
Topic 6:
Amortized Analysis

Topic 6:
Amortized Analysis

November 29, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Amortized (分期償還) Analysis
• Analyze a sequence of operations on a data structure.

• Goal:
– Show that although some individual operations may be expensive,

on average the cost per operation is small.

• Average in this context does not mean that we’re averaging
over a distribution of inputs. Instead,

– No probability is involved.
– We’re talking about

- Average performance of each operation in the worst case.
- The time required to perform a sequence of data structure operations in

average over all the operations performed.

For all n, a sequence of n operations takes worst time T(n) in total. The
amortize cost of each operation is T(n)/n.

November 29, 2010 3

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• Aggregate analysis

• The accounting method

• The potential method

• Dynamic tables

Aggregate AnalysisAggregate Analysis

November 29, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Stack Operation
• Stack operation

– PUSH(S, x)
– POP(S)
– MULTIPOP(S, k)

top 

23
17
6
39
10
47

initial

top 

10
47


MULTIPOP(S,4)


MULTIPOP(S,7)

November 29, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Stack Operation (Cont.)
• Running time of MULTIPOP

– Linear in # of POP operations.
– Let each PUSH/POP cost 1.
– # of iterations of while loop is min(s, k), where s = # of objects on stack.
– Therefore, total cost min(s, k).

• Sequence of n PUSH, POP, MULTIPOP operations:
– Worst-case cost of MULTIPOP is O(n).
– Have n operations.
– Therefore, worst-case cost of sequence is O(n2).

• Observation
– Each object can be popped only once per time that it’s pushed.
– Have 

n PUSHes   n POPs, including those in MULTIPOP.
– Therefore, total cost = O(n).
– Average over the n operations  O(1) per operation on average.

• Again, notice no probability:
– Showed worst-case O(n) cost for sequence.
– Therefore, O(1) per operation on average.  called aggregate analysis

November 29, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

Binary Counter

November 29, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Binary Counter (Cont.)
• Each call could flip k bits, so n

INCREMENTs takes O(nk)
time.

• Observation
– Not every bit flips every time.

November 29, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Binary Counter (Cont.)
• Analysis

– n INCREMENTs costs O(n).
– Average cost per operation = O(1).




 


0 1
1

k

k

x
x

The Accounting MethodThe Accounting Method

November 29, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Accounting Method
• Assign different charges to different operations.

– Some are charged more than actual cost.
– Some are charged less.

• Amortized cost = amount we charge.
• When amortized cost > actual cost, store the difference on specific

objects in the data structure as credit.
• Use credit later to pay for operations whose actual cost > amortized

cost.
• Differs from aggregate analysis:

– In the accounting method, different operations can have different costs.
– In aggregate analysis, all operations have same cost.

• Need credit to never go negative. Otherwise,
– We have a sequence of operations for which the amortized cost is not an

upper bound on actual cost.
– Amortized cost would tell us nothing.

November 29, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Accounting Method (Cont.)

November 29, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

Stack Operation
• Intuition

– When pushing an object, pay $2.
- $1 pays for the PUSH.
- $1 is prepayment for it being popped by either POP or

MULTIPOP.
- Since each object has $1, which is credit, the credit can never go

negative.
- Total amortized cost = O(n) is an upper bound on total actual

cost.

November 29, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Binary Counter
• Charge $2 to set a bit to 1.

– $1 pays for setting a bit to 1.
– $1 is prepayment for flipping it back to 0.
– We have $1 of credit for every 1 in the counter.
– Therefore, credit

0.

• Amortized cost of INCREMENT:
– Cost of resetting bits to 0 is paid by credit.
– At most 1 bit is set to 1.
– Therefore, amortized cost $2.
– For n operations, amortized cost = O(n).

The Potential MethodThe Potential Method

November 29, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Potential Method
• Like the accounting method, but think of the credit
as potential (位能、勢能) stored with the entire
data structure.
– Accounting method stores credit with specific objects.
– Potential method stores potential in the data structure as

a whole.
– We can release potential to pay for future operations.
– Most flexible of the amortized analysis methods.

November 29, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Potential Method (Cont.)

November 29, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Potential Method (Cont.)
• Total amortized cost:

November 29, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Stack Operation

The amortized cost of a sequence of n operations = O(n).

November 29, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Binary Counter
• 

= bi = # of 1’s after ith INCREMENT

• Suppose ith operation resets ti bits to 0.

• ci  ti + 1 (resets ti bits, sets 1 bit to 1)

If counter starts at 0, (D0) = 0.
Therefore, amortized cost of n
operations = O(n).

Dynamic TablesDynamic Tables

November 29, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Tables
• A nice use of amortized analysis.

• Scenario
– Have a table - maybe a hash table.
– Don’t know in advance how many objects will be stored

in it.
– When it fills, we must reallocate with a larger size,

copying all objects into the new, larger table.
– When it gets sufficiently small, might want to reallocate

with a smaller size.
– Details of table organization not important.

November 29, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Tables (Cont.)
• Goals

– O(1) amortized time per operation.
– Unused space always 

constant fraction of allocated

space.

• Load factor = num/size, where
– num = # items stored,
– size = allocated size.
– If size = 0, then num = 0. Call = 1.
– Never allow > 1
– Keep 

> a constant fraction  goal (2).

November 29, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Table Expansion
• Consider only insertion.

– When the table becomes full, double its size and reinsert
all existing items.

– Guarantees that 

.
– Each time we actually insert an item into the table, it’s an

elementary insertion.

November 29, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Table Expansion (Cont.)

November 29, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

Running Time – Aggregate Analysis
• Charge 1 per elementary insertion.

• Count only elementary insertions, since all other
costs together are constant per call.

• ci = actual cost of ith operation.
– If not full, ci = 1.
– If full, we have i-1 items in the table at the start of the ith

operation.
- We have to copy all i-1 existing items, then insert ith item  ci = i.

Not tight

November 29, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Running Time - Aggregate Analysis (Cont.)
• Actual cost of ith operation (ci):

• Total cost:

aggregate analysis
says amortized cost
per operation = 3.

November 29, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Accounting Method
• Charge $3 per insertion of x.

– $1 pays for x’s insertion.
– $1 pays for x to be moved in the future.
– $1 pays for some other item to be moved.

• Suppose we’ve just expanded, size = m before next
expansion, size = 2m after next expansion.

– Assume that the expansion used up all the credit, so that there’s no
credit stored after the expansion.

– It will expand again after another m insertions.
– Each insertion will put $1 on one of the m items that were in the

table just after expansion and will put $1 on the item inserted.
– It will have $2m of credit by next expansion, when there are 2m

items to move.
- Just enough to pay for the expansion, with no credit left over!

November 29, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Potential Method

November 29, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Potential Method (Cont.)
• Amortized Cost of i th Operation

November 29, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Potential Method (Cont.)

i

November 29, 2010 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Potential Method (Cont.)

November 29, 2010 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Table Expansion and Contraction
• When 

drops too low, contract the table.

– Allocate a new, smaller one.
– Copy all items.

• Still want
– 

bounded from below by a constant,

– Amortized cost per operation = O(1).

• Measure cost in terms of elementary insertions and
deletions.

November 29, 2010 34

Copyright © All Rights Reserved by Yuan-Hao Chang

Obvious Strategy
• Double size when inserting into a full table.

– When 

= 1, so that after insertion 

would become > 1.

• Halve size when deletion would make table less than half full
– When 

1/2, so that after deletion 

would become < ½.

• Then always have ½   1.
Not performing enough operations after
expansion or contraction to pay for the
next one.
The cost of each expansion and
contraction is (n) and there are Q(n)
operations. The total cost of the n
operations is (n2).

November 29, 2010 35

Copyright © All Rights Reserved by Yuan-Hao Chang

Simple Solution

November 29, 2010 36

Copyright © All Rights Reserved by Yuan-Hao Chang

Further Intuition

November 29, 2010 37

Copyright © All Rights Reserved by Yuan-Hao Chang

Amortized Costs: More Cases

November 29, 2010 38

Copyright © All Rights Reserved by Yuan-Hao Chang

Amortized Costs: More Cases (Cont.)

November 29, 2010 39

Copyright © All Rights Reserved by Yuan-Hao Chang

Amortized Costs: More Cases (Cont.)

November 29, 2010 40

Copyright © All Rights Reserved by Yuan-Hao Chang

Example

	投影片編號 1
	Amortized (分期償還) Analysis
	Outline
	投影片編號 4
	Stack Operation
	Stack Operation (Cont.)
	Binary Counter
	Binary Counter (Cont.)
	Binary Counter (Cont.)
	投影片編號 10
	Accounting Method
	Accounting Method (Cont.)
	Stack Operation
	Binary Counter
	投影片編號 15
	Potential Method
	Potential Method (Cont.)
	Potential Method (Cont.)
	Stack Operation
	Binary Counter
	投影片編號 21
	Dynamic Tables
	Dynamic Tables (Cont.)
	Table Expansion
	Table Expansion (Cont.)
	Running Time – Aggregate Analysis
	Running Time - Aggregate Analysis (Cont.)
	Accounting Method
	Potential Method
	Potential Method (Cont.)
	Potential Method (Cont.)
	Potential Method (Cont.)
	Table Expansion and Contraction
	Obvious Strategy
	Simple Solution
	Further Intuition
	Amortized Costs: More Cases
	Amortized Costs: More Cases (Cont.)
	Amortized Costs: More Cases (Cont.)
	Example

