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Polynomial Time vs. Superpolynomial Time

• Polynomial-time problem (tractable problems):
– On inputs of size n, the problems are solvable in O(nk) 

time for some constant k.
– Polynomial-time algorithms: on inputs of size n, their 

worst-case running time is O(nk) for some constant k.

• Superpolynomial-time problem (intractable 
problems):
– On inputs of size n, the problems are not solvable by 

polynomial-time algorithms.
– E.g., Halting problem:

- The halting problem is a decision problem of deciding, given a 
program and an input, whether the program will eventually halt 
when run with that input, or will run forever. 

http://en.wikipedia.org/wiki/Decision_problem
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Optimization Problems vs. Decision Problem

• Optimization problems
– Each feasible solution has an associated value, and we 

wish to find a feasible solution with the best value.
– E.g., SHORTEST-PATH

- Given an undirected graph G and vertices u and v, and we 
wish to find a path from u to v that uses the fewest edges.

- This is the single-pair shortest-path problem in an unweighted, 
undirected graph.

• Decision problems (yes-or-no (1-or-0) problems)
– A decision problem is a question with a yes-or-no answer, 

depending on the values of some input parameters. 
- For example, the problem "given two numbers x and y, does x evenly 

divide y?" is a decision problem. The answer can be either 'yes' or 'no', 
and depends upon the values of x and y. 

– E.g., PATH (decision version of SHORTEST-PATH)
- Given a directed graph G, vertices u and v, and an integer k, does a path 

exist from u to v consisting of at most k edges?
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P, NP, NP-Complete, and NP-Hard
• Class P (polynomial-time problems)

– The problems that are solvable in polynomial time.

• Class NP (Nondeterministic polynomial-time problems)
– The problems that are verifiable in polynomial time.
– NP is the set of problems for which the instances where the 

answer is "yes" have efficiently verifiable proofs of the fact that the 
answer is indeed "yes". 

– Given a certificate of a solution, then we could verify that the 
certificate is correct in time polynomial in the size of the input to the 
problem.

– E.g., 
- Given a directed graph G=(V,E), a certificate would be a sequence <v1 , 

v2 , v3 , … v|v| } of |V| vertices. We can check in polynomial time to see 
whether the sequence forms a Hamiltonian cycle.

- For 3-CNF satisfiability, a certification would be an assignment of values 
to variables.
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P, NP, NP-Complete, and NP-Hard (Cont.)
• Class NPC (NP-Complete problems)

– The problems that are not solvable in polynomial time (or intractable), 
but are verifiable in polynomial time.

– The hardest problems in class NP.

• Class NP-Hard
– The problems that are at least as hard as the hardest problems in 

NP (i.e., NPC).
– A problem H is NP-hard if and only if there is an NP-complete 

problem L that is polynomial time reducible to H.
- Problem H is at least as hard as L, because H can be used to solve L.
- Since L is NP-complete, and hence the hardest in class NP, also problem 

H is at least as hard as NP, but H does not have to be in NP and 
hence does not have to be a decision problem (even if it is a decision 
problem, it need not be in NP) .

http://en.wikipedia.org/wiki/If_and_only_if
http://en.wikipedia.org/wiki/NP-complete
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P, NP, NP-Complete, and NP-Hard (Cont.)

Verifiable in 
polynomial 

time

Euler diagram

1. Solvable in 
polynomial time
2. Verifiable in 
polynomial time.

1. At least as 
hard as NPC.

1. Not solvable in 
polynomial time.
2. Verifiable in 
polynomial time
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NP-Complete Problems
• NP-Complete problems are also call NPC problems.
• No polynomial-time algorithm has yet been discovered for an NP- 

complete problem, except P = NP. 
– If any single NP-complete problem can be solved in polynomial time, then 

every NP-complete problem has a polynomial time algorithm.
– To become a good algorithm designer, you must understand the rudiments 

(基本原理) of the theory of NP-completeness. 
• Whether P = NP or P ≠ NP is an open question.

– P ≠ NP question has been one of the deepest, most perplexing(令人費解的) 
open research problems in theoretical computer science since it was first 
posed in 1971.

• Although NP-complete problems are confined to the realm of decision 
problems, we can take advantage of a convenient relationship between 
optimization problems and decision problems.

– The decision problem is in a sense “easier”, or at least “no harder” than its 
corresponding optimization problem.

– If we can provide evidence that a decision problem is hard, we also 
provide evidence that its related optimization problem is hard as well. 
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Polynomial-Time vs. NPC Problems
• Shortest vs. longest simple paths:

– With negative edge weights, we can find shortest paths form a singe source 
in a directed graph G=(V,E) in O(VE) time. (Polynomial-time problem)

– Finding a longest simple path between two vertices is difficult. Merely 
determining whether a graph contains a simple path with at least a given 
number of edges is NP-complete.

• Euler tour vs. hamiltonian cycle:
– An Euler tour of a connected, directed graph G=(V,E) is a cycle that 

traverses each edge of G excatly once, although it is allowed to visit each 
vertex more than once. (Solvable in O(E) time: Polynomial-time problem)

– A hamiltonian cycle of a directed graph G=(V,E) is a simple cycle that 
contains each vertex in V: Determining whether a directed graph has a 
hamiltonian cycle is NP-complete.

- Note: Travelling Salesman Problem (TSP) is an NP-hard problem. Given a list of 
cities and their pairwise distances, the task is to find a shortest possible tour that 
visits each city exactly once. The Hamiltonian cycle problem is a special case of 
the traveling salesman problem, obtained by setting the distance between two 
cities to a finite constant if they are adjacent and infinity otherwise. 

http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/Traveling_salesman_problem
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Polynomial-Time vs. NPC Problems (Cont.)
• 2-CNF satisfiability vs. 3-CNF satisfiability:

– A boolean formula contains variables whose values are 0 or 1.
- Boolean connectives such as 

 
(AND), 

 
(OR), 

 
(NOT), and 

parentheses.
- A boolean formula is satisfiable if there exists some assignment of the 

values 0 and 1 to its variables that causes it to evaluate to 1.
- K-conjunctive normal form (k-CNF):

· If it is the AND of clauses of Ors of exactly k variables or their negations.
· For example: (x1  x2) 

 

(x1 

 

x3) 

 

(x2  x3) is in 2-CNF. 
It has the satisfying assignment x1=1, x2=0, x3=1.

- We can determine in polynomial time to see whether a 2-CNF formula is 
satisfiable. (Polynomial-time problem)

- Determining whether a 3-CNF formula is satisfiable is NP-complete.
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Reductions
• Suppose that there is a different decision problem, 
say B, that we already know how to solve in 
polynomial time.

• Suppose that we have a procedure that transforms 
any instance 

 
of A into some instance 

 
of B with 

the following characteristics:
– 1. The transformation takes polynomial time. 
– 2. The answer are the same. 

That is, the  answer for 
 

is “yes” if and only if the 
answer for 

 
is also “yes.”
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Reductions (Cont.)
• We can call such a procedure a polynomial-time reduction 

algorithm and, it provides us a way to solve problem A in 
polynomial time:

1. Given an instance 
 

of problem A, use a polynomial-time reduction 
algorithm to transform it to an instance 

 
of problem B.

2. Run the polynomial-time decision algorithm for B on the instance .
3. Use the answer for 

 
as the answer for .

Polynomial-time 
reduction algorithm

Polynomial-time algorithm to decide A

Polynomial-time
Algorithm to decide B

Instance 
of A

Instance 
yes yes

no no

Harder 
problem

Easier 
problem

of B
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Reductions (Cont.)
• NP-completeness is about showing how hard a problem is 

rather than how easy it is.
• We use polynomial-reductions in the opposite way to show 

that no polynomial-time algorithm can exist for a particular 
problem B.:

– Suppose we have a decision problem A for which we already know 
that no polynomial-time algorithm can exist.

– Suppose further that we have a polynomial-time reduction 
transforming instances of A to instances of B.

• A first NP-complete problem
– Because the technique of reduction relies on having a problem 

already known to be NP-complete in order to prove a different 
problem NP-complete, we need a “first” NPC  problem.
- E.g., Circuit-satisfiability problem.



Polynomial TimePolynomial Time
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Polynomial Time

• Polynomial time solvable problem are regarded as tractable.
– Even if the current best algorithm for a problem has a running time 

of (n100), it is likely that an algorithm with a much better running 
time will soon be discovered.

– For many reasonable models of computation, a problem can be 
solved in one model can be solved in polynomial in another. 
- E.g., the problems solvable in polynomial time by the serial random- 

access machine are solvable in polynomial time on abstract Turing 
machines.

– Polynomial-time solvable problems has a nice closure property.
- Polynomials are closed under addition, multiplication, and composition.
- E.g., If an algorithm takes a constant number of calls to polynomial-time 

subroutines and performs an additional amount of work that also takes 
polynomial time, then the running time of the composite algorithm is 
polynomial.

Note: A Turing machine takes a tape with a string of symbols on it as an 
input, and can respond to a given symbol by changing its internal state, 
writing a new symbol on the tape, shifting the tape right or left to the next 
symbol, or halting. The inner state of the Turing machine is described by 
a finite state machine. It has been shown that if the answer to a 
computational problem can be computed in a finite amount of time, then 
there exists an abstract Turing machine that can compute it. 
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Abstract Problems
• An abstract problem Q is a binary relation on a set I of problem 

instances and a set S of problem solutions. 
– E.g., An instance for SHORTEST-PATH is a triple consisting of a graph and 

two vertices.
- A solution is a sequence of vertices in the graph, with perhaps the empty 

sequence denoting that no path exists.
- The problem SHORTEST-PATH itself is the relation that associates each instance 

of a graph and two vertices with a shortest path in the graph that connects the two 
vertices.

• The theory of NP-completeness restricts attention to decision problems: 
those having a yes/no solution.

– We can view an abstract decision problem as a function that maps the 
instance set I to the solution set {0, 1}.

– E.g., A decision problem related to SHORTEST-PATH is the problem PATH:
- If I = <G, u, v, k> is an instance of the decision problem PATH, then PATH(i)=1 if a 

shortest path from u to v has at most k edges. Otherwise, PATH(i)=0.

• Optimization problems can be re-casted as a decision problem that is 
no harder.
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Encodings
• In order for a computer program to solve an abstract 

problem, we must represent problem instances in a way 
that the problem understands.

• An encoding of a set S of abstract objects is a mapping e 
from S to the set of binary strings.

– E.g., 
- {0,1,2,3,…}={0,1,10,11,…}
- Using this encoding, e(17) = 10001.

– E.g., 
- ASCII code: the encoding of A is 10000001.

• We can encode a compound object as a binary string by 
combining the representations of its constituent parts.

- E.g., Polygons, graphs, functions, ordered pairs, and programs.
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Concrete Problems
• A computer algorithm that solves some abstract decision 

problem actually takes an encoding of a problem instance 
as input.

• We call a problem whose instance sets is the set of binary 
strings a concrete problem. 

– We say that an algorithm solves a concrete problem in time O(T(n)) 
if, when it is provided a problem instance i if length n=|i|, the 
algorithm can produce the solution in at most  time O(T(n)). 

• A concrete problem is polynomial-time solvable if there 
exists an algorithm to solve it in time O(nk)  for some 
constant k.

• The complexity class P is the set of concrete decision 
problems that are solvable in polynomial time. 
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Abstract Problems vs. Concrete Problems.
• Using encoding as the bridge between abstract problems 

and concrete problems.
• We can use encodings to map abstract problems to 

concrete problems.
– Given an abstract decision problem Q:

- Input: i 
 

instance set I
- Output: Q(i) 

 
{0, 1}

– An encoding to encode i to e(i), where e: I{0, 1}*     (binary string)
– The related concrete decision problem e(Q):

- Input: e(i)  {0, 1}*

- Output: Q(i) 
 

{0, 1}

• The concrete problem produces the same solutions as the 
abstract problem on binary-string instances that represent 
the encodings of abstract-problem instances.

– For convenience, we assume that any non-meaningful abstract- 
problem instance maps arbitrarily to 0.
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Unary vs. Binary Encodings
• The efficiency of solving a problem should not depend on 

how the problem is encoded.

• However, it depends heavily on the encoding.
– For example:

- An integer k is to be provided as the sole input to an algorithm, and the 
running time of the algorithm is (k).

- n is the input length (i.e., the input size).
Polynomial 

time

Exponential time 
(Superpolynomial 

time)
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Unary vs. Binary Encodings (Cont.)
• For NP-complete problems:

– If the input is encoded in unary, then there exists a polynomial-time 
algorithm for it. We say that the problem is NP-complete in the 
ordinary sense. The algorithm is said to be pseudo-polynomial. 

– If a problem remains even NP-complete when the input is encoded 
in unary, then we say that the problem is NP-complete in the strong 
sense.

• In practice, if we rule out “expensive” encodings such as 
unary ones, the actual encoding of a problem makes little 
difference to whether the problem can be solved in 
polynomial time.

– E.g., Representing integers in base 3 instead of binary has no effect 
on whether a problem is solvable in polynomial time, because we 
can convert an integer represented in base 3 to base 2 in polynomial 
time.
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Polynomial-Time Computable
• A function f : {0, 1}*  {0, 1}* is polynomial-time 
computable if there exists a polynomial time 
algorithm A that, given any x{0, 1}*, produces as 
output f(x).
– For any set I of problem instances, we say that two 

encodings e1 and e2 are polynomial related if there 
exist two polynomial-time computable functions f12 and 
f21 such that for any iI, we have f12 (e1 (i))=e2 (i) and 
f21 (e2 (i))=e1 (i) .

– That is, a polynomial-time algorithm can compute the 
encodings e2 (i) from the encoding e1 (i), and vice versa.
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Polynomial-Time Computable (Cont.)
• Lemma 34.1

– Let Q be an abstract decision problem on an instance set I, let e1
and e2 be polynomially related encodings on I. Then, e1 (Q)P if and 
only if e2 (Q)P.

• Proof
– Suppose that e1 (Q) can be solved in O(nk) for some constant k.
– Suppose that for any problem instance i, the encoding e1 (i) can be 

computed from the encoding e2 (i) in time O(nc) for some constant c, 
where n = |e2 (i)|. 

– To solve problem e2 (Q), on input e2 (i), 
- |e1 (i)| = O(nc) since the output of a serial computer cannot be longer than 

its running time.
- Solving the problem on e1 (i) takes time O(|e1 (i)|k) = O(nck) that is 

polynomial since both c and k are constants.
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Polynomial-Time Computable (Cont.)
• The encoding of a finite set is polynomially related to its encoding as a 

list of its elements, enclosed in braces and separated by commas. 
(ASCII is one such encoding scheme)

– With such a “standard” encoding in hand, we can derive reasonable 
encodings of other mathematical objects (such as tuples, graphs, and 
formulas)

– <G> denotes the standard encoding a graph G. 

• We shall assume that the encoding of an integer is polynomially related 
to its binary representation.

• We shall assume that all problem instances are binary strings encoded 
using the standard encoding. 

• We shall typically neglect the distinction between abstract and concrete 
problems. (because the actual encoding of a problem makes little 
difference to whether the problem can be solved (in polynomial time)).
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Formal-Language Framework
• An alphabet 

 
is a finite set of symbols.

• A language L over 
 

is any set of strings made up 
of symbols from .
– E.g., if 

 
= {0, 1}, the set L = {10, 11, 101, 111, 1011, 

1101, 10001, …} Is the language of binary 
representation of prime numbers.

• The empty string is . 
• The empty language is .
• The language of all strings over 

 
is *.

– E.g., 
 

= {0, 1}, then * = {, 0, 1, 00, 01, 10, 11, 000, …}



December 27, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Formal-Language Framework 
- Set-Theoretic Operations
• Union: L1 

 
L2

• Intersection: L1 
 

L2

• Complement (of L): L = * - L

• Concatenation: L = {x1 x2 : x1 L1 and x2 L2 } 

• Closure (or Kleene star): L* = {} 
 

L1 
 

L2 
 

L3 


 

…
– Lk is the language obtained by concatenating L to itself k 

times.
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Formal-Language Framework 
- Language Theory
• The set of instances for any decision problem Q is simply 

the set *, where 
 

= {0, 1}.

• Since Q is entirely characterized by those problem 
instances that produce a 1(yes) answer, we can view Q as 
a language L over  = {0, 1}, where L = {x * : Q(x) = 1}.

• For example:
– The decision problem PATH:

- PATH = { <G, u, v, k> : G = (V, E) is an undirected graph, 
u, v  V, 
k  0 is an integer, and 
there exists a path from u to v in G 
consisting of at most k edges. }



December 27, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Formal-Language Framework 
Accept vs. Decide
• The formal-language framework allows us to express concisely the relation between 

decision problems and algorithms that solve them.
– Algorithm A accepts a string x{0, 1}* if, given input x, the algorithm’s output A(x)=1.
– The language accepted by an algorithm A is  the set of strings L={x{0, 1}* : A(x)=1}.

- That is, the set of strings that the algorithm accepts.
– Algorithm A rejects a string x if A(x)=0.

- Even if language L is accepted by an algorithm A, the algorithm will not necessarily reject a string x 
L. 

- A language L is decided by an algorithm A if every binary string in L is accepted by A and every 
binary string not in L is rejected by A.

• A language L is accepted in polynomial time by an algorithm A if 
– It is accepted by A and 
– If there exists a constant k such that for any length-n string xL, algorithm A accepts x in 

time O(nk).
• A language L is decided in polynomial time by an algorithm A if there exists a 

constant k such that for any length-n string x{0, 1}*, the algorithm correctly decides 
whether xL in time O(nk).

• Note:
– To accept a language, an algorithm must produce an answer when provided a string in L.
– To decide a language, an algorithm must correctly accept or reject every string in {0, 1}*.
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Formal-Language Framework 
Accept vs. Decide (Cont.)
• The language PATH

– If G encodes an undirected graph and the path found from u to v has 
at most k edges, then the algorithm outputs 1 and halts.
- This algorithm does not decide PATH, since it does not explicitly output 0 

for instances in which a shortest path has more than k edges.
- If this algorithm could output 0 and halts when there is not a path from u 

to v with at most k edges, then the algorithm decides PATH.

• Turing’s halting problem
– This is the problem of deciding, given a program and an input, 

whether the program will eventually halt when run with that input, or 
will run forever. 

– There exists an accepting algorithm, but no decision algorithm exists.
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Complexity Class P
• A complexity class is a set of languages of an 
algorithm that determines whether a given string x 
belongs to language L.

• The membership in a set of languages is 
determined by a complexity measure, such as 
running time.

• Definition of the complexity class P:
– P = { L 

 
{0, 1}* : there exists an algorithm A that 

decides L in polynomial time }.
– In fact, P is also the class of languages that can be 

accepted in polynomial time. 
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Complexity Class P (Cont.)
• Theorem 34.2

– P = { L : L is accepted by a polynomial-time algorithm }.

• Proof
– We need only show that if L is accepted by a 

polynomial-time algorithm, it is decided by a polynomial- 
time algorithm. 
- Let L be the language accepted by some polynomial-time 

algorithm A. We construct A’ that decides L.
- Because A accepts L in time O(nk) steps for some constant k, 

there also exists a constant c such that A accepts L in at most cnk 

steps.
- For any input string x, the algorithm A’ simulates cnk steps of A. 

After simulating cnk steps, 
· A’ accepts x if A has accepted x.
· A’ rejects x if A has not accepted x.



Polynomial-Time 
Verification 

Polynomial-Time 
Verification
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Hamiltonian Cycles
• A hamiltonian cycle of an undirected graph G=(V, E) is a simple cycle that 

contains each vertex in V.

• A graph that contains a hamiltonian cycle is said to be hamiltonian; otherwise, 
it is nonhamiltonian.

• W. R. Hamilton described a mathematical game on the dodecahedron (十二面

 體), in which one player sticks five pins in any five consecutive vertices and the 
other play must complete the path to form a cycle containing all the vertices. 

 The dodecahedron is hamiltonian.
• A bipartite graph with an odd number of vertices is nonhamiltonian.

A bipartite graph (or bigraph) 
is a graph whose vertices can 
be divided into two disjoint sets 
U and V such that every edge 
connects a vertex in U to one 
in V; that is, U and V are 
independent sets. 
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Hamiltonian Cycles (Cont.)
• Hamiltonian-cycle problem:

– HAM-CYCLE = { <G> : G is a hamiltonian graph }

• How might an algorithm decide the language HAM- 
CYCLE?
– Given a problem instance <G>, one possible decision 

algorithm lists all permutations of the vertices of G and 
then checks each permutation to see if it is a hamiltonian 
path.
- Input size n = |< G>| is the length of the encoding of G.
- The number of vertices m = (n1/2) or m 

 
n1/2. 

- Thus, the running time is (m!) = ((n1/2)!) = (2n1/2) that is not 
O(nk) for any constant k.

– In fact, the hamiltonian-cycle problem is NP-complete.

mnm2
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Verification Algorithms
• Suppose that someone tells you that a given graph G is 

hamiltonian, and then offers to prove it by giving you the 
vertices in order along the hamiltonian cycle.

– You should certainly implement an O(n2)-time verification algorithm 
to check whether the given vertices form a hamiltonian cycle.

• A verification algorithm is a two-argument algorithm A.
– One argument is an ordinary input string x.
– The other is a binary string y called certificate.

• A two-argument algorithm A verifies an input string x if 
there exists a certificate y such that A(x, y) = 1. 

– The language verified by a verification algorithm A is 
L = { x 

 
{0, 1}* : there exists y 

 
{0, 1}* such that A(x, y) = 1 }.
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Verification Algorithms (Cont.)
• Intuitively, an algorithm A verifies a language L,

– If for any string x  L, there exists a certificate y that A 
can use to prove that x  L.

– If any string x  L, there must be no certificate proving 
that x  L.

• For example
– In the hamiltonian-cycle problem, the certificate is the list 

of vertices in some hamiltonian cycle.
- If a graph is hamiltonian, the hamiltonian cycle itself offers enough 

information to verify this fact.
- If a graph is not hamiltonian, there is no list of vertices that fools 

the verification algorithm into believing that the graph is 
hamiltonian.
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Complexity Class NP
• The complexity class NP is the class of languages that 

can be verified by a polynomial-time algorithm.
– That is, a language L belongs to NP if and only if there exist a two- 

input polynomial-time algorithm A and a constant c such that 
L = { x 

 
{0, 1}* : there exists a certificate y with |y| = O(|x|c) such that A(x, y) 

= 1 }.
– We say that A verifies language L in polynomial time.

• For example:
– HAM-CYCLE 

 
NP.

– If L 
 

P, then L 
 

NP.
- Because if there is a polynomial-time algorithm decide L, the algorithm can be 

easily converted to a two-argument verification algorithm that simply ignores any 
certificate and accepts exactly those input strings it determines to be in L. Thus, P 


 

NP.
– It is unknown whether P = NP, but most researchers believe that P ≠ NP.

|x| is the input 
size
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Co-NP
• Does L 

 
NP imply L 

 
NP?

– No one knows whether the class NP is closed under complement.

• The complexity class co-NP is the set of languages L such that L 
 NP.

• Since P is closed under complement, so that P
 

NP 
 

co-NP.

P=NP=co-NP

co-NPNP P

P NP co NP  

P

NP=co-NP

co-NPNP P

P NP co NP  

If NP is closed 
under 

complement

If NP is closed 
under 

complement

If NP is not 
closed under 
complement



NP-Completeness and 
Reducibility 

NP-Completeness and 
Reducibility
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Reducibility
• If any NP-complete problem can be solved in 
polynomial time, then every problem in NP has a 
polynomial-time solution.

• A problem Q can be reduced to another problem 
Q’ if any instance of Q can be “easily rephrased” 
as an instance of Q’, then solution to which 
provides a solution to the instance of Q.
– E.g., Given an instance ax + b = 0, we can transform it to 

0x2 + ax + b = 0.
– Thus, if a problem Q reduces to another problem Q’, 

then Q is “no harder to solve” than Q’.
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Reducibility (Cont.)
• A language L1 is polynomial-time reducible to a language 

L2 , written L1 P L2 , if there exists a polynomial-time 
computable function f : {0, 1}*  {0, 1}* such that for all x 

 {0, 1}*, x 
 

L1 iff f(x) 
 

L2 .
– f : the reduction function.
– F : a reduction algorithm that computes f in polynomial time.

Providing an answer to 
whether f(x)L2 directly 
provides the answer to 
whether x L1 .

If xL1 then f(x)L2 .
If xL1 then f(x) L2 .
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Polynomial-Time Reducible
• Lemma 34.3

– If L1, L2 
 

{0, 1}* are languages such that L1 P L2 , then L2 
 

P implies 
L1 

 
P.

• Proof
– Let A2 be a polynomial-time algorithm that decides L2 .
– Let F be a polynomial-time reduction algorithm that computes the 

reduction function f.
– Thus, we can construct a polynomial-time algorithm A1 that decides L1 .
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NP-Completeness
• Polynomial-time reduction provides a formal means 
for showing that one problem is at least as hard as 
another.

• A language L 
 

{0, 1}* is NP-complete (NPC) if 
– 1. L 

 
NP, (L 屬於NP) and 

– 2. L’ P L for every L’ 
 

NP. (所有NP的問題L’都可reduce到L)

• If a language L satisfies property 2, but not 
necessarily property 1, then L is NP-hard. 



December 27, 2010 45

Copyright © All Rights Reserved by Yuan-Hao Chang

NP-Completeness (Cont.)
• Theorem 34.4

– If any NP-complete problem is polynomial-time solvable, then P = 
NP. Equivalently, if any (one) problem in NP is not polynomial-time 
solvable, then no NP-complete problem is polynomial-time solvable.

• Proof
– Suppose that LP and LNPC. 
– For any L’NP, we have L’ P L because LNPC.
– By Lemma 34.3, L’P, which proves the first statement of this 

theorem. (Because L’ P L and LP) 

P

NPC

NP



December 27, 2010 46

Copyright © All Rights Reserved by Yuan-Hao Chang

Circuit Satisfiability
• The first NPC problem
• Term definition

– Boolean combinational circuits are built from boolean 
combinational elements that are interconnected by wires.

– A boolean combinational element is any circuit element that has a 
constant number of boolean inputs and outputs and that performs a 
well-defined function.

– Boolean values are drawn from the set {0, 1}.
– The three basic logic gates are

NOT AND OR

Truth 
table
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Circuit Satisfiability (Cont.)
• A boolean combinational circuit consists of one or more boolean 

combinational elements interconnected by wires.

• A wire can connect the output of one element to the input of another.

• The number of element inputs fed by a wire is called the fan-out of the wire.

• A truth assignment is a set of boolean input value.

• A circuit is satisfiable if it has a satisfying assignment that makes the 
circuit output 1.

<x1 =1, x2 =1, x3 =0>
Satisfiable circuit

Unsatisfiable circuit
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Computer Hardware
• A computer program is stored in the computer memory as a sequence 

of instruction.
• A typical instruction encodes

– An operation to be performed,
– Addresses of operands in memory, and 
– An address where the result is to be stored.

• A special memory location (called the program counter) keeps track of 
which instruction is to be executed next.

– The program counter automatically increments upon fetching each 
instruction, causing the computer to execute instructions sequentially.

– The execution of some instructions can cause a value to be written to the 
program counter, so as to allow loop or conditional braches.

• Any particular state of computer memory is called a configuration.
– We can view the execution of an instruction as mapping one configuration 

to another.
– The hardware that accomplishes this mapping can be implemented as a 

boolean combinational circuit (denoted as M).
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Circuit Satisfiability Problem
• Problem definition:

– Given a boolean combinational circuit composed of AND, OR, and NOT 
gates, is it satisfiable?

• The size of a boolean combinational circuit is the number of boolean 
combinational elements plus the number of wires in the circuit.

– We can encode any given circuit C into a binary string <C> whose length 
is polynomial in the size of the circuit.

– When the size of C is polynomial in the k inputs, checking each one takes 
(2k).

• As formal language, we can define:
CIRCUIT-SAT = { <C> : C is a satisfiable boolean combinational circuit. }

In the computer-aided hardware optimization, if a subcircuit always 
produces 0, that subcircuit is unnecessary.
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Circuit Satisfiability Problem (Cont.)
• To prove the circuit satisfiability problem C an NPC problem, we should 

prove the following two things:
– 1. CNP
– 2. C is at least as hard as any language in NP ( or C is  NP-hard)

• Lemma 34.5
– The circuit-saisfiability problem belongs to the class NP.

• Proof
– We shall provide a two-input, polynomial-time algorithm A

- One input is a boolean combinational circuit C.
- The other input is a certificate corresponding to an assignment of boolean values 

to the wires in C.
– For each logic gate in the circuit, the algorithm A checks that the value 

provided by the certificate on the output wire is correctly computed.
– Then, if the output of the entire circuit is 1, the algorithm A outputs 1. 

Otherwise, A outputs 0.



December 27, 2010 51

Copyright © All Rights Reserved by Yuan-Hao Chang

Circuit Satisfiability Problem (Cont.)
• Lemma 34.6

– The circuit satisfiability problem is NP-hard

• Proof
– Let L be any language in NP.
– We shall describe a polynomial-time algorithm F computing a 

reduction function f that maps every binary string x to a circuit C = 
f(x) such that xL iff CCIRCUIT-SAT.

– The algorithm F uses the two-input polynomial-time algorithm A 
(‘cause LNP) to compute the reduction function f.
- Let T(n) denote the worst-case running time of A on length-n input strings.
- Let k1 be a constant such that T(n) = O(nk) and the length of the 

certificate is O(nk) 
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Circuit Satisfiability Problem (Cont.)
• Proof (Cont.)

– Represent the computation of A 
as a sequence of configurations.

– We can break down each 
configuration into parts 
consisting of the program for A. 

– The combinational circuit M that 
implements the computer maps 
each configuration ci to the next 
configuration ci+1 , from c0 .

– If A runs for at most T(n) steps, 
the output appears as one of the 
bits in cT(n) .

A working storagexAux Machine StateProgram Counter y

M

A working storagexAux Machine StateProgram Counter y

M

A working storagexAux Machine StateProgram Counter y

A working storagexAux Machine StateProgram Counter y

Input bits

0/1 output

C0

C2

C1

CT(n)
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Circuit Satisfiability Problem (Cont.)
• Proof (Cont.)

– The reduction algorithm F constructs a single combinational circuit 
that computes all configurations produced by a given initial 
configuration.
- Paste the circuit M for T(n) copies.
- The output if the ith circuit (ci ) feeds directly into the input of the (i+1)st 

circuit.
- Thus, the configurations reside as values on the wires connecting copies 

of M.
– Mission of the reduction algorithm F

- Given an input x, it must compute a circuit C=f(x) that is satisfiable iff 
there exists a certificate y such that A(x, y) = 1.

- When F obtains an input x, it computes n = |x| and constructs a 
combinational circuit C’ consisting of T(n) copies of M.

- The input to C’ is an initial configuration corresponding to a computation 
on A(x, y), and the output is the configuration cT(n) .
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Circuit Satisfiability Problem (Cont.)
– Mission of the reduction algorithm F (Cont.)

- Algorithm F modifies C’ to construct C = f(x).
· First, it wires the inputs and certificate y to C’.
· Second, it ignore all outputs from C’, except the output bit of cT(n) .

- This circuit C compute C(y) = A(x, y) for any input y of length 
O(nk).

- We need to provide two properties:
· First, F correctly computes a reduction function f. 
i.e., C is satisfiable iff there exists a certificate y such that A(x, y)=1.

» Suppose there exists a certificate y such that A(x, y)=1. Because 
C(y) = A(x, y), C(y) = 1  C is satisfiable (reverse direction).

» Suppose C is satisfiable such that C(y)=1. Because A(x, y) = C(y), 
A(x, y) = 1 (forward direction)



December 27, 2010 55

Copyright © All Rights Reserved by Yuan-Hao Chang

Circuit Satisfiability Problem (Cont.)
· Second, F runs in polynomial time.
· The number of bits to represent a configuration is polynomial in n = |x|.

» The program for A itself has constant size.
» The length of the input x is n.
» The length of the certificate y is O(nk). (by algorithm A’s definition)
» The amount of working storage required by A is polynomial in n 

because the algorithm runs for at most O(nk).
» The combinational circuit M has size polynomial in the length of a 

configuration (O(nk)).  M usually implements the logic of the 
memory system.

» The circuit C consists of at most t = O(nk) copies of M. Hence it has 
size polynomial in n.

·  Therefore, F can construct C in polynomial time.

• Therefore, CIRCUIT-SAT is at least as hard as any language in NP, and 
since it is in NP, it is NP-Complete.



NP-Completeness ProofsNP-Completeness Proofs
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NP-Complete Basis
• Lemma 34.8

– If L is a language such that L’ P L for some L’NPC, 
then L is NP-hard. If, in addition, LNP, then LNPC.

• Proof
– Since L’ is NP-complete, for all L’’NP, we have L’’P L’.
– By supposition, L’ P L, and thus by transitivity, we have 

L’’ P L, which shows that L is NP-hard.
– If LNP, we also have LNPC.



December 27, 2010 58

Copyright © All Rights Reserved by Yuan-Hao Chang

NP-Complete Proof Method
• By reducing a known NP-complete language L’ to L, we 

implicitly reduce every language in NP to L. Thus, the 
proving steps:

– 1. Prove LNP.
– 2. Prove L is NP-hard.

- 1. Select a known NP-complete language L’.
- 2. Describe an algorithm that computes a function f mapping every 

instance x 
 

{0, 1}*.
- 3. Prove that the function f satisfies x 

 
L’ iff f(x) 

 
L for all x 

 
{0, 1}*. 

- 4. Prove that the algorithm computing f runs in polynomial time.

• Proving CIRCUIT-SATNPC has given us a “foot in 
the door.”
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Formula Satisfiability Problem
• Formula satisfiability problem (SAT):

– An instance of SAT is a boolean formula  composed of 
- 1. n boolean variables: x1 , x2 , …, xn ;
- 2. m boolean connectives: any boolean function with one or two inputs 

and one output, such as
 

(AND), (OR), and (NOT), (implication), 
↔(if and only if); and

- 3. parentheses. (Without loss of generality, we assume that there are no 
redundant parentheses.) 

– We can easily encode a boolean formula in a length that is 
polynomial in n+m.

• Satisfiable formula
– A truth assignment for a boolean formula  is a set of values for the 

variables of . 
– A satisfying assignment is a truth assignment that causes it to 

evaluate to 1.
– A formula with a satisfying assignment is a satisfiable formula.
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Formula Satisfiability Problem (Cont.)
• The satisfiability problem asks whether a given boolean 

formula is satisfiable:

• For example:

SAT = {<> : is a satisfiable boolean formula}

A formula with n variables has 2n 

possible assignments. If the length of 
<> is polynomial in n, then checking 
every assignment requires (2n) time.



December 27, 2010 61

Copyright © All Rights Reserved by Yuan-Hao Chang

Formula Satisfiability Problem (Cont.)
• Theorem 34.9

– Satisfiability of boolean formulas is NP-complete.

• Proof
– 1. Start by proving that SATNP.  (Verify in 

polynomial time)
- Show that a certificate consisting of a satisfying assignment for an 

input formula  can be verified in polynomial time.
· The verifying algorithm replaces each variable in the formula with its 
corresponding value and then evaluates the expression.

· This task is easy to do in polynomial time.

– 2. Then prove SAT is NP-hard. (CIRCUIT-SAT P SAT)
- For each wire xi in the circuit C, the formula  have a variable xi .
- Then, express each gate as a small formula involving the 

variables of its incident wires.
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Formula Satisfiability Problem (Cont.)
– 2. Then prove SAT is NP-hard. (Cont.)

- The formula  produced by the reduction algorithm is the AND of the 
circuit-output variable with the conjunction of clauses describing the 
operation of each gate.

- Given a circuit C, it is straightforward to produce such a formula  in 
polynomial time.

- When we assign wire values to variables in , each clause of  evaluates 
to 1, and thus the conjunction of all evaluates to 1.

- Conversely, if some assignment causes  to evaluate to 1, the circuit C is 
satisfiable by an analogous argument.

A clauseCircuit C
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Conjunctive Normal Form (CNF)
• The reduction algorithm must handle any input formula, and 

3-CNF-SAT is one convenient language to simply the NPC 
proofs.

• 3-CNF-SAT
– A literal in a boolean formula is an occurrence of a variable or its 

negation.
– A boolean formula is in conjunctive normal form, or CNF, if it is 

expressed as an AND of clauses.
– Each clause is the OR of one or more literals.
– A boolean formula is in 3-CNF, if each clause has exactly three 

distinct literals.

– E.g., 
Clause Literal
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3-CNF Satisfiability (3-CNF-SAT)
• Theorem 34.10

– Satisfiability of boolean formulas in 3- 
CNF is NP-complete.

• Proof
– 1. 3-CNF-SATNP.  (Verify in 

polynomial time)
- The verifying algorithm (in polynomial time) 

replaces each variable in the formula with 
its corresponding value and then evaluates 
the expression.

– 2. SAT P 3-CNF-SAT (Separated into 3 
steps)
- Step 1: Construct a binary “parse” tree

· Construct a binary “parse” tree for the input 
formula  with literals as leaves and 
connectives as internal nodes.

· The input formula is fully parenthesized. Parse tree
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3-CNF Satisfiability (3-CNF-SAT) (Cont.)
- Step 1: Construct a binary “parse” tree (Cont.)

· Introduce a variable yi for the output of each internal node.
· Thus, obtain a formula ’, each clause of which has at most 3 literals, 
but fail to meet that each clause has exactly 3literals.
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3-CNF Satisfiability (3-CNF-SAT) (Cont.)
- Step 2: Convert each clause of ’ into CNF.

· Construct a truth table for each clause to evaluate all possible 
assignments to its variables.

· Build a disjunctive normal form (DNF) – an OR of ANDs, and then 
use DeMorgan’s laws for propositional logic.

DeMorgan’s law: 
Break the line and change the sign

Truth table
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3-CNF Satisfiability (3-CNF-SAT) (Cont.)
- Step 3: Transform each clause of ’ into exactly 3 literals. 

We construct the final 3-CNF formula ’’’

- The reduction can be computed in polynomial time.
· Constructing ’ from  introduces at most 1 variable and 1 clause per 
connective in . (one yi variable and its corresponding clause)

· Constructing ’’ from ’ introduces at most 8 clauses into ’’ for each 
clause from ’ . (according to the truth table)

· Constructing ’’’ from ’’ introduces at most 4 clauses into ’’’ for each 
clause from ’’. (according to the number of literals in the clause)



NP-Complete ProblemsNP-Complete Problems
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The Structure of NPC Proofs
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The Clique Problem
• A clique is a complete subgraph of G.

– In other words, a clique in an undirected graph G = (V, E) is a subset V’ 
 V of vertices, each pair of which is connected by an edge in E.

• The size of a clique is the number of vertices it contains. 

• The clique problem is the optimization problem of finding a clique of 
maximum size in a graph.

• As a decision problem, we ask simply whether a clique of a given size k 
exists in the graph:
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The Clique Problem (Cont.)
• Theorem 34.11

– The clique problem is NP-complete.

• Proof
– 1. CLIQUENP.  (Verify in polynomial time)

- For a given graph G = (V, E), we use the set V’ 
 

V of vertices in the 
clique as a certificate for G. We can check whether V’ is a clique in 
polynomial time by checking whether, for each pair u, v V’, the edge (u, 
v) belongs to E.

– 2. 3-CNF-SATP CLIQUE (Prove CLIQUE is NP-hard)
- Let  = C1 

 
C2 

 
… 

 
Ck be a boolean formula in 3-CNF with k clauses.

- For r = 1, 2, …, k, each clause Cr has exactly three distinct literals l1r, l2r , 
l3r.

- We shall construct a graph G such that  is satisfiable iff G has a clique 
of size k.
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The Clique Problem (Cont.)
– 2. 3-CNF-SATP CLIQUE (Cont.)

- For each clause Cr = (l1r 
 

l2r 
 

l3r) in , we place a triple of vertices 
v1

r , v2
r, and v3

r into V.
- We put an edge between two vertices vi

r and vj
s if both of the 

following holds (Reduction rules):
· 1. vi

r and vj
s are in different triples, that is r≠s, and (同一triple的vertex 

無edge)
· 2. their corresponding literals are consistent (lir is not the negation of ljs) 
(互為negation的literals無edge)

- We can build this graph from the formula  in polynomial time.
· Forward proof: 
Suppose that  has a satisfying assignment.

» Then each clause Cr contains at least one literal lir that is assigned to 1, and 
each such literal corresponds to a vertex vj

s.
» Picking one such “true” literal from each clause yields a set V’ of k vertices. 
 V’ is a clique. (according to the reduction rules)
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The Clique Problem (Cont.)
– 2. 3-CNF-SAT P CLIQUE (Cont.)

· Reverse proof: 
Suppose that G has a clique V’ of size k.

» No edges in G connect vertices in the same triple  V’ contains 
exactly one vertex per triple.

» Assign 1 to each literal lir such that vi
rV’  Each clause is 

satisfied and so  is satisfied.

Satisfy assignment: 
x2 =0, x3 =1
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The Vertex-Cover Problem
• A vertex cover of an undirected graph G = (V, E) is a 

subset V’ 
 

V such that if (u, v)E, then u 
 

V’ or v 
 

V’ (or 
both).

– That is, each vertex “covers” its incident edges, and a vertex cover 
for G is a set of vertices that covers all the edges in E.

– The size of a vertex cover is the number of vertices in it.

• The vertex-cover problem is to find a vertex cover of 
minimum size in a given graph.

• Restating this optimization problem as a decision problem, 
we wish to determine whether a graph has a vertex cover of 
a given size k. As a language, we define
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The Vertex-Cover Problem (Cont.)
• Theorem 34.12

– The vertex-cover problem is NP-complete.

• Proof
– 1. VERTEX-COVERNP.  (Verify in polynomial time)

- Suppose we are given a graph G = (V, E) and an integer k. 
- The certificate we choose is the vertex cover V’V itself. 
- The verification algorithm affirms that |V’|=k, and then it checks, for each 

edge (u, v)E, that u 
 

V’ or  v 
 

V’. We can easily verify the certificate in 
polynomial time.

– 2. CLIQUE P VERTEX-COVER (Prove CLIQUE is NP-hard)
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The Vertex-Cover Problem (Cont.)
– 2. CLIQUE P VERTEX-COVER (Cont.)

- The reduction algorithm takes as input an instance <G, k> of the 
clique problem. It computes the complement G, which we can 
easily do in polynomial time. 

- To complete the proof, we show that this transformation is 
indeed a reduction:

- Forward proof: 
Suppose that G has a clique V’V with |V’|=k. we claim that V-V’ 
is a vertex cover in G.
· Let (u, v) be any edge in E. Then (u, v)E, which implies that at least 
one of u or v does not belong to V’, since every pair of vertices in V’ is 
connected by an edge of E. 
 Every edge (u, v) is covered by a vertex in V-V’.

-

The graph G has a clique of size k if and only if 
the graph G has a vertex cover of size |V|-k.



December 27, 2010 77

Copyright © All Rights Reserved by Yuan-Hao Chang

The Vertex-Cover Problem (Cont.)
- Reverse proof: 

Suppose that G has a vertex cover V’V, where |V’|=|V|-k.
· Then for all u,v V, if (u, v)E, then u V’ or v V’ or both. 
 for all u, v V, if uV’ and v V’, then (u, v) E. 
 In other words, V-V’ is a clique, and its size = |V|-|V’| = k.

CLIQUE: V’={u, v, x, y} VERTEX-COVER: V-V’ = {w, z}
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