has the lowest cost.
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Counting the Number of Parenthesizations
• Exhaustively checking all possible parenthesizations does not yield an 

efficient algorithm.

• Let P(n) be the number of alternative parenthesizations of a sequence 
of n matrices.

– When n = 1, only one way to fully parenthesize the matrix product.
– When n ≥ 2, a fully parenthesized matrix product is the product of two fully 

parenthesized matrix subproducts.
- The split between the two subproducts may occur between the kth and (k+1)st 

matrics for any k = 1, 2, …, n-1.
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The number of solutions is 
Ω(4n/n3/2)
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Applying Dynamic Programming
• Use dynamic-programming method to determining 
how to optimally parenthesize a matrix chain. 

• The four-step sequence is 
– 1. Characterize the structure of an optimal solution.
– 2. Recursively define the value of an optimal solution.
– 3. Compute the value of an optimal solution.
– 4. Construct an optimal solution from computed 

information.
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Step 1.
The Structure of an Optimal Parenthesizatoin
• Let Ai..j denote the result of evaluating the product 

AiAi+1..Aj, where i ≤ j.

• To parenthesize the product AiAi+1..Aj, the product between 
Ak and Ak+1 for some integer k in the range i ≤ k < j is split. 
That is

– Comput Ai Ai+1..Ak and Ak+1 AK+2..Aj then 
– Multiply them together.

(( ... )( ... ))A A A A A Ak k k n1 2 1 2+ +
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Step 2
A Recursive Solution
• Let m[i, j] be the minimum number of scalar multiplications needed to 

compute the matrix Ai..j.
– If i = j, m[i..j] = 0 because no scalar multiplications.
– If i < j, split AiAi+1..Aj into Ai Ai+1..Ak and Ak+1 AK+2..Aj where i ≤ k < j. 

- There are j - i possible values for k.
- m[i..j] equals the minimum cost for computing the Ai..k and Ak+1..j, plus the cost of 

multiplying these two matrices together.

• Since matrix Ai is  pi-1×pi, the product Ai..k Ak+1..j takes pi-1×pk ×pj. 
• The recursive definition for the minimum cost of parenthesizing the 

product Ai Ai+1..Aj becomes:

• The lowest cost way to compute A1..n is m[1..n].

⎪⎩
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This recursive algorithm 
takes exponential time
(similar to rod cutting) 
without adopting the 
tabular method.
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Step 3
Computing the Optimal Costs
• The number of choices for i and j satisfying 1 ≤ i ≤ j ≤ n is 

C2
n + n = n(n-1)/2 + n =  n(n+1)/2 = Θ(n2).

• A tabular, bottom-up 
approach:

– Table m[1..n, 1..n] is 
to store the m[i, j] costs.

– Table s[1..n-1, 2..n] records 
the k value achieving 
the optimal cost in 
computing m[i, j].

Running time O(n3).
Required space Θ(n2).
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Step 3
Computing the Optimal Costs (Cont.)

((A1(A2A3))((A4A5)A6))
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Step 4
Constructing an Optimal Solution
• Each entry s[i, j] records a value of k such that an optimal 

parenthesization of AiAi+1..Aj, splits the product between Ak
and Ak+1.

– That is A1..s[1, n]As[1,n]+1..n.
– Find subproducts recursively:

- A1..s[1, n] could be split at s[1, s[1, n]].
- As[1, n]+1..n could be split at s[s[1, n]+1, n].



Elements of Dynamic 
Programming

Elements of Dynamic 
Programming
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Elements of Dynamic Programming
• Two key elements that an optimization problem could be 

solved by dynamic programming:
– Optimal substructure

- An optimal solution to the problem contains within its optimal solution 
to subproblems.

- Whenever a problem exhibits optimal substructure, we have a good clue 
that dynamic programming might apply.

- We build an optimal solution to the problem from optimal solutions to 
subproblems.

– Overlapping subproblems
- When a recursive algorithm revisits the same problem repeatedly, it 

has overlapping subproblems.
- The total number of distinct subproblems is a polynominal in the 

input size.
- In contrast, a problem for which a divide-and-conquer approach is 

suitable usually generates brand-new problems at each step of the 
recursion.
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Common Pattens of Optimal Substructure
• A solution to the problem consists of making a choice, 

Making this choice leaves one or more subproblems to be 
solved.

• For a given problem, you are given the choice that leads to 
an optimal solution.

• Given this choice, you determine which subproblems ensue 
(接著發生) and how to best characterize the resulting 
space of subproblems.

• The solutions to the subproblems used within the optimal 
solution to the problem must themselves be optimal by 
using a “cut-and-paste” technique.

– Cutting out the nonoptimal solution to each subproblem and pasting 
in the optimal one.
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Key Points of Optimal Substructure
• Optimal substructure varies across problem domains in two 

ways:
– How many subproblems are used in an optimal solution to the 

original problem.
– How many choices we have in determining which subproblem(s) to 

use in an optimal solution.

• In rod cutting, O(n) subproblems overall, and at most n 
choices to exam for each O(n2) running time.

– With subproblem graph, each vertex corresponds to a 
subproblem, and the choices for a problem are the edges incident 
to that subproblem.

• In maxtirx-chain multiplication, O(n2) subproblems overall, 
and at most n choices to exam for each O(n3) running 
time.

– With subproblem graph, there are Θ(n2) vertices and each vertex 
would have degree at most n.
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Subtleties
• One should be careful not to assume that optimal 
substructure applies when it does not. 

• Consider the following two problems in which we 
are given a directed graph G = (V, E) and vertices u, 
v ∈ V.
– Unweighted shortest path:

- Find a path from u to v consisting of the fewest edges. Good for 
Dynamic programming.

– Unweighted longest simple path:
- Find a simple path from u to v consisting of the most edges. Not 

good for Dynamic programming.
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Unweighted Shortest-Path Problem
• The unweighted shortest-path problem exhibits optimal 

substructure (because subproblems do not share 
resources).
– Suppose that u ≠v. Any path p from u to v must contain 

an intermediate vertex w.
– Decompose                 into subpaths
– Clearly, the number of edges in p equals the number of 

edges in p1 plus that in p2. 
- Proof: If p1 or p2 is not optimal and p’1 or p’2 is optimal, then p’1 + 

p2 < p or p1 + p’2 < p Contradict that p is optimal.

p
u v

p1u w 
p2 v

p’1u w 
p2 v p1u w 

p’2 v
In matrix-chain multiplication, subchains are 
disjoint.
In rod-cutting, subproblems are disjoint.
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Unweighted Longest-Path Problem
• Suppose that u ≠v. Any path p from u to v must contain an intermediate 

vertex w.

• Decompose                 into subpaths
– The p1 might not be a longest path from u to w.
– The p2 might not be a longest path from w to v.

• Example:
– One simple longest simple path from q to t is q r t.
– Subproblems:

- q r is not a simple longest path from from q to r. (Optimal: q s t r)
- r t is not a simple longest path from from r to t. (Optimal: r q s t)
- Combine the above two suboptimals. The resulting path is not a simple path.

– No optimal substructure exists because the subproblems in finding the longest 
simple path are not independent.

- One subproblem affects the solution to another subproblem.
- E.g., q s t r let the other not be able to select s and t. (due to “simple” path)

p
u v p1u w 

p2 v

q

s t

r

Simple path means no cycle in the path.
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Overlapping Subproblems
• An optimization problem for dynamic programming to apply must have 

“small” number of subproblems.

• Dynamic-programming algorithms typically solves each subproblem
once and then stores the solution in a table for the future lookup.

– For example, in matrix-chain multiplication, m[3, 4] is referenced four times: 
during the computations of m[2, 4], m[1, 4], m[3, 5], and m[3, 6].
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Overlapping Subproblems (Cont.)
• Good divide-and-conquer algorithms usually 
generate a brand new problem at each stage of 
recursion.
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Recursive Matrix Chain
• Let T(n) denote the time to compute an optimal parenthesization of a 

chain of n matrices.
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Initial call:
RECURSIVE-MATRIX-CHAIN(p, 1, n)

• Prove that T(n) ≥ Ω(2n) using 
the substitution method:

– Let T(n) ≥ 2n-1

T(1) ≥ 1 = 20 for n ≥ 1
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multiplication
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Memoization

• A memoized recursive 
algorithm maintains an entry in 
a table for the solution to each 
subproblem.

• Time complexity: O(n3)
– Θ(n2) distinct 

subproblems.
– Whenever a given call of 

LOOKUP-CHAIN makes 
recursive calls, it makes 
O(n) of them.

initialize

No mulplication when there 
is only one matrix

If the corresponding table is 
filled, just look up the table.

• In general, if all subproblems must be solved 
at least once, 

• A bottom-up DP algorithm usually outperforms 
the corresponding top-down memoized
algorithm by a constant factor.

• The bottom-up algorithm has no overhead for 
recursion and less overhead for maintaining 
the table.



Longest Common 
Sequence

Longest Common 
Sequence
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Longest Common Subsequence (LCS)
• Input: 

– Given 2 sequences, X = <x1, …, xm>  and Y = <y1, …, yn>.

• Output: 
– Find a subsequence common to both whose length is longest. 
– A subsequence doesn’t have to be consecutive, but it has to be in order.

• Brute-force algorithm:
– For every subsequence of X, check whether it’s a subsequence of Y.
– Time: Q(n2m).

- 2m subsequences of X to check.  
- Each subsequence takes O(n) time to check: Scan Y for first letter, from there scan for second, and so on

LCS is frequently adopted in DNA pattern matching.
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Optimal Substructure

An LCS of two sequences contains as a prefix an LCS 
of prefixes of the sequences.

(Optimal substructure of an LCS)
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Optimal Substructure (Cont.)



October 20, 2010 47

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursive Formulation

Compare bozo with bat.

Lots of repeated subproblems.
Instead of recomputing, store in a table.
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Compute Length of Optimal Solution



October 20, 2010 49

Copyright © All Rights Reserved by Yuan-Hao Chang

Demonstration

• spanking vs. 
amputation

• Answer:
– pain

• Time:
– Θ(mn)
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Demonstration (Cont.)
• ABCBDAB vs. 
BDCABA

• Answer:
– BCBA

• Time:
– Θ(mn)



Optimal Binary Search 
Trees

Optimal Binary Search 
Trees
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Optimal Binary Search Trees (BST)
• Given sequence K = <k1, k2, …, kn> of n distinct keys, sorted (k1 < k2

< …< kn).

• Want to build a binary search tree 
from the keys.

• For ki , have probability pi that a 
search is for ki .

• Want BST with minimum 
expected search cost.

• Actual cost = number of items 
examined.
For key ki , cost = depthT(ki) + 1, 
where depthT(ki) = depth of ki in BST T.
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Example
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Observations
• Optimal BST might not have smallest height.

• Optimal BST might not have highest-probability key 
at root.

• Exhaustive checking:
– Construct each n-node BST.
– For each, put in keys.
– Then compute expected search cost.
– There are different                   BSTs with n nodes. 
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Optimal Substructure
• Consider any subtree of a BST. It contains keys in a contiguous range 

ki, …, kj for some 1 ≤ i ≤ j ≤ n.

• If T is an optimal BST and T contains subtree T’ with keys ki, …, kj, then 
T’ must be an optimal BST for keys ki, …, kj .

• Proof:
– Use optimal substructure

- Given keys ki, …, kj .

- One of them, kr , where i ≤ r ≤ j , must be the root.
- Left subtree of kr contains ki, …, kr-1 .
- Right subtree of kr contains kr+1, …, kj .

– If we examine all candidate roots kr , for i ≤ r ≤ j , and
– we determine all optimal BSTs containing ki, …, kr-1 

and containing kr+1, …, kj .

– Then we’re guaranteed to find an optimal BST for ki, …, kj .
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Recursive Solution

e[j+1, j] = 0
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Recursive Solution (Cont.)
• When a subtree becomes a subtree of a node:

– Depth of every node in subtree goes up by 1.
– Expected search cost increases by

• If kr is the root of an optimal BST for ki, …, kj :

• Try all candidates, and pick the best one:
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Computing an Optimal Solution
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Computing an Optimal Solution (Cont.)

When l = 1, compute e[i, i] and w[i, i] for i=1…n.
When l = 2, compute e[i, i+1] and w[i, i+1] for 
i=1…n-1.

Try each candidate r

Time complexity: Θ(n3)
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Computing an Optimal Solution (Cont.)
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Construct an Optimal Solution
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Project 4
• Use C language to implement the rod-cutting problem with 

dynamic programming.
– The input file should be retrieved through argv[1] of main() function.
– Use fscanf() to get integers from the input file.

- The first integer indicates the length of the rod to cut.
- The first integer also indicates the number of input integers in this file. 

The i-th input integer indicates the revenue of the rod of length i.
- E.g., “4 1 5 8 9” means there is a 4-inch rod. 1, 5, 8, and 9 are the 

revenue of the rod of 1, 2, 3, and 4 inches, respectively.
– Find and output cuts and the maximal revenue.

- .E.g., 2, 2: 10

• Deadline: 24:00, 2010.10.18
– Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
– Email title: Algo_P4_學號_姓名

mailto:johnsonchang@ntut.edu.tw
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Project 5
• Use C language to implement the Matrix-chain 

multiplication problem with dynamic programming.
– The input file should be retrieved through argv[1] of main() function.
– Use fscanf() to get integers from the input file.

- The first integer indicates the number of matrices.
- E.g., “6 30 35 15 5 10 20 25” means there are 6 matrices (A1 to A6) and 

p0 to p6 are 30, 35, 15, 5, 10, 20, 25, respectively.
– Find and output the minimal number of multiplications and the 

parenthesization of the matrices.
- .E.g., 15125, ((A1(A2A3))((A4A5)A6))

• Deadline: 24:00, 2010.10.25
– Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
– Email title: Algo_P5_學號_姓名

mailto:johnsonchang@ntut.edu.tw
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