

Topic 5: Probabilistic Analysis and Randomized Algorithms

The Primary Goal of This Topic

- Explain the difference between
 - Probabilistic analysis and
 - Randomized algorithms.
- Present the technique of *indicator random variable*.
- Give an example of the analysis of a randomized algorithm → *Permuting an array in place*.

Outline

- The hiring problem
- Indicator random variables
- Randomized algorithms

The Hiring Problem

November 22, 2010

Scenario

- You are using an employment agency to hire a new office assistant.
- The agency sends you one candidate each day.
- You interview the candidate and must immediately decide whether or not to hire that person.
 - But if you hire, you must also fire your current office assistant even if it's someone you have recently hired.
- Cost to interview is **c**_i per candidate (interview fee paid to agency).
- Cost to hire is **c**_h per candidate includes cost to

- Fire current office assistant + Hiring fee paid to agency.

- Assume that $c_h > c_i$.
- You are committed to having hired, at all times, the best candidate seen so far.
 - Whenever you interview a candidate who is better than your current office assistant, you must fire the current office assistant and hire the candidate.
 - Since you must have someone hired at all times, you will always hire the first candidate that you interview.

Pseudocode to Model This Scenario

- Assumes that the candidates are numbered 1 to n and that after interviewing each candidate, we can determine if it's better than the current office assistant.
- Uses a *dummy candidate 0* that is worse than all others, so that the first candidate is always hired.

HIRE-ASSISTANT(n) best = 0 // candidate 0 is a least-qualified dummy candidate for i = 1 to ninterview candidate iif candidate i is better than candidate best best = ihire candidate i

Cost

- If *n* candidates, and we hire *m* of them, the cost is $O(nc_i + mc_h)$.
 - Have to pay nc_i to interview, no matter how many we hire.
 - So we focus on analyzing the hiring cost *mc_h*.
 - *mc_h* varies with each run it depends on the order in which we interview the candidates.
 - This is a model of a common paradigm:
 - We need to find the maximum or minimum in a sequence by examining each element and maintaining a current "*winner*."
 - The variable *m* denotes how many times we change our notion of which element is currently winning.

Worst-Case Analysis

- In the worst case, we hire all *n* candidates.
- This happens if each one is better than all who came before.
 - In other words, if the candidates appear in *increasing* order of quality.
 - If we hire all *n*, then the cost is $O(nc_i + nc_h) = O(nc_h)$ (since $c_h > c_i$).

Probabilistic Analysis

- In general, we have no control over the order in which candidates appear.
- We could assume that they come in a random order:
 - Assign a rank to each candidate: rank(i) is a unique integer in the range 1 to n.
 - The ordered list <*rank(1), rank(2), ..., rank(n)*> is a permutation of the candidate numbers <1, 2, ..., n>.
 - The list of ranks is equally likely to be any one of the *n*! permutations.
 - Equivalently, the ranks form a *uniform random permutation*
 - Each of the possible *n*! permutations appears with equal probability.

• Essential idea of probabilistic analysis:

- We must use knowledge of (or make assumptions about) the distribution of inputs.
 - The *expectation* is over this distribution.
 - This technique requires that we can make a reasonable characterization of the
 - input distribution.

Randomized Algorithms

- We might not know the distribution of inputs, or we might not be able to model it computationally.
 - Instead, we use *randomization* within the algorithm in order to impose a distribution on the inputs.

• For the hiring problem

- Change the scenario:
 - The employment agency sends us a list of all *n* candidates in advance.
 - On each day, we randomly choose a candidate from the list to interview (but considering only those we have not yet interviewed).
 - Instead of relying on the candidates being presented to us in a random order, we take control of the process and *enforce a random order*.

Randomized Algorithms (Cont.)

- An algorithm is *randomized* if its behavior is determined in part by values produced by a *random-number generator*.
 - **RANDOM**(*a*, *b*) returns an integer *r*, where $a \le r \le b$ and each of the *b a* + 1 possible values of *r* is equally likely.
 - In practice, RANDOM is implemented by a pseudorandom-number generator, which is a deterministic method returning numbers that "look" random and pass statistical tests.

Indicator Random Variables

Indicator Random Variables

- A simple yet powerful technique for computing *the expected value of a random variable*.
- Helpful in situations in which there may be *dependence*.
- Given a sample space and an event **A**, we define the *indicator random variable:*

$$\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs }, \\ 0 & \text{if } A \text{ does not occur }. \end{cases}$$

Lemma

I

For an event A, let $X_A = I \{A\}$. Then $E [X_A] = Pr \{A\}$.

Proof Letting \overline{A} be the complement of A, we have

 $E[X_A] = E[I\{A\}]$ = 1 · Pr {A} + 0 · Pr {A} (definition of expected value) = Pr {A}.

Simple Example

- Determine the expected number of heads when we flip a fair coin one time.
- Sample space is {H, T}.
- $Pr{H} = Pr{T} = \frac{1}{2}$.
- Define *indicator random variable* $X_H = I\{H\}$. - X_H counts the number of heads in one flip.
- Since $Pr{H} = \frac{1}{2}$, *lemma* says that $E[Hx] = \frac{1}{2}$.

Slightly More Complicated Example

- Determine the expected number of heads in *n* coin flips:
 - Let **X** be a random variable for the number of heads in **n** flips.
 - Compute the expected value: $E[X] = \sum_{k=0}^{n} k \cdot Pr\{X = k\}$ (This calculation is too cumbersome.)
- Use indicator random variables instead:

For i = 1, 2, ..., n, define $X_i = I$ {the *i*th flip results in event *H*}. Then $X = \sum_{i=1}^{n} X_i$. Lemma says that $E[X_i] = Pr\{H\} = 1/2$ for i = 1, 2, ..., n. Expected number of heads is $E[X] = E[\sum_{i=1}^{n} X_i]$.

Slightly More Complicated Example (Cont.)

Problem: We want $E\left[\sum_{i=1}^{n} X_i\right]$. We have only the individual expectations $E[X_1], E[X_2], \dots, E[X_n]$.

Solution: Linearity of expectation says that the expectation of the sum equals the sum of the expectations. Thus,

E[X+Y] = E[X] + E[Y]
Linearity of expectation applies
even when there is dependence
among the random variables.

Analysis of the Hiring Problem

- Assume that the candidates arrive in a random order.
- Let **X** be a random variable that equals the number of times we hire a new office assistant.
 - Define indicator random variables
 X₁, X₂, ..., X_n, where
 X_i = I { candidate *i* is hired }.

Useful properties:

•
$$X = X_1 + X_2 + \dots + X_n.$$

• Lemma $\Rightarrow E[X_i] = \Pr \{ \text{candidate } i \text{ is hired} \}.$

 $\label{eq:copyright} @ \mbox{All Rights Reserved by Yuan-Hao Chang} \\$

Analysis of the Hiring Problem (Cont.)

- We need to compute Pr {candidate *i* is hired}.
 - Candidate *i* is hired if and only if candidate *i* is better than each of candidates 1, 2, ..., *i* − 1.
 - Assumption that the candidates arrive in random order ⇒ candidates 1, 2, ..., i arrive in random order ⇒ any one of these first i candidates is equally likely to be the best one so far.
 - Thus, $\Pr \{\text{candidate } i \text{ is the best so far} \} = 1/i.$
 - Which implies $E[X_i] = 1/i$.
- The expected hiring cost is $O(c_h \ln n)$ which is much better than the worst-case cost of $O(nc_h)$.

Harmonic series:

 $H_n = 1 + 1/2 + 1/3 + ... + 1/n = \ln n + O(1)$

 $E[X] = E\left[\sum_{i=1}^{n} X_{i}\right]$ $= \sum_{i=1}^{n} E[X_{i}]$ $= \sum_{i=1}^{n} \frac{1}{i}$ $= \ln n + O(1)$

byright © All Rights Reserved by Yuan-Hao Chang

18

Randomized Algorithms

Randomized Algorithms

• Instead of assuming a distribution of the inputs, we impose a distribution.

• The hiring problem (revisited)

- For the hiring problem, the algorithm is deterministic:
 - For any given input, the number of times we hire a new office assistant will always be the same.
 - The number of times we hire a new office assistant depends only on the input.
 - In fact, it depends only on the ordering of the candidates' ranks that it is given.
 - Some rank orderings will always produce a high hiring cost. Example: <1, 2, 3, 4, 5, 6> where each candidate is hired.
 - Some will always produce a low hiring cost.
 Example: any ordering in which the best candidate is the first one interviewed. Then only the best candidate is hired.
 - Some may be in between.

Randomized Algorithms (Cont.)

- Instead of always interviewing the candidates in the order presented, what if we first randomly permuted this order?
 - The randomization is now in the algorithm, not in the input distribution.
 - Given a particular input, we can no longer say what its hiring cost will be.
 - Each time we run the algorithm, we can get a different hiring cost.
 - In other words, each time we run the algorithm, the execution depends on the random choices made.
 - No particular input always elicits worst-case behavior.
 - Bad behavior occurs only if we get "unlucky" numbers from the random number generator.

Pseudocode for Randomized Hiring Problem

RANDOMIZED-HIRE-ASSISTANT(n) randomly permute the list of candidates best = 0 // candidate 0 is a least-qualified dummy candidate for i = 1 to ninterview candidate iif candidate i is better than candidate best best = ihire candidate i

• Lemma

- The expected hiring cost of RANDOMIZED-HIRE-ASSISTANT is $O(c_h \ln n)$.

Proof

 After permuting the input array, we have a situation identical to the probabilistic analysis of deterministic HIRE-ASSISTANT.

Copyright © All Rights Reserved by Yuan-Hao Chang

Randomly Permuting an Array

- Two methods are introduced to randomly permute an *n*-element array:
 - First method: (Priority-based method)
 - Assigns a random priority in the range 1 to n3 to each position and then reorders the array elements into increasing priority order.
 - Second method:
 - *n* random numbers in the range 1 to n rather than the range 1 to n³)
 - · It works in place (unlike the priority-based method).
 - · It runs in linear time without requiring sorting.
 - · It needs fewer random bits.

• Goal

Produce a uniform random permutation (each of the *n*! permutations is equally likely to be produced).

Priority-Based Method

 Assign each element A[i] of the array a random priority P[i], and sort the elements of A according to these priorities.

• For example:

- If our initial array is A = <1, 2, 3, 4> and we choose random priorities P = <36, 3, 62, 19>, we would produce an array B = <2, 4, 1, 3>.

O(*n* ln *n*)

All entries are unique is at least 1 - 1/n: One unique entry: $(n^3-n)/n^3 = 1 - 1/n^2$ N unique entries: $(1-1/n^2)x...x(1-1/n^2)$

24

Priority-Based Method (Cont.)

• Lemma

 Procedure PERMUTE-BY-SORTING produces a *uniform random permutation* of the input, assuming that all priorities are distinct.

Proof

- We start by considering the particular permutation in which each element A[i] receives the *i*th smallest priority.
- We shall show that this permutation occurs with probability exactly 1/n!.
 - For *i* = 1, 2, ..., *n*, let *E_i* be the event that element *A[i]* receives the *i*th smallest priority. Then we wish to compute the probability that for all *i*, event *E_i* occurs, which is

Pr { $E_1 \cap E_2 \cap E_3 \cap \cdots \cap E_{n-1} \cap E_n$ }. this probability is equal to Pr { E_1 } · Pr { $E_2 \mid E_1$ } · Pr { $E_3 \mid E_2 \cap E_1$ } · · · Pr { $E_i \mid E_{i-1} \cap E_{i-2} \cap \cdots \cap E_1$ }. Pr { $E_n \mid E_{n-1} \cap \cdots \cap E_1$ }. Pr { $E_n \mid E_{n-1} \cap \cdots \cap E_1$ }. Pr { $E_n \mid E_{n-1} \cap \cdots \cap E_1$ }. Pr { $E_n \mid E_{n-1} \cap \cdots \cap E_1$ }. Pr { $E_n \mid E_{n-1} \cap \cdots \cap E_1$ }.

Copyright © All Rights Reserved by Yuan-Hao Chang

A Better Method

• A better method for generating a random permutation is to permute the given array in place.

```
RANDOMIZE-IN-PLACE (A, n)
for i = 1 to n
swap A[i] with A[RANDOM(i, n)]
```

Idea:

- In iteration *i*, choose A[i] randomly from A[i..n].
- Will never alter A[i] . after iteration i .

• Time:

-O(1) per iteration $\rightarrow O(n)$ total.

27

A Better Method (Cont.)

Correctness

Given a set of *n* elements, a k-permutation is a sequence containing *k* of the *n* elements.
 There are n! / (n-k)! possible k-permutations.

• Lemma

- RANDOMIZE-IN-PLACE computes a uniform random permutation.

• Proof (Use a loop invariant)

Loop invariant: Just prior to the *i*th iteration of the **for** loop, for each possible (i - 1)-permutation, subarray A[1 ... i - 1] contains this (i - 1)-permutation with probability (n - i + 1)!/n!.

A Better Method (Cont.)

- **Initialization:** Just before first iteration, i = 1. Loop invariant says that for each possible 0-permutation, subarray A[1..0] contains this 0-permutation with probability n!/n! = 1. A[1..0] is an empty subarray, and a 0-permutation has no elements. So, A[1..0] contains any 0-permutation with probability 1
- **Maintenance:** Assume that just prior to the *i*th iteration, each possible (i 1)-permutation appears in A[1 ... i 1] with probability (n i + 1)!/n!. Will show that after the *i*th iteration, each possible *i*-permutation appears in A[1 ... i] with probability (n i)!/n!. Incrementing *i* for the next iteration then maintains the invariant.
 - Consider a particular *i*-permutation $\pi = \langle x_1, x_2, ..., x_i \rangle$. It consists of an (i-1)-permutation $\pi' = \langle x_1, x_2, ..., x_{i-1} \rangle$, followed by x_i .
 - Let $\underline{E_1}$ be the event that the algorithm actually puts π' into A[1 ... i 1]. By the loop invariant, $\Pr \{E_1\} = (n i + 1)!/n!$.

Let $\underline{E_2}$ be the event that the *i* th iteration puts x_i into A[i].

A Better Method (Cont.)

We get the *i*-permutation π in A[1..i] if and only if both E_1 and E_2 occur \Rightarrow the probability that the algorithm produces π in A[1..i] is $\Pr \{E_2 \cap E_1\}$.

$$\Rightarrow \Pr\{E_2 \cap E_1\} = \Pr\{E_2 \mid E_1\}\Pr\{E_1\}.$$

The algorithm chooses x_i randomly from the n - i + 1 possibilities in A[i ...n] $\Rightarrow \Pr \{E_2 \mid E_1\} = 1/(n - i + 1)$. Thus,

 $\Pr\{E_2 \cap E_1\} = \Pr\{E_2 \mid E_1\} \Pr\{E_1\}$ $= \frac{1}{n-i+1} \cdot \frac{(n-i+1)!}{n!}$ $= \frac{(n-i)!}{n!}.$

A randomized algorithm is often the simplest and most efficient way to solve a problem.

Termination: At termination, i = n + 1, so we conclude that A[1..n] is a given *n*-permutation with probability (n - n)!/n! = 1/n! Uniform random permutation

Copyright