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The Primary Goal of This Topic
• Explain the difference between 

– Probabilistic analysis and 
– Randomized algorithms.

• Present the technique of indicator random variable.

• Give an example of the analysis of a randomized 
algorithm Permuting an array in place.
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Outline
• The hiring problem

• Indicator random variables

• Randomized algorithms



The Hiring ProblemThe Hiring Problem
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Scenario
• You are using an employment agency to hire a new office assistant.
• The agency sends you one candidate each day.
• You interview the candidate and must immediately decide whether or 

not to hire that person. 
– But if you hire, you must also fire your current office assistant even if it’s 

someone you have recently hired.
• Cost to interview is ci per candidate (interview fee paid to agency).
• Cost to hire is ch per candidate includes cost to 

– Fire current office assistant + Hiring fee paid to agency.
• Assume that ch > ci.
• You are committed to having hired, at all times, the best candidate seen 

so far.
– Whenever you interview a candidate who is better than your current office 

assistant, you must fire the current office assistant and hire the candidate.
– Since you must have someone hired at all times, you will always hire the 

first candidate that you interview.
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Pseudocode to Model This Scenario
• Assumes that the candidates are numbered 1 to n and that after 

interviewing each candidate, we can determine if it’s better than the 
current office assistant.

• Uses a dummy candidate 0 that is worse than all others, so that the first 
candidate is always hired.
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Cost
• If n candidates, and we hire m of them, the cost is 
O(nci + mch).
– Have to pay nci to interview, no matter how many we hire.
– So we focus on analyzing the hiring cost mch.

- mch varies with each run - it depends on the order in which we 
interview the candidates.

– This is a model of a common paradigm:
- We need to find the maximum or minimum in a sequence by 

examining each element and maintaining a current “winner.”
- The variable m denotes how many times we change our notion of 

which element is currently winning.
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Worst-Case Analysis
• In the worst case, we hire all n candidates.

• This happens if each one is better than all who 
came before.
– In other words, if the candidates appear in increasing 

order of quality.
– If we hire all n, then the cost is O(nci + nch) = O(nch)

(since ch > ci ).
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Probabilistic Analysis
• In general, we have no control over the order in which candidates 

appear.
• We could assume that they come in a random order:

– Assign a rank to each candidate: rank(i) is a unique integer in the range 1 to 
n.

– The ordered list <rank(1), rank(2), …, rank(n)> is a permutation of the 
candidate numbers <1, 2, …, n>.

– The list of ranks is equally likely to be any one of the n! permutations.
– Equivalently, the ranks form a uniform random permutation

- Each of the possible n! permutations appears with equal probability.

• Essential idea of probabilistic analysis:
– We must use knowledge of (or make assumptions about) the distribution of 

inputs.
- The expectation is over this distribution.
- This technique requires that we can make a reasonable characterization of the
- input distribution.
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Randomized Algorithms
• We might not know the distribution of inputs, or we 
might not be able to model it computationally.
– Instead, we use randomization within the algorithm in 

order to impose a distribution on the inputs.

• For the hiring problem
– Change the scenario:

- The employment agency sends us a list of all n candidates in 
advance.

- On each day, we randomly choose a candidate from the list to 
interview (but considering only those we have not yet interviewed).

- Instead of relying on the candidates being presented to us in a 
random order, we take control of the process and enforce a 
random order.
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Randomized Algorithms (Cont.)
• An algorithm is randomized if its behavior is 
determined in part by values produced by a 
random-number generator.
– RANDOM(a, b) returns an integer r, where a ≤ r ≤ b and 

each of the b - a + 1 possible values of r is equally likely.
– In practice, RANDOM is implemented by a 

pseudorandom-number generator, which is a 
deterministic method returning numbers that “look”
random and pass statistical tests.



Indicator Random 
Variables

Indicator Random 
Variables
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Indicator Random Variables
• A simple yet powerful technique for computing the expected value of a 

random variable.

• Helpful in situations in which there may be dependence.

• Given a sample space and an event A, we define the indicator random 
variable:

• Lemma
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Simple Example
• Determine the expected number of heads when we 
flip a fair coin one time.

• Sample space is {H, T}.
• Pr{H} = Pr{T} = ½.

• Define indicator random variable XH = I{H}. 
– XH counts the number of heads in one flip.

• Since Pr{H} = ½ , lemma says that E[Hx] = ½.
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Slightly More Complicated Example
• Determine the expected number of heads in n coin flips:

– Let X be a random variable for the number of heads in n flips.
– Compute the expected value:

(This calculation is too cumbersome.)

• Use indicator random variables instead:
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Slightly More Complicated Example (Cont.)

E[X+Y] = E[X] + E[Y]
Linearity of expectation applies 
even when there is dependence 
among the random variables.
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Analysis of the Hiring Problem
• Assume that the candidates arrive in a random 
order.

• Let X be a random variable that equals the number 
of times we hire a new office assistant.
– Define indicator random variables 

X1, X2, …, Xn, where 
Xi = I { candidate i is hired }.
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Analysis of the Hiring Problem (Cont.)
• We need to compute Pr {candidate i is hired}.

• The expected hiring cost is O(ch ln n)
which is much better than the 
worst-case cost of O(nch).

Harmonic series: 
H = 1 + 1/2 + 1/3 + … + 1/n = ln n +O(1)n



Randomized AlgorithmsRandomized Algorithms
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Randomized Algorithms
• Instead of assuming a distribution of the inputs, we impose 

a distribution.
• The hiring problem (revisited)

– For the hiring problem, the algorithm is deterministic:
- For any given input, the number of times we hire a new office assistant 

will always be the same.
- The number of times we hire a new office assistant depends only on the 

input.
- In fact, it depends only on the ordering of the candidates’ ranks that it is 

given.
- Some rank orderings will always produce a high hiring cost. 

Example: <1, 2, 3, 4, 5, 6> where each candidate is hired.
- Some will always produce a low hiring cost. 

Example: any ordering in which the best candidate is the first one 
interviewed. Then only the best candidate is hired.

- Some may be in between.
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Randomized Algorithms (Cont.)
• Instead of always interviewing the candidates in the order 

presented, what if we first randomly permuted this order?
– The randomization is now in the algorithm, not in the 

input distribution.
– Given a particular input, we can no longer say what its 

hiring cost will be. 
- Each time we run the algorithm, we can get a different hiring cost.
- In other words, each time we run the algorithm, the execution 

depends on the random choices made.
- No particular input always elicits worst-case behavior.

– Bad behavior occurs only if we get “unlucky” numbers 
from the random number generator.
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Pseudocode for Randomized Hiring Problem

• Lemma
– The expected hiring cost of RANDOMIZED-HIRE-ASSISTANT is 

O(ch ln n).

• Proof
– After permuting the input array, we have a situation identical to the 

probabilistic analysis of deterministic HIRE-ASSISTANT.
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Randomly Permuting an Array
• Two methods are introduced to randomly permute an n-

element array:
– First method: (Priority-based method)

- Assigns a random priority in the range 1 to n3 to each position and then 
reorders the array elements into increasing priority order.

– Second method:
- n random numbers in the range 1 to n rather than the range 1 to n3)

· It works in place (unlike the priority-based method).
· It runs in linear time without requiring sorting.
· It needs fewer random bits.

• Goal
– Produce a uniform random permutation (each of the n! permutations 

is equally likely to be produced).
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Priority-Based Method
• Assign each element A[i] of the array a random priority P[i], 

and sort the elements of A according to these priorities. 

• For example:
– If our initial array is A = <1, 2, 3, 4> and we choose random priorities 

P = <36, 3, 62, 19>, we would produce an array B = <2, 4, 1, 3>.

All entries are unique is at least 1 - 1/n:
One unique entry: (n3-n)/n3 = 1 – 1/n2

N unique entries: (1-1/n2)x…x(1-1/n2)

O(n ln n)
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Priority-Based Method (Cont.)
• Lemma

– Procedure PERMUTE-BY-SORTING produces a uniform random 
permutation of the input, assuming that all priorities are distinct.

• Proof
– We start by considering the particular permutation in which each element A[i] 

receives the ith smallest priority.
– We shall show that this permutation occurs with probability exactly 1/n!. 

- For i = 1, 2, …, n, let Ei be the event that element A[i] receives the ith smallest 
priority. Then we wish to compute the probability that for all i, event Ei occurs, 
which is 

Pr{E1} = 1/n
Pr{E2 | E1} = 1 / (n-1)
Pr{E3 | E2∩E1} = 1 / (n-1)
Pr{E2 | E1}．Pr{E1} = Pr{E1  ∩ E2}

=1/n!
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A Better Method
• A better method for generating a random permutation is to 

permute the given array in place.

• Idea:
– In iteration i , choose A[i] randomly from A[i..n].
– Will never alter A[i] . after iteration i .

• Time:
– O(1) per iteration O(n) total.
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A Better Method (Cont.)
• Correctness

– Given a set of n elements, a k-permutation is a sequence 
containing k of the n elements. 
There are n! / (n-k)! possible k-permutations.

• Lemma
– RANDOMIZE-IN-PLACE computes a uniform random permutation.

• Proof (Use a loop invariant)
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A Better Method (Cont.)
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A Better Method (Cont.)

Uniform random 
permutation

A randomized algorithm 
is often the simplest and 
most efficient way to 
solve a problem.
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