
Topic 3:
Dynamic Programming

Topic 3:
Dynamic Programming

October 20, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Programming
• Dynamic program is not a specific algorithm, but a technique (like

divide-and-conquer).
• Dynamic programming, like divide-and-conquer, solves problems by

combining the solutions to subproblems.
• Programming means a “tabular method.”
• Dynamic programming applies when the subproblems overlap. That is

when subproblems share subsubproblems.
– A dynamic programming algorithm solves each subsubproblem just once

and then saves its answer in a table.
- The adopted tabular method avoids recomputing the answer every time it solves

each subsubproblem.
– In this kind of problems, a divide-and-conquer algorithm does more work

than necessary.
- Divide-and-conquer algorithms partition the problem into disjoint subproblems,

solve the problem recursively, and then combine their solutions to solve the
original problem.

October 20, 2010 3

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Programming (Cont.)
• Dynamic programming is typically applied to solve
optimization problems.

• Four-step method to find an optimal solution
(maximization or minimization) with dynamic
programming:
– Characterize the structure of an optimal solution.
– Recursively define the value of an optimal solution.
– Compute the value of an optimal solution, typically in a

bottom-up fashion.
– Construct an optimal solution from computed information.

October 20, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• Rod Cutting

• Matrix-Chain Multiplication

• Elements of Dynamic Programming

• Longest Common Subsequence

• Optimal Binary Search Trees

Rod CuttingRod Cutting

October 20, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Rod Cutting
• How to cut steel rods into pieces in order to
maximize the revenue you can get?
– Each cut is free.
– Rod lengths are always an integral number of inches.

• Input:
–A length n and table of prices pi , for i = 1, 2, …,

n.
• Output:

– The maximum revenue obtainable for rods whose
lengths sum to n, computed as the sum of the prices for
the individual rods.

October 20, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of Rod Cutting
• An n-inch rod of can be cut up in 2n-1 ways, because we can

choose to cut or not cut after each of the first n-1 inches.

• Example: A 4-inch rod

The best way is to cut it into two 2-inch pieces, getting a revenue of
p1 + p2 = 5 + 5 = 10

October 20, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of Rod Cutting (Cont.)
• Let ri be the maximal revenue for a rod of length i. The

optimal revenues ri for the example, by inspection:
• To determine the optimal

revenue rn by taking the
maximum of

– pn: the price of no cut
– r1 + rn-1: the maximum revenue

from a rod of 1 inch and a rod of
n-1 inches,

– r2 + rn-2: the maximum revenue
from a rod of 2 inches and a rod
of n-2 inches, …

– rn-1+ r1: the maximum revenue
from a rod of n-1 inches and
a rod of 1 inch.

rn = max (pn, r1 + rn-1, r2 + rn-2, …, rn-1 + r1)

October 20, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Optimal Substructure
• After making a cut, we have two subproblems.

– The optimal solution to the original problem incorporates
optimal solutions to the subproblems. We may solve the
subproblems independently.

• Example: For n = 7, one of the optimal solutions
makes a cut at 3 inches, giving two subproblems,
of lengths 3 and 4.
– We need to solve both of them optimally.

- The optimal solution for the problem of length 4 (cutting into 2
pieces, each of length 2) is used in the optimal solution to the
original problem with length 7.

October 20, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

A Simpler Decomposition
• Every optimal solution has a leftmost cut.

– In other words, there’s some cut that gives a first piece of
length i cut off the left end (revenue pi), and a
remaining piece of length n - i on the right (revenue rn-i).
- Need to divide only the remainder, not the first piece.
- Leave only one subproblem to solve, rather than two subproblems.
- The solution with no cuts has first piece size i = n with revenue pn,

and remainder size 0 with revenue r0 = 0.
- Give a simpler version of the equation for rn:

October 20, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

A Simpler Decomposition (Cont.)
• The call CUT-ROD(p, n) returns the optimal revenue rn:

– This procedure works, but it is terribly inefficient.
– If you code it up and run it, it could take more than an hour for n = 40.

Running time almost doubles each time n increases by 1.

• Why so inefficient?
– CUT-ROD calls itself repeatedly, even on subproblems it has already solved.

Adopt divide-and-
conquer technique

October 20, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

A Simpler Decomposition (Cont.)
• For n = 4:

– Have lots of repeated subproblems.
– Solve the subproblem for size 2 twice, for size 1 four times, and for

size 0 eight times.

An edge from a parent
with label s to a child
with label t corresponds
to cutting off an initial
piece of size s – t and
leaving a remaining
subproblem of size t.

s

t

1 2
s-t t

s

October 20, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

A Simpler Decomposition (Cont.)
• Exponential growth

– Let T(n) equal the number of calls to CUT-ROD with second
parameter equal to n. Then

– The initial 1 is for the call at the root.
– T(j) counts the number of calls due

to the call CUT-ROD(p, n-i),
where j = n - i.

• Solution to recurrence is T(n) = 2n.

Geometric
series

October 20, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Programming Solution
• Instead of solving the same subproblems repeatedly,
arrange to solve each subproblem just once.
– Save the solution to a subproblem in a table, and refer

back to the table whenever we revisit the subproblem.
– “Store, don’t recompute” ⇒ time-memory trade-off.
– Turn an exponential-time solution into a polynomial-time

solution.

• Two basic approaches:
– Top-down with memoization, and
– Bottom-up method.

October 20, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Top-Down with Memoization
• Solve recursively, but store each

result in a table.

• To find the solution to a subproblem,
first look in the table.

– If the answer is there, use it.
– Otherwise, compute the

solution to the subproblem
and then store the solution
in the table for future use.

• Memoized version of the
recursive solution, storing
the solution to the subproblem
of length i in array entry r[i]
⇒

Memoizing is remembering what we have computed previously.

The array to store
the optimal of the

solved
subproblems.

October 20, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Bottom-Up Method
• Sort the subproblems by size and solve the smaller
ones first.
– When solving a subproblem, the smaller subproblems

we need have already solved.

October 20, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Running Time
• Both the top-down and bottom-up versions run in
O(n2) time.
– Bottom-up:

- Doubly nested loops.
- Number of iterations of inner for loop forms an arithmetic series.

– Top-down:
- MEMOIZED-CUT-ROD solves each subproblem just once, and it

solves subproblems for sizes n, n-1, …, 0.
- To solve a subproblem of size n, the for loop iterates n times.

⇒ Over all recursive calls, total number of iterations forms an
arithmetic series.

October 20, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Subproblem Graphs
• Directed graph:

– One vertex for each distinct subproblem.
– A directed edge (x, y) if computing an optimal solution to

subproblem x directly requires knowing an optimal solution to
subproblem y.

– Example: For rod-cutting problem with n = 4:

• We can think of the subproblem graph as a collapsed
version of the tree of recursive calls, where

– All nodes for the same subproblem are collapsed into a single
vertex, and all edges go from parent to child.

• Because we solve each subproblem just once, the running
time is sum of times needed to solve each subproblem.

– Time to compute solution to a subproblem is typically linear in
the out-degree (number of outgoing edges) of its vertex.

– Number of subproblems equals number of vertices.
Thinking about a dynamic programming problem, we should understand how the set of
subproblems involved and how subproblems depend on each other.

October 20, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Reconstructing a Solution
• How to produce a choice that produces an optimal solution:

– Extend the bottom-up approach to record not just optimal values, but
optimal choices.

– Save the optimal choices in a separate table.
– Then use a separate procedure to print the optimal choices.

s[j] holds the optimal size i of the first piece to cut
off when solving a subproblem of size j.

Print out the cuts made in an optimal solution

October 20, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Reconstructing a Solution (Cont.)
• Example:

– EXTENDED-BOTTOM-UP-CUT-ROD returns

– A call to PRINT-CUT-ROD-SOLUTION(p, 8) calls EXTENDED-
BOTTOM-UPCUT-ROD to compute the above r and s tables.

– Then it prints 2, sets n to 6, prints 6, and finishes (because n
becomes 0).

Matrix-Chain MultiplicationMatrix-Chain Multiplication

October 20, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Matrix-Chain Multiplication
• A product of matrices is fully parenthesized:

– If it is either a single matrix, or a product of two fully
parenthesized matrix product surrounded by parentheses.

• Example:
– Input:

- A chain of matrices is
<A1, A2, A3, A4>

– Output:
- Fully parenthesized

matrices

Matrix Multiplication

October 20, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Matrix-Chain Multiplication (Cont.)
• If A is a p × q matrix and B is a q × r matrix, the result of multiplying A

and B is a p × r matrix C.
– The time to computer C is dominated by the number of scalar

multiplications. That is p × q × r.

• Example:
– Given matrices <A1, A2, A3>,

- A1 is a 10 × 100 matrix
- A2 is a 100 × 5 matrix
- A3 is a 5 × 50 matrix.

– A1A2 = 10．100．5 = 5,000 multiplications to form a 10×5 matrix.
– A2A3 = 100．5．50 = 25,000 multiplications to form a 100×50 matrix.
– ((A1, A2), A3)

= 5,000 + 10．5．50 = 7,500 multiplications to form a 10×50 matrix.
– (A1, (A2, A3))

= 10．100．50 + 25,000 = 75,000 multiplications to form a 10 ×50 matrix.

October 20, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Matrix-Chain Multiplication Problem
• Problem definition:

– Given a chain <A1, A2, …, An> of n matrices, where for i
= 1, 2, …, n, matrix Ai has dimension pi-1×pi, fully
parenthesize the product A1A2…An in a way that
minimizes the number of scalar multiplications.

– To represent the chain <A1, A2, …, An>, the input
sequence p = <p0, p1, …, pn>.

• Our goal is only to determine an order for
multiplying matrices that has the lowest cost.

October 20, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Counting the Number of Parenthesizations
• Exhaustively checking all possible parenthesizations does not yield an

efficient algorithm.

• Let P(n) be the number of alternative parenthesizations of a sequence
of n matrices.

– When n = 1, only one way to fully parenthesize the matrix product.
– When n ≥ 2, a fully parenthesized matrix product is the product of two fully

parenthesized matrix subproducts.
- The split between the two subproducts may occur between the kth and (k+1)st

matrics for any k = 1, 2, …, n-1.

⎪⎩

⎪
⎨
⎧

≥−

=
= ∑

−

=

2

11
1

1

nifk)P(k)P(n

nif
P(n) n

k

The number of solutions is
Ω(4n/n3/2)

October 20, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

Applying Dynamic Programming
• Use dynamic-programming method to determining
how to optimally parenthesize a matrix chain.

• The four-step sequence is
– 1. Characterize the structure of an optimal solution.
– 2. Recursively define the value of an optimal solution.
– 3. Compute the value of an optimal solution.
– 4. Construct an optimal solution from computed

information.

October 20, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Step 1.
The Structure of an Optimal Parenthesizatoin
• Let Ai..j denote the result of evaluating the product

AiAi+1..Aj, where i ≤ j.

• To parenthesize the product AiAi+1..Aj, the product between
Ak and Ak+1 for some integer k in the range i ≤ k < j is split.
That is

– Comput Ai Ai+1..Ak and Ak+1 AK+2..Aj then
– Multiply them together.

((...)(...))A A A A A Ak k k n1 2 1 2+ +

October 20, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Step 2
A Recursive Solution
• Let m[i, j] be the minimum number of scalar multiplications needed to

compute the matrix Ai..j.
– If i = j, m[i..j] = 0 because no scalar multiplications.
– If i < j, split AiAi+1..Aj into Ai Ai+1..Ak and Ak+1 AK+2..Aj where i ≤ k < j.

- There are j - i possible values for k.
- m[i..j] equals the minimum cost for computing the Ai..k and Ak+1..j, plus the cost of

multiplying these two matrices together.

• Since matrix Ai is pi-1×pi, the product Ai..k Ak+1..j takes pi-1×pk ×pj.
• The recursive definition for the minimum cost of parenthesizing the

product Ai Ai+1..Aj becomes:

• The lowest cost way to compute A1..n is m[1..n].

⎪⎩

⎪
⎨
⎧

<+++

=
=

−<≤
ji}ppp,j]m[k{m[i,k]

ji
m[i,j]

jkijki 11min

0
This recursive algorithm
takes exponential time
(similar to rod cutting)
without adopting the
tabular method.

October 20, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Step 3
Computing the Optimal Costs
• The number of choices for i and j satisfying 1 ≤ i ≤ j ≤ n is

C2
n + n = n(n-1)/2 + n = n(n+1)/2 = Θ(n2).

• A tabular, bottom-up
approach:

– Table m[1..n, 1..n] is
to store the m[i, j] costs.

– Table s[1..n-1, 2..n] records
the k value achieving
the optimal cost in
computing m[i, j].

Running time O(n3).
Required space Θ(n2).

October 20, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Step 3
Computing the Optimal Costs (Cont.)

((A1(A2A3))((A4A5)A6))

October 20, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Step 4
Constructing an Optimal Solution
• Each entry s[i, j] records a value of k such that an optimal

parenthesization of AiAi+1..Aj, splits the product between Ak
and Ak+1.

– That is A1..s[1, n]As[1,n]+1..n.
– Find subproducts recursively:

- A1..s[1, n] could be split at s[1, s[1, n]].
- As[1, n]+1..n could be split at s[s[1, n]+1, n].

Elements of Dynamic
Programming

Elements of Dynamic
Programming

October 20, 2010 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Elements of Dynamic Programming
• Two key elements that an optimization problem could be

solved by dynamic programming:
– Optimal substructure

- An optimal solution to the problem contains within its optimal solution
to subproblems.

- Whenever a problem exhibits optimal substructure, we have a good clue
that dynamic programming might apply.

- We build an optimal solution to the problem from optimal solutions to
subproblems.

– Overlapping subproblems
- When a recursive algorithm revisits the same problem repeatedly, it

has overlapping subproblems.
- The total number of distinct subproblems is a polynominal in the

input size.
- In contrast, a problem for which a divide-and-conquer approach is

suitable usually generates brand-new problems at each step of the
recursion.

October 20, 2010 34

Copyright © All Rights Reserved by Yuan-Hao Chang

Common Pattens of Optimal Substructure
• A solution to the problem consists of making a choice,

Making this choice leaves one or more subproblems to be
solved.

• For a given problem, you are given the choice that leads to
an optimal solution.

• Given this choice, you determine which subproblems ensue
(接著發生) and how to best characterize the resulting
space of subproblems.

• The solutions to the subproblems used within the optimal
solution to the problem must themselves be optimal by
using a “cut-and-paste” technique.

– Cutting out the nonoptimal solution to each subproblem and pasting
in the optimal one.

October 20, 2010 35

Copyright © All Rights Reserved by Yuan-Hao Chang

Key Points of Optimal Substructure
• Optimal substructure varies across problem domains in two

ways:
– How many subproblems are used in an optimal solution to the

original problem.
– How many choices we have in determining which subproblem(s) to

use in an optimal solution.

• In rod cutting, O(n) subproblems overall, and at most n
choices to exam for each O(n2) running time.

– With subproblem graph, each vertex corresponds to a
subproblem, and the choices for a problem are the edges incident
to that subproblem.

• In maxtirx-chain multiplication, O(n2) subproblems overall,
and at most n choices to exam for each O(n3) running
time.

– With subproblem graph, there are Θ(n2) vertices and each vertex
would have degree at most n.

October 20, 2010 36

Copyright © All Rights Reserved by Yuan-Hao Chang

Subtleties
• One should be careful not to assume that optimal
substructure applies when it does not.

• Consider the following two problems in which we
are given a directed graph G = (V, E) and vertices u,
v ∈ V.
– Unweighted shortest path:

- Find a path from u to v consisting of the fewest edges. Good for
Dynamic programming.

– Unweighted longest simple path:
- Find a simple path from u to v consisting of the most edges. Not

good for Dynamic programming.

October 20, 2010 37

Copyright © All Rights Reserved by Yuan-Hao Chang

Unweighted Shortest-Path Problem
• The unweighted shortest-path problem exhibits optimal

substructure (because subproblems do not share
resources).
– Suppose that u ≠v. Any path p from u to v must contain

an intermediate vertex w.
– Decompose into subpaths
– Clearly, the number of edges in p equals the number of

edges in p1 plus that in p2.
- Proof: If p1 or p2 is not optimal and p’1 or p’2 is optimal, then p’1 +

p2 < p or p1 + p’2 < p Contradict that p is optimal.

p
u v

p1u w
p2 v

p’1u w
p2 v p1u w

p’2 v
In matrix-chain multiplication, subchains are
disjoint.
In rod-cutting, subproblems are disjoint.

October 20, 2010 38

Copyright © All Rights Reserved by Yuan-Hao Chang

Unweighted Longest-Path Problem
• Suppose that u ≠v. Any path p from u to v must contain an intermediate

vertex w.

• Decompose into subpaths
– The p1 might not be a longest path from u to w.
– The p2 might not be a longest path from w to v.

• Example:
– One simple longest simple path from q to t is q r t.
– Subproblems:

- q r is not a simple longest path from from q to r. (Optimal: q s t r)
- r t is not a simple longest path from from r to t. (Optimal: r q s t)
- Combine the above two suboptimals. The resulting path is not a simple path.

– No optimal substructure exists because the subproblems in finding the longest
simple path are not independent.

- One subproblem affects the solution to another subproblem.
- E.g., q s t r let the other not be able to select s and t. (due to “simple” path)

p
u v p1u w

p2 v

q

s t

r

Simple path means no cycle in the path.

October 20, 2010 39

Copyright © All Rights Reserved by Yuan-Hao Chang

Overlapping Subproblems
• An optimization problem for dynamic programming to apply must have

“small” number of subproblems.

• Dynamic-programming algorithms typically solves each subproblem
once and then stores the solution in a table for the future lookup.

– For example, in matrix-chain multiplication, m[3, 4] is referenced four times:
during the computations of m[2, 4], m[1, 4], m[3, 5], and m[3, 6].

October 20, 2010 40

Copyright © All Rights Reserved by Yuan-Hao Chang

Overlapping Subproblems (Cont.)
• Good divide-and-conquer algorithms usually
generate a brand new problem at each stage of
recursion.

October 20, 2010 41

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursive Matrix Chain
• Let T(n) denote the time to compute an optimal parenthesization of a

chain of n matrices.

⎪⎩

⎪
⎨
⎧

>+−++≥

≥

∑
−

=

1

1
1)1)()((1)(

 ,1)1(
n

k
nforknTkTnT

T

T n T i n
i

n
() ()≥ +∑

=

−
2

1

1

Initial call:
RECURSIVE-MATRIX-CHAIN(p, 1, n)

• Prove that T(n) ≥ Ω(2n) using
the substitution method:

– Let T(n) ≥ 2n-1

T(1) ≥ 1 = 20 for n ≥ 1

1

1

2

0

1

1

1

2)22(
)12(2

22

22)(

−

−

−

=

−

=

−

≥+−=

+−=

+=

+≥

∑

∑

nn

n

n

i

i

n

i

i

n
n

n

nnT

Lines 1, 2
Lines 6, 7 and
multiplication

October 20, 2010 42

Copyright © All Rights Reserved by Yuan-Hao Chang

Memoization

• A memoized recursive
algorithm maintains an entry in
a table for the solution to each
subproblem.

• Time complexity: O(n3)
– Θ(n2) distinct

subproblems.
– Whenever a given call of

LOOKUP-CHAIN makes
recursive calls, it makes
O(n) of them.

initialize

No mulplication when there
is only one matrix

If the corresponding table is
filled, just look up the table.

• In general, if all subproblems must be solved
at least once,

• A bottom-up DP algorithm usually outperforms
the corresponding top-down memoized
algorithm by a constant factor.

• The bottom-up algorithm has no overhead for
recursion and less overhead for maintaining
the table.

Longest Common
Sequence

Longest Common
Sequence

October 20, 2010 44

Copyright © All Rights Reserved by Yuan-Hao Chang

Longest Common Subsequence (LCS)
• Input:

– Given 2 sequences, X = <x1, …, xm> and Y = <y1, …, yn>.

• Output:
– Find a subsequence common to both whose length is longest.
– A subsequence doesn’t have to be consecutive, but it has to be in order.

• Brute-force algorithm:
– For every subsequence of X, check whether it’s a subsequence of Y.
– Time: Q(n2m).

- 2m subsequences of X to check.
- Each subsequence takes O(n) time to check: Scan Y for first letter, from there scan for second, and so on

LCS is frequently adopted in DNA pattern matching.

October 20, 2010 45

Copyright © All Rights Reserved by Yuan-Hao Chang

Optimal Substructure

An LCS of two sequences contains as a prefix an LCS
of prefixes of the sequences.

(Optimal substructure of an LCS)

October 20, 2010 46

Copyright © All Rights Reserved by Yuan-Hao Chang

Optimal Substructure (Cont.)

October 20, 2010 47

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursive Formulation

Compare bozo with bat.

Lots of repeated subproblems.
Instead of recomputing, store in a table.

October 20, 2010 48

Copyright © All Rights Reserved by Yuan-Hao Chang

Compute Length of Optimal Solution

October 20, 2010 49

Copyright © All Rights Reserved by Yuan-Hao Chang

Demonstration

• spanking vs.
amputation

• Answer:
– pain

• Time:
– Θ(mn)

October 20, 2010 50

Copyright © All Rights Reserved by Yuan-Hao Chang

Demonstration (Cont.)
• ABCBDAB vs.
BDCABA

• Answer:
– BCBA

• Time:
– Θ(mn)

Optimal Binary Search
Trees

Optimal Binary Search
Trees

October 20, 2010 52

Copyright © All Rights Reserved by Yuan-Hao Chang

Optimal Binary Search Trees (BST)
• Given sequence K = <k1, k2, …, kn> of n distinct keys, sorted (k1 < k2

< …< kn).

• Want to build a binary search tree
from the keys.

• For ki , have probability pi that a
search is for ki .

• Want BST with minimum
expected search cost.

• Actual cost = number of items
examined.
For key ki , cost = depthT(ki) + 1,
where depthT(ki) = depth of ki in BST T.

October 20, 2010 53

Copyright © All Rights Reserved by Yuan-Hao Chang

Example

October 20, 2010 54

Copyright © All Rights Reserved by Yuan-Hao Chang

Observations
• Optimal BST might not have smallest height.

• Optimal BST might not have highest-probability key
at root.

• Exhaustive checking:
– Construct each n-node BST.
– For each, put in keys.
– Then compute expected search cost.
– There are different BSTs with n nodes.

October 20, 2010 55

Copyright © All Rights Reserved by Yuan-Hao Chang

Optimal Substructure
• Consider any subtree of a BST. It contains keys in a contiguous range

ki, …, kj for some 1 ≤ i ≤ j ≤ n.

• If T is an optimal BST and T contains subtree T’ with keys ki, …, kj, then
T’ must be an optimal BST for keys ki, …, kj .

• Proof:
– Use optimal substructure

- Given keys ki, …, kj .

- One of them, kr , where i ≤ r ≤ j , must be the root.
- Left subtree of kr contains ki, …, kr-1 .
- Right subtree of kr contains kr+1, …, kj .

– If we examine all candidate roots kr , for i ≤ r ≤ j , and
– we determine all optimal BSTs containing ki, …, kr-1

and containing kr+1, …, kj .

– Then we’re guaranteed to find an optimal BST for ki, …, kj .

October 20, 2010 56

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursive Solution

e[j+1, j] = 0

October 20, 2010 57

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursive Solution (Cont.)
• When a subtree becomes a subtree of a node:

– Depth of every node in subtree goes up by 1.
– Expected search cost increases by

• If kr is the root of an optimal BST for ki, …, kj :

• Try all candidates, and pick the best one:

October 20, 2010 58

Copyright © All Rights Reserved by Yuan-Hao Chang

Computing an Optimal Solution

October 20, 2010 59

Copyright © All Rights Reserved by Yuan-Hao Chang

Computing an Optimal Solution (Cont.)

When l = 1, compute e[i, i] and w[i, i] for i=1…n.
When l = 2, compute e[i, i+1] and w[i, i+1] for
i=1…n-1.

Try each candidate r

Time complexity: Θ(n3)

October 20, 2010 60

Copyright © All Rights Reserved by Yuan-Hao Chang

Computing an Optimal Solution (Cont.)

October 20, 2010 61

Copyright © All Rights Reserved by Yuan-Hao Chang

Construct an Optimal Solution

October 20, 2010 62

Copyright © All Rights Reserved by Yuan-Hao Chang

Project 4
• Use C language to implement the rod-cutting problem with

dynamic programming.
– The input file should be retrieved through argv[1] of main() function.
– Use fscanf() to get integers from the input file.

- The first integer indicates the length of the rod to cut.
- The first integer also indicates the number of input integers in this file.

The i-th input integer indicates the revenue of the rod of length i.
- E.g., “4 1 5 8 9” means there is a 4-inch rod. 1, 5, 8, and 9 are the

revenue of the rod of 1, 2, 3, and 4 inches, respectively.
– Find and output cuts and the maximal revenue.

- .E.g., 2, 2: 10

• Deadline: 24:00, 2010.10.18
– Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
– Email title: Algo_P4_學號_姓名

mailto:johnsonchang@ntut.edu.tw

October 20, 2010 63

Copyright © All Rights Reserved by Yuan-Hao Chang

Project 5
• Use C language to implement the Matrix-chain

multiplication problem with dynamic programming.
– The input file should be retrieved through argv[1] of main() function.
– Use fscanf() to get integers from the input file.

- The first integer indicates the number of matrices.
- E.g., “6 30 35 15 5 10 20 25” means there are 6 matrices (A1 to A6) and

p0 to p6 are 30, 35, 15, 5, 10, 20, 25, respectively.
– Find and output the minimal number of multiplications and the

parenthesization of the matrices.
- .E.g., 15125, ((A1(A2A3))((A4A5)A6))

• Deadline: 24:00, 2010.10.25
– Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
– Email title: Algo_P5_學號_姓名

mailto:johnsonchang@ntut.edu.tw

	Dynamic Programming
	Dynamic Programming (Cont.)
	Outline
	Rod Cutting
	An Example of Rod Cutting
	An Example of Rod Cutting (Cont.)
	Optimal Substructure
	A Simpler Decomposition
	A Simpler Decomposition (Cont.)
	A Simpler Decomposition (Cont.)
	A Simpler Decomposition (Cont.)
	Dynamic Programming Solution
	Top-Down with Memoization
	Bottom-Up Method
	Running Time
	Subproblem Graphs
	Reconstructing a Solution
	Reconstructing a Solution (Cont.)
	Matrix-Chain Multiplication
	Matrix-Chain Multiplication (Cont.)
	Matrix-Chain Multiplication Problem
	Counting the Number of Parenthesizations
	Applying Dynamic Programming
	Step 1.�The Structure of an Optimal Parenthesizatoin
	Step 2�A Recursive Solution
	Step 3�Computing the Optimal Costs
	Step 3�Computing the Optimal Costs (Cont.)
	Step 4�Constructing an Optimal Solution
	Elements of Dynamic Programming
	Common Pattens of Optimal Substructure
	Key Points of Optimal Substructure
	Subtleties
	Unweighted Shortest-Path Problem
	Unweighted Longest-Path Problem
	Overlapping Subproblems
	Overlapping Subproblems (Cont.)
	Recursive Matrix Chain
	Memoization
	Longest Common Subsequence (LCS)
	Optimal Substructure
	Optimal Substructure (Cont.)
	Recursive Formulation
	Compute Length of Optimal Solution
	Demonstration
	Demonstration (Cont.)
	Optimal Binary Search Trees (BST)
	Example
	Observations
	Optimal Substructure
	Recursive Solution
	Recursive Solution (Cont.)
	Computing an Optimal Solution
	Computing an Optimal Solution (Cont.)
	Computing an Optimal Solution (Cont.)
	Construct an Optimal Solution
	Project 4
	Project 5

