Topic 3: Dynamic Programming

Dynamic Programming

- Dynamic program is not a specific algorithm, but a technique (like divide-and-conquer).
- Dynamic programming, like divide-and-conquer, solves problems by combining the solutions to subproblems.
- Programming means a "tabular method."
- Dynamic programming applies when the subproblems overlap. That is when subproblems share subsubproblems.
- A dynamic programming algorithm solves each subsubproblem just once and then saves its answer in a table.
- The adopted tabular method avoids recomputing the answer every time it solves each subsubproblem.
- In this kind of problems, a divide-and-conquer algorithm does more work than necessary.
- Divide-and-conquer algorithms partition the problem into disjoint subproblems, solve the problem recursively, and then combine their solutions to solve the original problem.

Dynamic Programming (Cont.)

- Dynamic programming is typically applied to solve optimization problems.
- Four-step method to find an optimal solution (maximization or minimization) with dynamic programming:
- Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution, typically in a bottom-up fashion.
- Construct an optimal solution from computed information.

Outline

- Rod Cutting
- Matrix-Chain Multiplication
- Elements of Dynamic Programming
- Longest Common Subsequence
- Optimal Binary Search Trees

Rod Cutting

Rod Cutting

- How to cut steel rods into pieces in order to maximize the revenue you can get?
- Each cut is free.
- Rod lengths are always an integral number of inches.
- Input:
-A length n and table of prices p_{i}, for $i=1,2, \ldots$, n.
- Output:
- The maximum revenue obtainable for rods whose lengths sum to n, computed as the sum of the prices for the individual rods.

An Example of Rod Cutting

- An n-inch rod of can be cut up in 2^{n-1} ways, because we can choose to cut or not cut after each of the first n-1 inches.

length i	1	2	3	4	5	6	7	8
price p_{i}	1	5	8	9	10	17	17	20

- Example: A 4-inch rod

The best way is to cut it into two 2-inch pieces, getting a revenue of $p_{1}+p_{2}=5+5=10$

An Example of Rod Cutting (Cont.)

- Let r_{i} be the maximal revenue for a rod of length i. The optimal revenues r_{i} for the example, by inspection:
- To determine the optimal revenue r_{n} by taking the maximum of
$-p_{n}$: the price of no cut
$-r_{1}+r_{n-1}$: the maximum revenue from a rod of 1 inch and a rod of $n-1$ inches,
$-r_{2}+r_{n-2}$: the maximum revenue from a rod of 2 inches and a rod of n-2 inches, ...
$-r_{n-1}+r_{1}$: the maximum revenue from a rod of $n-1$ inches and a rod of 1 inch.
$r_{n}=\max \left(p_{n}, r_{1}+r_{n-1}, r_{2}+r_{n-2}, \ldots, r_{n-1}+r_{1}\right)$

length	1	2	3	4	5	6	7	8
price p_{i}	1	5	8	9	10	17	17	20
i	r_{i}		optimal solution					
1	1			(no	cuts			
2	5			(no	cuts			
3	8			(no	cu			
4	10			+				
5	13			+				
6	17			(no	cu			
7	18			+	6 or	$2+$	2	
8	22			+				

Optimal Substructure

- After making a cut, we have two subproblems.
- The optimal solution to the original problem incorporates optimal solutions to the subproblems. We may solve the subproblems independently.
- Example: For $\mathrm{n}=7$, one of the optimal solutions makes a cut at 3 inches, giving two subproblems, of lengths 3 and 4.
- We need to solve both of them optimally.
- The optimal solution for the problem of length 4 (cutting into 2 pieces, each of length 2) is used in the optimal solution to the original problem with length 7 .

A Simpler Decomposition

- Every optimal solution has a leftmost cut.
- In other words, there's some cut that gives a first piece of length i cut off the left end (revenue p_{i}), and a remaining piece of length $n-i$ on the right (revenue r_{n-i}).
- Need to divide only the remainder, not the first piece.
- Leave only one subproblem to solve, rather than two subproblems.
- The solution with no cuts has first piece size $i=n$ with revenue p_{n}, and remainder size $\mathbf{0}$ with revenue $\boldsymbol{r}_{0}=\mathbf{0}$.
- Give a simpler version of the equation for r_{n} :

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)
$$

A Simpler Decomposition (Cont.)

- The call CUT-ROD (p, n) returns the optimal revenue r_{n} :
- This procedure works, but it is terribly inefficient.
- If you code it up and run it, it could take more than an hour for $\mathrm{n}=40$. Running time almost doubles each time n increases by 1.
- Why so inefficient?
- CUT-ROD calls itself repeatedly, even on subproblems it has already solved.

$$
\begin{aligned}
& \text { CUT- } \operatorname{ROD}(p, n) \\
& \text { if } n==0 \\
& \text { return } 0
\end{aligned}
$$

Adopt divide-andconquer technique

$q=-\infty$
for $i=1$ to n

$$
q=\max (q, p[i]+\operatorname{CUT}-\operatorname{RoD}(p, n-i))
$$

return q

A Simpler Decomposition (Cont.)

- For n = 4:
- Have lots of repeated subproblems.
- Solve the subproblem for size 2 twice, for size 1 four times, and for size 0 eight times.

An edge from a parent with label s to a child with label t corresponds to cutting off an initial piece of size s-t and leaving a remaining subproblem of size t.

A Simpler Decomposition (Cont.)

- Exponential growth

$$
a+a r+a r^{2}+a r^{3}+\cdots+a r^{n}=\sum_{k=0}^{n} a r^{k}=a \frac{1-r^{n+1}}{1-r}
$$

- Let $T(n)$ equal the number of calls to CUT-ROD with second parameter equal to n. Then

$$
T(n)= \begin{cases}1 & \text { if } n=0 \\ 1+\sum_{j=0}^{n-1} T(j) & \text { if } n \geq 1\end{cases}
$$

Geometric series

- The initial 1 is for the call at the root. $\operatorname{Cut-Rod}(p, n)$
$-T(j)$ counts the number of calls due to the call CUT-ROD($p, n-i$), where $\boldsymbol{j}=\boldsymbol{n}$ - \boldsymbol{i}.
- Solution to recurrence is $\mathrm{T}(n)=2^{n}$.

$$
\begin{aligned}
& \text { if } n==0 \\
& \quad \text { return } 0 \\
& q=-\infty \\
& \text { for } i=1 \text { to } n \\
& \quad q=\max (q, p[i]+\operatorname{CUT}-\operatorname{RoD}(p, n-i))
\end{aligned}
$$

Dynamic Programming Solution

- Instead of solving the same subproblems repeatedly, arrange to solve each subproblem just once.
- Save the solution to a subproblem in a table, and refer back to the table whenever we revisit the subproblem.
- "Store, don't recompute" \Rightarrow time-memory trade-off.
- Turn an exponential-time solution into a polynomial-time solution.
- Two basic approaches:
- Top-down with memoization, and
- Bottom-up method.

Top-Down with Memoization

- Solve recursively, but store each result in a table.
- To find the solution to a subproblem, first look in the table.
- If the answer is there, use it.
- Otherwise, compute the solution to the subproblem and then store the solution in the table for future use.
- Memoized version of the recursive solution, storing the solution to the subproblem of length i in array entry $r[i]$ \Rightarrow

MEMOIZED-CUT-ROD (p, n)
let $r[0 \ldots n]$ be a new array
for $i=0$ to n

$$
r[i]=-\infty
$$

The array to store the optimal of the solved subproblems.
return MEMOIZED-CUT-ROD-AUX (p, n, r)

```
Memoized-Cut-Rod-Aux \((p, n, r\) )
if \(r[n] \geq 0\)
    return \(r\) [ \(n\) ]
if \(n=0\)
    \(q=0\)
else \(q=-\infty\)
    for \(i=1\) to \(n\)
        \(q=\max (q, p[i]+\) Memoized-Cut-Rod-Aux \((p, n-i, r))\)
\(r[n]=q\)
return \(q\)
```

Memoizing is remembering what we have computed previously.

- Sort the subproblems by size and solve the smaller ones first.
- When solving a subproblem, the smaller subproblems we need have already solved.

```
Bоттом-Up-Cut-Rod ( \(p, n\) )
let \(r[0 . . n]\) be a new array
\(r[0]=0\)
for \(j=1\) to \(n\)
    \(q=-\infty\)
    for \(i=1\) to \(j\)
        \(q=\max (q, p[i]+r[j-i])\)
    \(r[j]=q\)
return \(r[n]\)
```


Running Time

- Both the top-down and bottom-up versions run in $O\left(n^{2}\right)$ time.
- Bottom-up:
- Doubly nested loops.
- Number of iterations of inner for loop forms an arithmetic series.
- Top-down:
- MEMOIZED-CUT-ROD solves each subproblem just once, and it solves subproblems for sizes $n, n-1, \ldots, 0$.
- To solve a subproblem of size \boldsymbol{n}, the for loop iterates \boldsymbol{n} times. \Rightarrow Over all recursive calls, total number of iterations forms an arithmetic series.

Subproblem Graphs

- Directed graph:
- One vertex for each distinct subproblem.
- A directed edge (x, y) if computing an optimal solution to subproblem x directly requires knowing an optimal solution to subproblem y.
- Example: For rod-cutting problem with $n=4$:
- We can think of the subproblem graph as a collapsed version of the tree of recursive calls, where
- All nodes for the same subproblem are collapsed into a single vertex, and all edges go from parent to child.
- Because we solve each subproblem just once, the running time is sum of times needed to solve each subproblem.

- Time to compute solution to a subproblem is typically linear in the out-degree (number of outgoing edges) of its vertex.
- Number of subproblems equals number of vertices.

Thinking about a dynamic programming problem, we should understand how the set of subproblems involved and how subproblems depend on each other.

Reconstructing a Solution

- How to produce a choice that produces an optimal solution:
- Extend the bottom-up approach to record not just optimal values, but optimal choices.
- Save the optimal choices in a separate table.
- Then use a separate procedure to print the optimal choices.

```
let r[0\ldotsn] and s[0\ldotsn] be new arrays
r[0] = 0
for }j=1\mathrm{ to }
    q=-\infty
    for i}=1\mathrm{ to }
        if q<p[i]+r[j-i]
            q=p[i]+r[j-i]
            s[j] = i
    r[j]=q
return }r\mathrm{ and }
```

EXTENDED-BOTTOM-UP-CUT-ROD (p, n)
$s[j]$ holds the optimal size i of the first piece to cut return r and s off when solving a subproblem of size j.

Reconstructing a Solution (Cont.)

- Example:

length i	1	2	3	4	5	6	7	8
price p_{i}	1	5	8	9	10	17	17	20

- EXTENDED-BOTTOM-UP-CUT-ROD returns

i	0	1	2	3	4	5	6	7	8
$r[i]$	0	1	5	8	10	13	17	18	22
$s[i]$	0	1	2	3	2	2	6	1	2

- A call to PRINT-CUT-ROD-SOLUTION $(p, 8)$ calls EXTENDED-BOTTOM-UPCUT-ROD to compute the above r and s tables.
- Then it prints 2, sets n to 6, prints 6, and finishes (because n becomes 0).

Matrix-Chain Multiplication

Matrix-Chain Multiplication

- A product of matrices is fully parenthesized:
- If it is either a single matrix, or a product of two fully parenthesized matrix product surrounded by parentheses.
- Example:
- Input:
- A chain of matrices is $<A_{1}, A_{2}, A_{3}, A_{4}>$
- Output:
- Fully parenthesized matrices
$\left(A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right)$,
$\left(A_{1}\left(\left(A_{2} A_{3}\right) A_{4}\right)\right)$,
$\left(\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)\right)$, $\left(\left(A_{1}\left(A_{2} A_{3}\right)\right) A_{4}\right)$, $\left(\left(\left(A_{1} A_{2}\right) A_{3}\right) A_{4}\right)$.

Matrix-Multiply (A, B)
1 if A.columns $\neq B$.rows
error "incompatible dimensions"
else let C be a new A.rows \times. .columns matrix
for $i=1$ to A.rows
for $j=1$ to B.columns
$c_{i j}=0$
for $k=1$ to A.columns

$$
c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
$$

return C
Matrix Multiplication

Matrix-Chain Multiplication (Cont.)

- If \boldsymbol{A} is a $p \times q$ matrix and \boldsymbol{B} is a $q \times r$ matrix, the result of multiplying \boldsymbol{A} and \boldsymbol{B} is a $p \times r$ matrix \boldsymbol{C}.
- The time to computer C is dominated by the number of scalar multiplications. That is $p \times q \times r$.
- Example:
- Given matrices $<A_{1}, A_{2}, A_{3}>$,
- A_{1} is a 10×100 matrix
- A_{2} is a 100×5 matrix
- A_{3} is a 5×50 matrix.
$-A_{1} A_{2}=10 \cdot 100 \cdot 5=5,000$ multiplications to form a 10×5 matrix.
$-A_{2} A_{3}=100 \cdot 5 \cdot 50=25,000$ multiplications to form a 100×50 matrix.
- $\left(\left(A_{1}, A_{2}\right), A_{3}\right)$
$=5,000+10 \cdot 5 \cdot 50=7,500$ multiplications to form a 10×50 matrix.
- $\left(A_{1},\left(A_{2}, A_{3}\right)\right)$
$=10 \cdot 100 \cdot 50+25,000=75,000$ multiplications to form a 10×50 matrix.

Matrix-Chain Multiplication Problem

-Problem definition:

- Given a chain $<\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}>$ of n matrices, where for i $=1,2, \ldots, n$, matrix A_{i} has dimension $p_{i-1} \times p_{i}$, fully parenthesize the product $A_{1} A_{2} \ldots A_{n}$ in a way that minimizes the number of scalar multiplications.
- To represent the chain $\left.<A_{1}, A_{2}, \ldots, A_{n}\right\rangle$, the input sequence $p=<p_{0}, p_{1}, \ldots, p_{n}>$.
- Our goal is only to determine an order for multiplying matrices that has the lowest cost.

Counting the Number of Parenthesizations

- Exhaustively checking all possible parenthesizations does not yield an efficient algorithm.
- Let $\mathbf{P (n)}$ be the number of alternative parenthesizations of a sequence of n matrices.
- When $n=1$, only one way to fully parenthesize the matrix product.
- When $n \geq 2$, a fully parenthesized matrix product is the product of two fully parenthesized matrix subproducts.
- The split between the two subproducts may occur between the k th and $(k+1)$ st matrics for any $k=1,2, \ldots, n-1$.

$$
P(n)=\left\{\begin{array}{cc}
1 & \text { if } n=1 \\
\sum_{k=1}^{n-1} P(k) P(n-k) & \text { if } n \geq 2
\end{array}\right.
$$

The number of solutions is $\Omega\left(4^{n} / n^{3 / 2}\right)$

Applying Dynamic Programming

- Use dynamic-programming method to determining how to optimally parenthesize a matrix chain.
- The four-step sequence is
-1. Characterize the structure of an optimal solution.
-2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution.
-4. Construct an optimal solution from computed information.

Step 1.

The Structure of an Optimal Parenthesizatoin

- Let $A \dot{A} . . j$ denote the result of evaluating the product $A_{i} A_{i+1} . . A_{j}$, where $i \leq j$.
- To parenthesize the product $A_{i} A_{i+1} . A_{j}$, the product between A_{k} and A_{k+1} for some integer k in the range $i \leq k<j$ is split. That is
- Comput $A_{i} A_{i+1} . . A_{k}$ and $A_{k+1} A_{K+2} . . A_{j}$ then
- Multiply them together.

Step 2

A Recursive Solution

- Let $\boldsymbol{m}[i, j]$ be the minimum number of scalar multiplications needed to compute the matrix $\boldsymbol{A}_{i . . j}$.
- If $\mathrm{i}=\mathrm{j}, \mathrm{m}[\mathrm{i} . \mathrm{j}]=0$ because no scalar multiplications.
- If $\mathrm{i}<\mathrm{j}$, split $A_{j} A_{i+1} . . A_{j}$ into $A_{i} A_{i+1} . . A_{k}$ and $A_{k+1} A_{k+2} . . A_{j}$ where $i \leq k<j$.
- There are j - i possible values for k.
- $m[i . . j]$ equals the minimum cost for computing the $A_{i . . k}$ and $A_{k+1 . . j}$, plus the cost of multiplying these two matrices together.
- Since matrix $\boldsymbol{a}_{\boldsymbol{i}}$ is $\boldsymbol{p}_{i-1} \times \boldsymbol{p}_{i}$, the product $A_{i . . k} A_{k+1 . j}$ takes $\boldsymbol{p}_{i-1} \times \boldsymbol{p}_{k} \times \boldsymbol{p}_{j}$.
- The recursive definition for the minimum cost of parenthesizing the product $A_{i} A_{i+1} . . A_{j}$ becomes:

$$
m[i, j]=\left\{\begin{array}{cl}
0 & i=j \\
\min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & i<j
\end{array}\right.
$$

- The lowest cost way to compute $A_{1 . . n}$ is $m[1 . . n]$.

This recursive algorithm takes exponential time (similar to rod cutting) without adopting the tabular method.

Step 3

Computing the Optimal Costs

- The number of choices for i and j satisfying $1 \leq i \leq j \leq n$ is $C_{2}{ }^{n}+n=n(n-1) / 2+n=n(n+1) / 2=\Theta\left(n^{2}\right)$.
- A tabular, bottom-up approach:
- Table m[1..n, 1..n] is to store the $\mathrm{m}[\mathrm{i}, \mathrm{j}]$ costs.
- Table s[1..n-1, 2..n] records the k value achieving the optimal cost in computing $\mathrm{m}[\mathrm{i}, \mathrm{j}]$.

```
MATRIX-CHAIN-ORDER ( \(p\) )
\(n=p\).length -1
let \(m[1 \ldots n, 1 \ldots n]\) and \(s[1 \ldots n-1,2 \ldots n]\) be new tables
for \(i=1\) to \(n\)
        \(m[i, i]=0\)
for \(l=2\) to \(n \quad / / l\) is the chain length
        for \(i=1\) to \(n-l+1\)
        \(j=i+l-1\)
        \(m[i, j]=\infty\)
        for \(k=i\) to \(j-1\)
            \(q=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\)
            if \(q<m[i, j]\)
                \(m[i, j]=q\)
                \(s[i, j]=k\)
```

 return \(m\) and \(s\)

Step 3

Computing the Optimal Costs (Cont.)

$$
\begin{aligned}
m[2,5] & =\min \left\{\begin{array}{l}
m[2,2]+m[3,5]+p_{1} p_{2} p_{5}=0+2500+35 \cdot 15 \cdot 20=13,000, \\
m[2,3]+m[4,5]+p_{1} p_{3} p_{5}=2625+1000+35 \cdot 5 \cdot 20=7125, \\
m[2,4]+m[5,5]+p_{1} p_{4} p_{5}=4375+0+35 \cdot 10 \cdot 20=11,375
\end{array}\right. \\
& =7125 .
\end{aligned}
$$

Step 4
 Constructing an Optimal Solution

- Each entry $s[i, j]$ records a value of k such that an optimal parenthesization of $A_{i} A_{i+1} . . A_{j}$, splits the product between A_{k} and A_{k+1}.
- That is $A_{1 . . s[1, n]} A_{s[1, n]+1 . . n}$.
- Find subproducts recursively:
- $A_{1 . . s[1, n]}$ could be split at $s[1, s[1, n]]$.
- $A_{s[1, n]+1 . . n}$ could be split at $s[s[1, n]+1, n]$.

```
Print-OptimAL-Parens (s,i,j)
    if i== j
        print "A" }\mp@subsup{}{i}{
    else print "("
        Print-Optimal-Parens ( }s,i,s[i,j]
        Print-Optimal-Parens (s,s[i,j]+1,j)
        print ")"
```


Elements of Dynamic Programming

Elements of Dynamic Programming

- Two key elements that an optimization problem could be solved by dynamic programming:
- Optimal substructure
- An optimal solution to the problem contains within its optimal solution to subproblems.
- Whenever a problem exhibits optimal substructure, we have a good clue that dynamic programming might apply.
- We build an optimal solution to the problem from optimal solutions to subproblems.
- Overlapping subproblems
- When a recursive algorithm revisits the same problem repeatedly, it has overlapping subproblems.
- The total number of distinct subproblems is a polynominal in the input size.
- In contrast, a problem for which a divide-and-conquer approach is suitable usually generates brand-new problems at each step of the recursion.

Common Pattens of Optimal Substructure

－A solution to the problem consists of making a choice， Making this choice leaves one or more subproblems to be solved．
－For a given problem，you are given the choice that leads to an optimal solution．
－Given this choice，you determine which subproblems ensue （接著發生）and how to best characterize the resulting space of subproblems．
－The solutions to the subproblems used within the optimal solution to the problem must themselves be optimal by using a＂cut－and－paste＂technique．
－Cutting out the nonoptimal solution to each subproblem and pasting in the optimal one．

Key Points of Optimal Substructure

- Optimal substructure varies across problem domains in two ways:
- How many subproblems are used in an optimal solution to the original problem.
- How many choices we have in determining which subproblem(s) to use in an optimal solution.
- In rod cutting, $\mathbf{O}(\boldsymbol{n})$ subproblems overall, and at most \boldsymbol{n} choices to exam for each $\rightarrow O\left(n^{2}\right)$ running time.
- With subproblem graph, each vertex corresponds to a subproblem, and the choices for a problem are the edges incident to that subproblem.
- In maxtirx-chain multiplication, $O\left(n^{2}\right)$ subproblems overall, and at most \boldsymbol{n} choices to exam for each $\rightarrow \mathrm{O}\left(n^{3}\right)$ running time.
- With subproblem graph, there are $\Theta\left(n^{2}\right)$ vertices and each vertex would have degree at most n.

Subtleties

- One should be careful not to assume that optimal substructure applies when it does not.
- Consider the following two problems in which we are given a directed graph $G=(V, E)$ and vertices u, $v \in V$.
- Unweighted shortest path:
- Find a path from u to v consisting of the fewest edges. Good for Dynamic programming.
- Unweighted longest simple path:
- Find a simple path from u to v consisting of the most edges. Not good for Dynamic programming.

Unweighted Shortest-Path Problem

- The unweighted shortest-path problem exhibits optimal substructure (because subproblems do not share resources).
- Suppose that $u \neq v$. Any path p from u to v must contain an intermediate vertex w.
- Decompose $u \stackrel{p}{\sim} v$ into subpaths $u \xrightarrow{p_{1}} w \stackrel{p_{2}}{\sim} v$
- Clearly, the number of edges in p equals the number of edges in p_{1} plus that in p_{2}.
- Proof: If p_{1} or p_{2} is not optimal and p_{1}^{\prime} or p_{2}^{\prime} is optimal, then $p_{1}^{\prime}+$ $p_{2}<p$ or $p_{1}+p_{2}^{\prime}<p \rightarrow$ Contradict that p is optimal.

In matrix-chain multiplication, subchains are disjoint.
In rod-cutting, subproblems are disjoint.

$$
u \stackrel{p_{1}^{\prime}}{u_{\sim}} \text { w } \stackrel{p_{2}}{\sim} v:{ }_{u} \stackrel{p_{1}}{\sim} w \stackrel{p_{2}^{\prime}}{\sim} v
$$

Unweighted Longest-Path Problem

- Suppose that $u \neq v$. Any path p from u to v must contain an intermediate vertex w.
- Decompose $u \stackrel{p}{\sim} v$ into subpaths $u \stackrel{p_{1}}{\sim} w \stackrel{p_{2}}{\sim} v$
- The p_{1} might not be a longest path from u to w.
- The p_{2} might not be a longest path from w to v.
- Example: Simple path means no cycle in the path.
- One simple longest simple path from q to t is $q \rightarrow r \rightarrow t$.
- Subproblems:

- $q \rightarrow r$ is not a simple longest path from from q to r. (Optimal: $q \rightarrow s \rightarrow t \rightarrow r$)
- $r \rightarrow t$ is not a simple longest path from from r to t. (Optimal: $r \rightarrow q \rightarrow s \rightarrow t$)
- Combine the above two suboptimals. The resulting path is not a simple path.
- No optimal substructure exists because the subproblems in finding the longest simple path are not independent.
- One subproblem affects the solution to another subproblem.
- E.g., $q \rightarrow s \rightarrow t \rightarrow r$ let the other not be able to select s and t. (due to "simple" path)

Overlapping Subproblems

- An optimization problem for dynamic programming to apply must have "small" number of subproblems.
- Dynamic-programming algorithms typically solves each subproblem once and then stores the solution in a table for the future lookup.
- For example, in matrix-chain multiplication, $m[3,4]$ is referenced four times: during the computations of $m[2,4], m[1,4], m[3,5]$, and $m[3,6]$.

Overlapping Subproblems (Cont.)

- Good divide-and-conquer algorithms usually generate a brand new problem at each stage of recursion.

Example: merge sort

Recursive Matrix Chain

- Let $\mathbf{T}(\mathbf{n})$ denote the time to compute an optimal parenthesization of a chain of n matrices.

$$
\text { Lines } 6,7 \text { and }
$$

$$
\begin{cases}T(1) \geq 1, \text { Lines 1, 2 } & \text { multiplication } \\ T(n) \geq 1+\sum_{k=1}^{n-1}(T(k)+T(n-k)+1) & \text { for } n>1\end{cases}
$$

$$
\Longleftrightarrow T(n) \geq 2 \sum_{i=1}^{n-1} T(i)+n
$$

- Prove that $T(n) \geq \Omega\left(2^{n}\right)$ using the substitution method:

$$
\begin{aligned}
& - \text { Let } \mathrm{T}(n) \geq 2^{n-1} \\
& \mathrm{~T}(1) \geq 1=2^{0} \text { for } \mathrm{n} \geq 1 \\
& T(n) \geq 2 \sum_{i=1}^{n-1} 2^{i-1}+n \\
& =2 \sum_{i=0}^{n-2} 2^{i}+n \\
& =2\left(2^{n-1}-1\right)+n \\
& \\
& =\left(2^{n}-2\right)+n \geq 2^{n-1}
\end{aligned}
$$

```
RECURSIVE-MATRIX-CHAIN ( }p,i,j
if i== j 
4 for }k=i\mathrm{ to }j-
    q= RECURSIVE-MATRIX-Chain ( p,i,k)
        + RECURSIVE-MATRIX-Chain}(p,k+1,j
        + pi-1 p}\mp@subsup{p}{k}{}\mp@subsup{p}{j}{
    6 if q<m[i,j]
        m[i,j]=q
    8 return m[i,j]
```


Memoization

- In general, if all subproblems must be solved at least once,
- A bottom-up DP algorithm usually outperforms the corresponding top-down memoized algorithm by a constant factor.
- The bottom-up algorithm has no overhead for recursion and less overhead for maintaining the table.
- A memoized recursive algorithm maintains an entry in Lookup-ChAIN (m, p, i, j) a table for the solution to each subproblem.
- Time complexity: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- $\Theta\left(n^{2}\right)$ distinct subproblems.
- Whenever a given call of LOOKUP-CHAIN makes recursive calls, it makes $\mathbf{O}(\mathrm{n})$ of them.

Memoized-Matrix-Chain (p)

$1 \quad n=p$.length -1
2 let $m[1 \ldots n, 1 \ldots n]$ be a new table
for $i=1$ to n
for $j=i$ to n $m[i, j]=\infty$
6 return Lookup-Chain $(m, p, 1, n)$
$\begin{array}{ll}4 & \\ 5 & \\ 6 & \text { ret }\end{array}$
else for k=i to j-1
if q<m[i,j]
if q<m[i,j]
return m[i,j]

```
```

```
if m[i,j]<\infty
```

```
if m[i,j]<\infty
        return m[i,j]
        return m[i,j]
    if }i==
    if }i==
        m[i,j] = 0
```

 m[i,j] = 0
    ```

If the corresponding table is filled, just look up the table.

No mulplication when there is only one matrix
\(6 \quad q=\) Lookup-Chain \((m, p, i, k)\)
        \(+\operatorname{LOOKUP}-\operatorname{ChAIN}(m, p, k+1, j)+p_{i-1} p_{k} p_{j}\)


\section*{Longest Common Sequence}

\section*{}
- Input:

LCS is frequently adopted in DNA pattern matching.
- Given 2 sequences, \(\mathrm{X}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right\rangle\) and \(\mathrm{Y}=\left\langle\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right\rangle\).
- Output:
- Find a subsequence common to both whose length is longest.
- A subsequence doesn't have to be consecutive, but it has to be in order.





\section*{Brute-force algorithm:}
- For every subsequence of \(X\), check whether it's a subsequence of \(Y\).
- Time: \(\mathbf{Q}\left(\mathbf{n}^{2}{ }^{m}\right)\).
- \(2^{m}\) subsequences of \(X\) to check.
- Each subsequence takes \(\mathbf{O ( n )}\) time to check: Scan \(\mathbf{Y}\) for first letter, from there scan for second, and so on

\section*{Optimal Substructure}

Notation:
\[
\begin{aligned}
X_{i} & =\operatorname{prefix}\left\langle x_{1}, \ldots, x_{i}\right\rangle \\
Y_{i} & =\operatorname{prefix}\left\langle y_{1}, \ldots, y_{i}\right\rangle
\end{aligned}
\]

Theorem (Optimal substructure of an LCS)
Let \(Z=\left\langle z_{1}, \ldots, z_{k}\right\rangle\) be any LCS of \(X\) and \(Y\).
1. If \(x_{m}=y_{n}\), then \(z_{k}=x_{m}=y_{n}\) and \(Z_{k-1}\) is an LCS of \(X_{m-1}\) and \(Y_{n-1}\).
2. If \(x_{m} \neq y_{n}\), then \(z_{k} \neq x_{m} \Rightarrow Z\) is an LCS of \(X_{m-1}\) and \(Y\).
3. If \(x_{m} \neq y_{n}\), then \(z_{k} \neq y_{n} \Rightarrow Z\) is an LCS of \(X\) and \(Y_{n-1}\).

An LCS of two sequences contains as a prefix an LCS of prefixes of the sequences.

\section*{Optimal Substructure (Cont.)}
1. First show that \(z_{k}=x_{m}=y_{n}\). Suppose not. Then make a subsequence \(Z^{\prime}=\left\langle z_{1}, \ldots, z_{k}, x_{m}\right\rangle\). It's a common subsequence of \(X\) and \(Y\) and has length \(k+1 \Rightarrow Z^{\prime}\) is a longer common subsequence than \(Z \Rightarrow\) contradicts \(Z\) being an LCS.
Now show \(Z_{k-1}\) is an LCS of \(X_{m-1}\) and \(Y_{n-1}\). Clearly, it's a common subsequence. Now suppose there exists a common subsequence \(W\) of \(X_{m-1}\) and \(Y_{n-1}\) that's longer than \(Z_{k-1} \Rightarrow\) length of \(W \geq k\). Make subsequence \(W^{\prime}\) by appending \(x_{m}\) to \(W . W^{\prime}\) is common subsequence of \(X\) and \(Y\), has length \(\geq k+1\) \(\Rightarrow\) contradicts \(Z\) being an LCS.
2. If \(z_{k} \neq x_{m}\), then \(Z\) is a common subsequence of \(X_{m-1}\) and \(Y\). Suppose there exists a subsequence \(W\) of \(X_{m-1}\) and \(Y\) with length \(>k\). Then \(W\) is a common subsequence of \(X\) and \(Y \Rightarrow\) contradicts \(Z\) being an LCS.
3. Symmetric to 2 .

■ (theorem)

\section*{Recursive Formulation}

Define \(c[i, j]=\) length of LCS of \(X_{i}\) and \(Y_{j}\). We want \(c[m, n]\).
\[
c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0, \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j}, \\ \max (c[i-1, j], c[i, j-1]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j} .\end{cases}
\]

Compare bozo with bat.
Lots of repeated subproblems. Instead of recomputing, store in a table.

\section*{Compute Length of Optimal Solution}

\section*{\(\operatorname{LCS}-\operatorname{LENGTH}(X, Y, m, n)\)}
let \(b[1 \ldots m, 1 \ldots n]\) and \(c[0 \ldots m, o \ldots n]\) be new tables
\[
\text { for } i=1 \text { to } m
\]
\[
c[i, 0]=0
\]
for \(j=0\) to \(n\)
\(c[0, j]=0\)
for \(i=1\) to \(m\)
for \(j=1\) to \(n\)
if \(x_{i}==y_{j}\)
\[
c[i, j]=c[i-1, j-1]+1
\]
\[
b[i, j]=" \nwarrow "
\]
\[
\text { else if } c[i-1, j] \geq c[i, j-1]
\]
\[
c[i, j]=c[i-1, j]
\]
\[
b[i, j]=" \uparrow "
\]
\[
\text { else } c[i, j]=c[i, j-1]
\]
\[
b[i, j]=" \leftarrow "
\]
return \(c\) and \(b\)
\(\operatorname{Print-LCS}(b, X, i, j)\)
if \(i==0\) or \(j=0\)
return
if \(b[i, j]==\) "
\(\operatorname{Print}-\operatorname{LCS}(b, X, i-1, j-1)\)
print \(x_{i}\)
elseif \(b[i, j]==" \uparrow "\)
\(\operatorname{Print}-L C S(b, X, i-1, j)\)
else Print-LCS \((b, X, i, j-1)\)
- Initial call is PRINT-LCS \((b, X, m, n)\).
- \(b[i, j]\) points to table entry whose subproblem we used in solving LCS of \(X_{i}\) and \(Y_{j}\).
- When \(b[i, i\rceil=\nwarrow\), we have extended LCS by one character. So longest common subsequence \(=\) entries with \(\nwarrow\) in them.



\section*{Demonstration}
- spanking vs. amputation
- Answer:
- pain
- Time:
\(-\Theta(\mathrm{mn})\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & a & m & p & u & t & i & 0 & n \\
\hline & & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline s & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline p & 0 & 0 & 0 & & 1 & 1 & 1 & 1 & 1 \\
\hline a & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \\
\hline n & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 3 \\
\hline k & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 3 \\
\hline i & 0 & 1 & 1 & 1 & 1 & 2 & & 3 & 3 \\
\hline n & 0 & 1 & 1 & 1 & 1 & 2 & 3 & 3 & 4 \\
\hline g & 0 & 1 & 1 & 1 & 1 & 2 & 3 & 3 & 4 \\
\hline & & & & p & & & i & & n \\
\hline
\end{tabular}

\section*{Demonstration (Cont.)}

- ABCBDAB vs. BDCABA
- Answer:
- BCBA
- Time:
\(-\Theta(\mathrm{mn})\)



\section*{Optimal Binary Search Trees}

\section*{Optimal Binary Search Trees (BST)}
- Given sequence \(K=<k_{1}, k_{2}, \ldots, k_{n}>\) of \(n\) distinct keys, sorted \(\left(k_{1}<k_{2}\right.\) \(<\ldots<k_{n}\) ).
- Want to build a binary search tree from the keys.
- For \(\boldsymbol{k}_{\boldsymbol{i}}\), have probability \(\boldsymbol{p}_{\boldsymbol{i}}\) that a search is for \(k_{i}\).
- Want BST with minimum expected search cost.
- Actual cost = number of items examined.

E [search cost in \(T\) ]
\[
\begin{aligned}
& =\sum_{i=1}^{n}\left(\operatorname{depth}_{T}\left(k_{i}\right)+1\right) \cdot p_{i} \\
& =\sum_{i=1}^{n} \operatorname{depth}_{T}\left(k_{i}\right) \cdot p_{i}+\sum_{i=1}^{n} p_{i} \\
& =1+\sum_{i=1}^{n} \operatorname{depth}_{T}\left(k_{i}\right) \cdot p_{i}
\end{aligned}
\]

For key \(\mathrm{k}_{\mathrm{i}}, \operatorname{cost}=\operatorname{depth}_{T}\left(k_{j}\right)+1\), where \(\operatorname{depth}_{T}\left(\mathrm{k}_{\mathrm{i}}\right)=\operatorname{depth}\) of \(\mathrm{k}_{\mathrm{i}}\) in BST \(T\).
\(\square\)


\section*{Example}
\begin{tabular}{l|ccccc}
\(i\) & 1 & 2 & 3 & 4 & 5 \\
\hline\(p_{i}\) & .25 & .2 & .05 & .2 & .3
\end{tabular}

\begin{tabular}{ccc}
\(i\) & depth \(_{T}\left(k_{i}\right)\) & \(\operatorname{depth}_{T}\left(k_{i}\right) \cdot p_{i}\) \\
\hline 1 & 1 & .25 \\
2 & 0 & 0 \\
3 & 2 & .1 \\
4 & 1 & .2 \\
5 & 2 & .6 \\
\cline { 3 - 3 } & & 1.15
\end{tabular}

Therefore, \(\mathrm{E}[\) search cost \(]=2.15\).

\begin{tabular}{ccc}
\(i\) & depth \(_{T}\left(k_{i}\right)\) & depth \(_{T}\left(k_{i}\right) \cdot p_{i}\) \\
\hline 1 & 1 & .25 \\
2 & 0 & 0 \\
3 & 3 & .15 \\
4 & 2 & .4 \\
5 & 1 & .3 \\
\cline { 3 - 3 } & & 1.10
\end{tabular}

Therefore. E [search cost \(]=2.10\), which turns out to be optimal.

\section*{Observations}
- Optimal BST might not have smallest height.
- Optimal BST might not have highest-probability key at root.
- Exhaustive checking:
- Construct each n-node BST.
- For each, put in keys.
- Then compute expected search cost.
- There are different \(\Omega\left(4^{n} / n^{3 / 2}\right)\) BSTs with \(n\) nodes.

\section*{Optimal Substructure}
- Consider any subtree of a BST. It contains keys in a contiguous range \(k_{i}, \ldots, k_{j}\) for some \(1 \leq i \leq j \leq n\).
- If \(\boldsymbol{T}\) is an optimal BST and \(\boldsymbol{T}\) contains subtree \(\boldsymbol{T}^{\prime}\) with keys \(k_{j}, \ldots, k_{j}\), then \(T^{\prime}\) must be an optimal BST for keys \(k_{i}, \ldots, k_{j}\).
- Proof:
- Use optimal substructure
- Given keys \(k_{i}, \ldots, k_{j}\).
- One of them, \(k_{r}\), where \(i \leq r \leq j\), must be the root.
- Left subtree of \(k_{r}\) contains \(k_{i}, \ldots, k_{r-1}\).

- Right subtree of \(k_{r}\) contains \(k_{r+1}, \ldots, k_{j}\).
- If we examine all candidate roots \(\boldsymbol{k}_{r}\), for \(i \leq r \leq j\), and
- we determine all optimal BSTs containing \(k_{j}, \ldots, k_{r-1}\) and containing \(k_{r+1}, \ldots, k_{j}\).
- Then we're guaranteed to find an optimal BST for \(k_{i}, \ldots, k_{j}\)


\section*{Recursive Solution}

Subproblem domain:
- Find optimal BST for \(k_{i}, \ldots, k_{j}\), where \(i \geq 1, j \leq n, j \geq i-1\).
- When \(j=i-1\), the tree is empty.

Define \(e[i, j]=\) expected search cost of optimal BST for \(k_{i}, \ldots, k_{j}\).
If \(j=i-1\), then \(e[i, j]=0\).
If \(j \geq i\),
- Select a root \(k_{r}\), for some \(i \leq r \leq j\).
- Make an optimal BST with \(k_{i}, \ldots, k_{r-1}\) as the left subtree.
- Make an optimal BST with \(k_{r+1}, \ldots, k_{j}\) as the right subtree.
- Note: when \(r=i\), left subtree is \(k_{i}, \ldots, k_{i-1}\); when \(r=j\), right subtree is \(k_{j+1}, \ldots, k_{j}\).
\[
e[j+1, j]=0
\]

\section*{Recursive Solution (Cont.)}
- When a subtree becomes a subtree of a node:
- Depth of every node in subtree goes up by 1.
- Expected search cost increases by
\[
\omega_{(i, j)}=\sum_{i=1}^{1} p_{1}
\]
- If \(\mathrm{k}_{\mathrm{r}}\) is the root of an optimal BST for \(k_{i}, \ldots, k_{j}\) :
\[
\begin{aligned}
w(i, j) & =w(i, r-1)+p_{r}+w(r+1, j) \\
e[i, j] & =p_{r}+(e[i, r-1]+w(i, r-1))+(e[r+1, j]+w(r+1, j)) \\
& =e[i, r-1]+e[r+1, j]+w(i, j)
\end{aligned}
\]
- Try all candidates, and pick the best one:
\[
e[i, j]= \begin{cases}0 & \text { if } j=i-1, \\ \min _{i \leq r \leq j}\{e[i, r-1]+e[r+1, j]+w(i, j)\} & \text { if } i \leq j .\end{cases}
\]

\section*{Computing an Optimal Solution}

As "usual," we'll store the values in a table:
\(e[\underbrace{1 \ldots n+1}_{\text {can store }}, \underbrace{0 \ldots n}_{\text {can store }}]\)
\(e[n+1, n] \quad e[1,0]\)
- Will use only entries \(e[i, j]\), where \(j \geq i-1\).
- Will also compute \(\operatorname{root}[i, j]=\) root of subtree with keys \(k_{i}, \ldots, k_{j}\),
\[
\text { for } 1 \leq i \leq j \leq n
\]
- One other table:

Table \(w[1 \ldots n+1,0 \ldots n]\)
\(w[i, i-1]=0\) for \(1 \leq i \leq n\)
\(w[i, j]=w[i, j-1]+p_{j}\) for \(1 \leq i \leq j \leq n\)

\section*{Computing an Optimal Solution (Cont.)}

OPTIMAL-BST \((p, q, n)\)
let \(e[1 \ldots n+1,0 \ldots n], w[1 \ldots n+1,0 \ldots n]\), and \(\operatorname{root}[1 \ldots n, 1 \ldots n]\) be new tables for \(i=1\) to \(n+1\)
\[
\begin{aligned}
& e[i, i-1]=0 \\
& w[i, i-1]=0
\end{aligned}
\]
for \(l=1\) to \(n\)
\[
\begin{gathered}
\text { for } i=1 \text { to } n-l+1 \quad \mathrm{i}=1 \ldots \mathrm{n}-1 . \\
j=i+l-1 \\
e[i, j]=\infty \\
w[i, j]=w[i, j-1]+p_{j} \\
\text { for } r=i \text { to } j \\
t=e[i, r-1]+e[r+1, j]+w[i, j] \\
\text { if } t<e[i, j] \\
e[i, j]=t \\
\quad \operatorname{root}[i, j]=r
\end{gathered}
\]

When \(/=1\), compute \(e[i, i]\) and \(w[i, i]\) for \(i=1 \ldots n\).
When \(I=2\), compute e[i, \(i+1]\) and \(w[i, i+1]\) for
return \(e\) and root
Try each candidate r

\section*{Computing an Optimal Solution (Cont.)}
\begin{tabular}{c|cccccc}
\(e\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 0 & .25 & .65 & .8 & 1.25 & 2.10 \\
2 & & 0 & .2 & .3 & .75 & 1.35 \\
3 & & & 0 & .05 & .3 & .85 \\
4 & & \(p_{i}\) & & 0 & .2 & .7 \\
5 & & & & & 0 & .3 \\
6 & & & & & & 0
\end{tabular}
\begin{tabular}{l|ccccc}
\(i\) & 1 & 2 & 3 & 4 & 5 \\
\hline\(p_{i}\) & .25 & .2 & .05 & .2 & .3
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(w\) & 0 & 1 & 2 & 3 & 4 & 5 & & root & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 0 & . 25 & . 45 & . 5 & . 7 & 1.0 & & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 2 & & 0 & . 2 & . 25 & . 45 & . 75 & & 2 & & 2 & 2 & 2 & 4 \\
\hline 3 & & & 0 & . 05 & . 25 & . 55 & \(i\) & & & & 3 & 4 & 5 \\
\hline 4 & & & & 0 & . 2 & . 5 & & 4 & & & & 4 & 5 \\
\hline 5 & & & & & 0 & & & 5 & & & & & 5 \\
\hline
\end{tabular}


\section*{Construct an Optimal Solution}

Construct-Optimal-BST (root)
\(r=\operatorname{root}[1, n]\)
print " \(k\) " \({ }_{r}\) "is the root"
CONSTRUCT-OPT-SUBTREE \((1, r-1, r\), "left", root)
CONSTRUCT-Opt-SUBTREE \((r+1, n, r\), "right", root \()\)
Construct-Opt-Subtree \((i, j, r\), dir, root \()\)
```

if i\leqj
t=root[i,j]
print " k"t "is" dir "child of k" }\mp@subsup{r}{r}{
CONSTRUCT-Opt-SUBTREE(i,t-1,t,"left",root)
CONSTRUCT-Opt-Subtree(}t+1,j,t\mathrm{ , "right",root)

```

\section*{Project 4}
－Use C language to implement the rod－cutting problem with dynamic programming．
－The input file should be retrieved through argv［1］of main（）function．
－Use fscanf（）to get integers from the input file．
－The first integer indicates the length of the rod to cut．
－The first integer also indicates the number of input integers in this file． The \(i\)－th input integer indicates the revenue of the rod of length \(i\) ．
－E．g．，＂41589＂means there is a 4－inch rod．1，5，8，and 9 are the revenue of the rod of \(1,2,3\) ，and 4 inches，respectively．
－Find and output cuts and the maximal revenue．
－．E．g．，2，2： 10
－Deadline：24：00，2010．10．18
－Email the ．c or ．cpp program to me：johnsonchang＠ntut．edu．tw
－Email title：Algo＿P4＿學號＿姓名

\section*{Project 5 \begin{tabular}{c|cccccc} 
matrix & \(A_{1}\) & \(A_{2}\) & \(A_{3}\) & \(A_{4}\) & \(A_{5}\) & \(A_{6}\) \\
dimension & \(30 \times 35\) & \(35 \times 15\) & \(15 \times 5\) & \(5 \times 10\) & \(10 \times 20\) & \(20 \times 25\)
\end{tabular}}
－Use C language to implement the Matrix－chain multiplication problem with dynamic programming．
－The input file should be retrieved through argv［1］of main（）function．
－Use fscanf（）to get integers from the input file．
－The first integer indicates the number of matrices．
－E．g．，＂6 60351551020 25＂means there are 6 matrices（A1 to A6）and \(p_{0}\) to \(p_{6}\) are \(30,35,15,5,10,20,25\) ，respectively．
－Find and output the minimal number of multiplications and the parenthesization of the matrices．
－．E．g．，15125，（（A1（A2A3））（（A4A5）A6））
－Deadline：24：00，2010．10．25
－Email the ．c or ．cpp program to me：johnsonchang＠ntut．edu．tw
－Email title：Algo＿P5＿學號＿姓名```

