Topic 5: Probabilistic Analysis and
Randomized Algorithms

The Primary Goal of This Topic

- Explain the difference between
- Probabilistic analysis and
- Randomized algorithms.
- Present the technique of indicator random variable.
- Give an example of the analysis of a randomized algorithm \rightarrow Permuting an array in place.

Outline

- The hiring problem
- Indicator random variables
-Randomized algorithms

The Hiring Problem

Scenario

- You are using an employment agency to hire a new office assistant.
- The agency sends you one candidate each day.
- You interview the candidate and must immediately decide whether or not to hire that person.
- But if you hire, you must also fire your current office assistant even if it's someone you have recently hired.
- Cost to interview is $\boldsymbol{c}_{\boldsymbol{i}}$ per candidate (interview fee paid to agency).
- Cost to hire is $\boldsymbol{c}_{\boldsymbol{h}}$ per candidate includes cost to
- Fire current office assistant + Hiring fee paid to agency.
- Assume that $\boldsymbol{c}_{\boldsymbol{h}}>\boldsymbol{c}_{\boldsymbol{i}}$.
- You are committed to having hired, at all times, the best candidate seen so far.
- Whenever you interview a candidate who is better than your current office assistant, you must fire the current office assistant and hire the candidate.
- Since you must have someone hired at all times, you will always hire the first candidate that you interview.

Pseudocode to Model This Scenario

- Assumes that the candidates are numbered 1 to n and that after interviewing each candidate, we can determine if it's better than the current office assistant.
- Uses a dummy candidate 0 that is worse than all others, so that the first candidate is always hired.

```
Hire-Assistant ( n)
best =0 // candidate 0 is a least-qualified dummy candidate
for }i=1\mathrm{ to }
    interview candidate }
    if candidate }i\mathrm{ is better than candidate best
        best = i
    hire candidate i
```


Cost

- If n candidates, and we hire m of them, the cost is $\mathrm{O}\left(n c_{i}+m c_{h}\right)$.
- Have to pay $n c_{i}$ to interview, no matter how many we hire.
- So we focus on analyzing the hiring cost $m c_{h}$.
- $m c_{h}$ varies with each run - it depends on the order in which we interview the candidates.
- This is a model of a common paradigm:
- We need to find the maximum or minimum in a sequence by examining each element and maintaining a current "winner."
- The variable m denotes how many times we change our notion of which element is currently winning.

Worst-Case Analysis

- In the worst case, we hire all \boldsymbol{n} candidates.
- This happens if each one is better than all who came before.
- In other words, if the candidates appear in increasing order of quality.
- If we hire all n, then the cost is $\mathrm{O}\left(n c_{i}+n c_{h}\right)=\mathrm{O}\left(\mathrm{nc} c_{h}\right)$ (since $c_{h}>c_{i}$).

Probabilistic Analysis

- In general, we have no control over the order in which candidates appear.
- We could assume that they come in a random order:
- Assign a rank to each candidate: $\operatorname{rank}(i)$ is a unique integer in the range 1 to n.
- The ordered list <rank(1), $\operatorname{rank}(2), \ldots, \operatorname{rank}(n)>$ is a permutation of the candidate numbers $<1,2, \ldots, n>$.
- The list of ranks is equally likely to be any one of the $n!$ permutations.
- Equivalently, the ranks form a uniform random permutation
- Each of the possible n! permutations appears with equal probability.
- Essential idea of probabilistic analysis:
- We must use knowledge of (or make assumptions about) the distribution of inputs.
- The expectation is over this distribution.
- This technique requires that we can make a reasonable characterization of the
- input distribution.

Randomized Algorithms

- We might not know the distribution of inputs, or we might not be able to model it computationally.
- Instead, we use randomization within the algorithm in order to impose a distribution on the inputs.

- For the hiring problem

- Change the scenario:
- The employment agency sends us a list of all \boldsymbol{n} candidates in advance.
- On each day, we randomly choose a candidate from the list to interview (but considering only those we have not yet interviewed).
- Instead of relying on the candidates being presented to us in a random order, we take control of the process and enforce a random order.

Randomized Algorithms (Cont.)

- An algorithm is randomized if its behavior is determined in part by values produced by a random-number generator.
- RANDOM($\boldsymbol{a}, \boldsymbol{b}$) returns an integer r, where $a \leq r \leq b$ and each of the $b-a+1$ possible values of r is equally likely.
- In practice, RANDOM is implemented by a pseudorandom-number generator, which is a deterministic method returning numbers that "look" random and pass statistical tests.

Indicator Random Variables

Indicator Random Variables

- A simple yet powerful technique for computing the expected value of a random variable.
- Helpful in situations in which there may be dependence.
- Given a sample space and an event \boldsymbol{A}, we define the indicator random variable:
- Lemma

$$
\mathrm{I}\{A\}= \begin{cases}1 & \text { if } A \text { occurs } \\ 0 & \text { if } A \text { does not occur }\end{cases}
$$

For an event A, let $X_{A}=\mathrm{I}\{A\}$. Then $\mathrm{E}\left[X_{A}\right]=\operatorname{Pr}\{A\}$.
Proof Letting \bar{A} be the complement of A, we have
$\mathrm{E}\left[X_{A}\right]=\mathrm{E}[\mathrm{I}\{A\}]$

$$
\begin{aligned}
& =1 \cdot \operatorname{Pr}\{A\}+0 \cdot \operatorname{Pr}\{\bar{A}\} \quad \text { (definition of expected value) } \\
& =\operatorname{Pr}\{A\}
\end{aligned}
$$

Simple Example

- Determine the expected number of heads when we flip a fair coin one time.
- Sample space is $\{\boldsymbol{H}, \boldsymbol{T}\}$.
- $\operatorname{Pr}\{\mathrm{H}\}=\operatorname{Pr}\{T\}=1 / 2$.
- Define indicator random variable $X_{H}=I\{H\}$.
$-X_{H}$ counts the number of heads in one flip.
- Since $\operatorname{Pr}\{H\}=1 / 2$, lemma says that $E[H x]=1 / 2$.

Slightly More Complicated Example

- Determine the expected number of heads in n coin flips:
- Let \boldsymbol{X} be a random variable for the number of heads in \boldsymbol{n} flips.
- Compute the expected value: $\mathrm{E}[X]=\sum_{k=0}^{n} k \cdot \operatorname{Pr}\{X=k\}$ (This calculation is too cumbersome.)
- Use indicator random variables instead:

For $i=1,2, \ldots, n$, define $X_{i}=\mathrm{I}$ the i th flip results in event $\left.H\right\}$.
Then $X=\sum_{i=1}^{n} X_{i}$.
Lemma says that $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\{H\}=1 / 2$ for $i=1,2, \ldots, n$.
Expected number of heads is $\mathrm{E}[X]=\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]$.

Slightly More Complicated Example (Cont.)

Problem: We want $\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]$. We have only the individual expectations $\mathrm{E}\left[X_{1}\right], \mathrm{E}\left[X_{2}\right], \ldots, \mathrm{E}\left[X_{n}\right]$.
Solution: Linearity of expectation says that the expectation of the sum equals the sum of the expectations. Thus,

$$
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right] \\
& =\sum_{i=1}^{n} 1 / 2 \\
& =n / 2 .
\end{aligned}
$$

$\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]$

Linearity of expectation applies even when there is dependence among the random variables.

Analysis of the Hiring Problem

- Assume that the candidates arrive in a random order.
- Let \boldsymbol{X} be a random variable that equals the number of times we hire a new office assistant.
- Define indicator random variables
$X_{1}, X_{2}, \ldots, X_{n}$, where
$X_{i}=\mathbf{I}\{$ candidate i is hired $\}$.
Useful properties:
- $X=X_{1}+X_{2}+\cdots+X_{n}$.
- Lemma $\Rightarrow \mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\{$ candidate i is hired $\}$.

Analysis of the Hiring Problem (Cont.)

- We need to compute Pr \{candidate i is hired\}.
- Candidate i is hired if and only if candidate i is better than each of candidates $1,2, \ldots, i-1$.
- Assumption that the candidates arrive in random order \Rightarrow candidates $1,2, \ldots, i$ arrive in random order \Rightarrow any one of these first i candidates is equally likely to be the best one so far.
- Thus, $\operatorname{Pr}\{$ candidate i is the best so far $\}=1 / i$.
- Which implies $\mathrm{E}\left[X_{i}\right]=1 / i$.
- The expected hiring cost is $\mathrm{O}\left(c_{h} \ln n\right)$ which is much better than the worst-case cost of $\mathrm{O}\left(n c_{h}\right)$.

$$
\mathrm{E}[X]=\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]
$$

$$
=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]
$$

$$
=\sum_{i=1}^{n} 1 / i
$$

$$
\begin{aligned}
& \text { Harmonic series: } \\
& \mathrm{H}_{n}=1+1 / 2+1 / 3+\ldots+1 / n=\ln n+\mathrm{O}(1)
\end{aligned}
$$

$=\ln n+O(1)$

Randomized Algorithms

Randomized Algorithms

- Instead of assuming a distribution of the inputs, we impose a distribution.
- The hiring problem (revisited)
- For the hiring problem, the algorithm is deterministic:
- For any given input, the number of times we hire a new office assistant will always be the same.
- The number of times we hire a new office assistant depends only on the input.
- In fact, it depends only on the ordering of the candidates' ranks that it is given.
- Some rank orderings will always produce a high hiring cost. Example: <1, 2, 3, 4, 5, 6> where each candidate is hired.
- Some will always produce a low hiring cost.

Example: any ordering in which the best candidate is the first one interviewed. Then only the best candidate is hired.

- Some may be in between.

Randomized Algorithms (Cont.)

- Instead of always interviewing the candidates in the order presented, what if we first randomly permuted this order?
- The randomization is now in the algorithm, not in the input distribution.
- Given a particular input, we can no longer say what its hiring cost will be.
- Each time we run the algorithm, we can get a different hiring cost.
- In other words, each time we run the algorithm, the execution depends on the random choices made.
- No particular input always elicits worst-case behavior.
- Bad behavior occurs only if we get "unlucky" numbers from the random number generator.

Pseudocode for Randomized Hiring Problem

RANDOMIZED-HIRE-ASSISTANT (n)
randomly permute the list of candidates
best $=0 \quad / /$ candidate 0 is a least-qualified dummy candidate
for $i=1$ to n
interview candidate i
if candidate i is better than candidate best HIRE-ASSISTANT (n)
best $=i$
hire candidate i

- Lemma
- The expected hiring cost of RANDOMIZED-HIRE-ASSISTANT is $O\left(c_{h} \ln n\right)$.
- Proof
- After permuting the input array, we have a situation identical to the probabilistic analysis of deterministic HIRE-ASSISTANT.

Randomly Permuting an Array

- Two methods are introduced to randomly permute an n element array:
- First method: (Priority-based method)
- Assigns a random priority in the range 1 to n3 to each position and then reorders the array elements into increasing priority order.
- Second method:
- n random numbers in the range 1 to n rather than the range 1 to n^{3})
- It works in place (unlike the priority-based method).
- It runs in linear time without requiring sorting.
- It needs fewer random bits.
- Goal
- Produce a uniform random permutation (each of the n ! permutations is equally likely to be produced).

Priority-Based Method

- Assign each element $A[i]$ of the array a random priority $P[i]$, and sort the elements of A according to these priorities.
- For example:
- If our initial array is $\mathrm{A}=<1,2,3,4>$ and we choose random priorities $P=<36,3,62,19>$, we would produce an array $B=<2,4,1,3>$.

Permute-B y-Sorting (A)

$1 \quad n=$ A.length
2 let $P[1 \ldots n]$ be a new array
3 for $i=1$ to n
$4 \quad P[i]=\operatorname{RANDOM}\left(1, n^{3}\right)$
5 sort A, using P as sort keys

All entries are unique is at least $1-1 / n$:
One unique entry: $\left(n^{3}-n\right) / n^{3}=1-1 / n^{2}$
N unique entries: $\left(1-1 / n^{2}\right) \times \ldots x\left(1-1 / n^{2}\right)$

$O(n \ln n)$

Priority-Based Method (Cont.)

- Lemma

- Procedure PERMUTE-BY-SORTING produces a uniform random permutation of the input, assuming that all priorities are distinct.
- Proof
- We start by considering the particular permutation in which each element $A[i]$ receives the ith smallest priority.
- We shall show that this permutation occurs with probability exactly $1 / n!$.
- For $i=1,2, \ldots, n$, let E_{i} be the event that element $A[i]$ receives the i th smallest priority. Then we wish to compute the probability that for all i, event E_{i} occurs, which is

$$
\operatorname{Pr}\left\{E_{1} \cap E_{2} \cap E_{3} \cap \cdots \cap E_{n-1} \cap E_{n}\right\} .
$$

$$
\operatorname{Pr}\{E 1\}=1 / n
$$

$$
\operatorname{Pr}\{E 2 \mid E 1\}=1 /(n-1)
$$

this probability is equal to

$$
\begin{aligned}
& \operatorname{Pr}\left\{E_{1}\right\} \cdot \operatorname{Pr}\left\{E_{2} \mid E_{1}\right\} \cdot \operatorname{Pr}\left\{E_{3} \mid E_{2} \cap E_{1}\right\} \operatorname{Pr}\{E 2 \mid E 1\} \cdot \operatorname{Pr}\{E 1\}=\operatorname{Pr}\{E 1 \cap \mathrm{E} \\
& \quad \cdots \operatorname{Pr}\left\{E_{i} \mid E_{i-1} \cap E_{i-2} \cap \cdots \cap E_{1}\right\} \cdots \operatorname{Pr}\left\{E_{n} \mid E_{n-1} \cap \cdots \cap E_{1}\right\} .=1 / \mathrm{n}!
\end{aligned}
$$

A Better Method

- A better method for generating a random permutation is to permute the given array in place.

```
RANDOMIZE-IN-PLACE ( }A,n
for }i=1\mathrm{ to }
    swap }A[i]\mathrm{ with }A[\operatorname{RANDOM}(i,n)
```

- Idea:
- In iteration i, choose $A[i]$ randomly from A[i..n].
- Will never alter $A[i]$. after iteration i.
- Time:
$-\mathrm{O}(1)$ per iteration $\rightarrow \mathrm{O}(\mathrm{n})$ total.

A Better Method (Cont.)

- Correctness
- Given a set of \boldsymbol{n} elements, a k-permutation is a sequence containing k of the n elements.
There are n! I (n-k)! possible k-permutations.
- Lemma
- RANDOMIZE-IN-PLACE computes a uniform random permutation.
- Proof (Use a loop invariant)

Loop invariant: Just prior to the i th iteration of the for loop, for each possible $(i-1)$-permutation, subarray $A[1 \ldots i-1]$ contains this $(i-1)$ permutation with probability $(n-i+1)!/ n!$.

A Better Method (Cont.)

Initialization: Just before first iteration, $i=1$. Loop invariant says that for each possible 0 -permutation, subarray $A[1 \ldots 0]$ contains this 0 -permutation with probability $n!/ n!=1 . A[1 \ldots 0]$ is an empty subarray, and a 0 -permutation has no elements. So, $A[1 \ldots 0]$ contains any 0 -permutation with probability 1
Maintenance: Assume that just prior to the i th iteration, each possible $(i-1)$ permutation appears in $A[1 \ldots i-1]$ with probability $(n-i+1)!/ n!$. Will show that after the i th iteration, each possible i-permutation appears in $A[1 \ldots i]$ with probability $(n-i)!/ n!$. Incrementing i for the next iteration then maintains the invariant.
Consider a particular i-permutation $\pi=\left\langle x_{1}, x_{2}, \ldots, x_{i}\right\rangle$. It consists of an ($i-1$)-permutation $\pi^{\prime}=\left\langle x_{1}, x_{2}, \ldots, x_{i-1}\right\rangle$, followed by x_{i}.
Let $\underline{E_{1}}$ be the event that the algorithm actually puts π^{\prime} into $A[1 \ldots i-1]$. By the loop invariant, $\operatorname{Pr}\left\{E_{1}\right\}=(n-i+1)!/ n!$.
Let E_{2} be the event that the i th iteration puts x_{i} into $A[i]$.

A Better Method (Cont.)

We get the i-permutation π in $A[1 \ldots i]$ if and only if both E_{1} and E_{2} occur \Rightarrow the probability that the algorithm produces π in $A[1 \ldots i]$ is $\operatorname{Pr}\left\{E_{2} \cap E_{1}\right\}$.

$$
\Rightarrow \operatorname{Pr}\left\{E_{2} \cap E_{1}\right\}=\operatorname{Pr}\left\{E_{2} \mid E_{1}\right\} \operatorname{Pr}\left\{E_{1}\right\} .
$$

The algorithm chooses x_{i} randomly from the $n-i+1$ possibilities in $A[i \ldots n]$ $\Rightarrow \operatorname{Pr}\left\{E_{2} \mid E_{1}\right\}=1 /(n-i+1)$. Thus,

$$
\begin{aligned}
\operatorname{Pr}\left\{E_{2} \cap E_{1}\right\} & =\operatorname{Pr}\left\{E_{2} \mid E_{1}\right\} \operatorname{Pr}\left\{E_{1}\right\} \\
& =\frac{1}{n-i+1} \cdot \frac{(n-i+1)!}{n!} \\
& =\frac{(n-i)!}{n!} .
\end{aligned}
$$

A randomized algorithm is often the simplest and most efficient way to solve a problem.

Termination: At termination, $i=n+1$, so we conclude that $A[1 \ldots n]$ is a given n-permutation with probability $(n-n)!/ n!=1 / n!\quad$ Uniform random permutation

