

Topic 7: NP-Completeness

Outline

- Overview
- Polynomial time
- Polynomial-time verification
- NP-completeness and reducibility
- NP-completeness and proofs
- NP-complete problems

Overview

Polynomial Time vs. Superpolynomial Time

Polynomial-time problem (tractable problems):

- On inputs of size n, the problems are solvable in O(n^k) time for some constant k.
- Polynomial-time algorithms: on inputs of size n, their worst-case running time is O(n^k) for some constant k.

Superpolynomial-time problem (intractable problems):

- On inputs of size *n*, the problems are not solvable by polynomial-time algorithms.
- -E.g., Halting problem:
 - The **halting problem** is a <u>decision problem</u> of deciding, given a program and an input, whether the program will eventually halt when run with that input, or will run forever.

Optimization Problems vs. Decision Problem

Optimization problems

Each feasible solution has an associated value, and we wish to find a feasible solution with the best value.

- E.g., SHORTEST-PATH

- Given an undirected graph *G* and vertices *u* and *v*, and we wish to find a path from *u* to *v* that uses the fewest edges.
- This is the single-pair shortest-path problem in an unweighted, undirected graph.

Decision problems (yes-or-no (1-or-0) problems)

- A decision problem is a question with a yes-or-no answer, depending on the values of some input parameters.
 - For example, the problem "given two numbers *x* and *y*, does *x* evenly divide *y*?" is a decision problem. The answer can be either 'yes' or 'no', and depends upon the values of *x* and *y*.
- E.g., **PATH** (decision version of **SHORTEST-PATH**)
 - Given a directed graph *G*, vertices *u* and *v*, and an integer *k*, does a path exist from *u* to *v* consisting of *at most k edges*?

Input

Algorithm

NO

YES

P, NP, NP-Complete, and NP-Hard

- Class **P** (polynomial-time problems)
 - The problems that are solvable in polynomial time.
- Class NP (Nondeterministic polynomial-time problems)
 - The problems that are verifiable in polynomial time.
 - <u>NP is the set of problems</u> for which the instances where the answer is "yes" have efficiently verifiable proofs of the fact that the answer is indeed "yes".
 - Given a certificate of a solution, then we could verify that the certificate is correct in time polynomial in the size of the input to the problem.
 - E.g.,
 - Given a directed graph G=(V,E), a certificate would be a sequence <v₁, v₂, v₃, ... v_{|v|}} of |V| vertices. We can check in polynomial time to see whether the sequence forms a Hamiltonian cycle.
 - For 3-CNF satisfiability, a certification would be an assignment of values to variables. Copyright © All Rights Reserved by Yuan-Hao Chang

P, NP, NP-Complete, and NP-Hard (Cont.)

Class NPC (NP-Complete problems)

- The problems that are not solvable in polynomial time (or intractable), but are verifiable in polynomial time.
- The hardest problems in class NP.

Class NP-Hard

- The problems that are at least as hard as the hardest problems in NP (i.e., NPC).
- A problem *H* is NP-hard <u>if and only if</u> there is an <u>NP-complete</u> problem L that is <u>polynomial time reducible</u> to *H*.
 - Problem H is at least as hard as L, because H can be used to solve L.
 - Since L is NP-complete, and hence the hardest in class NP, also problem H is at least as hard as NP, but <u>H does not have to be in NP and</u> <u>hence does not have to be a decision problem</u> (even if it is a decision problem, it need not be in NP).

P, NP, NP-Complete, and NP-Hard (Cont.)

Copyright © All Rights Reserved by Yuan-Hao Chang

NP-Complete Problems

- NP-Complete problems are also call NPC problems.
- No polynomial-time algorithm has yet been discovered for an NPcomplete problem, except P = NP.
 - If any single NP-complete problem can be solved in polynomial time, then every NP-complete problem has a polynomial time algorithm.
 - To become a good algorithm designer, you must understand the rudiments (基本原理) of the theory of NP-completeness.
- Whether P = NP or $P \neq NP$ is an open question.
 - P ≠ NP question has been one of the deepest, most perplexing(令人費解的) open research problems in theoretical computer science since it was first posed in 1971.
- Although NP-complete problems are confined to the realm of decision problems, we can take advantage of a convenient relationship between optimization problems and decision problems.
 - The decision problem is in a sense "easier", or at least "no harder" than its corresponding optimization problem.
 - If we can provide evidence that a decision problem is hard, we also provide evidence that its related optimization problem is hard as well.

Comment.
1555 N

Polynomial-Time vs. NPC Problems

• Shortest vs. longest simple paths:

- With negative edge weights, we can find shortest paths form a singe source in a directed graph G=(V,E) in O(VE) time. (*Polynomial-time problem*)
- Finding a longest simple path between two vertices is difficult. Merely
 determining whether a graph contains a simple path with at least a given
 number of edges is *NP-complete*.

• Euler tour vs. hamiltonian cycle:

- An Euler tour of a connected, directed graph G=(V,E) is a cycle that traverses each edge of G excatly once, although it is allowed to visit each vertex more than once. (Solvable in O(E) time: *Polynomial-time problem*)
- A hamiltonian cycle of a directed graph G=(V,E) is a simple cycle that contains each vertex in V: Determining whether a directed graph has a hamiltonian cycle is *NP-complete*.
 - Note: **Travelling Salesman Problem** (**TSP**) is an <u>NP-hard</u> problem. Given a list of cities and their pairwise distances, the task is to find a shortest possible tour that visits each city exactly once. The Hamiltonian cycle problem is a special case of the <u>traveling salesman problem</u>, obtained by setting the distance between two cities to a finite constant if they are adjacent and infinity otherwise.

Polynomial-Time vs. NPC Problems (Cont.)

• 2-CNF satisfiability vs. 3-CNF satisfiability:

- A boolean formula contains variables whose values are 0 or 1.
 - Boolean connectives such as $~\wedge$ (AND), \vee (OR), \neg (NOT), and parentheses.
 - A boolean formula is **satisfiable** if there exists some assignment of the values 0 and 1 to its variables that causes it to evaluate to 1.
 - K-conjunctive normal form (k-CNF):
 - · If it is the AND of clauses of Ors of exactly k variables or their negations.
 - For example: $(x1 \lor \neg x2) \land (\neg x1 \lor x3) \land (\neg x2 \lor \neg x3)$ is in 2-CNF. It has the satisfying assignment x1=1, x2=0, x3=1.
 - We can determine in polynomial time to see whether a 2-CNF formula is satisfiable. (*Polynomial-time problem*)
 - Determining whether a 3-CNF formula is satisfiable is *NP-complete*.

Reductions

- Suppose that there is a different decision problem, say B, that we already know how to solve in polynomial time.
- Suppose that we have a procedure that transforms any instance α of A into some instance β of B with the following characteristics:
 - -1. The transformation takes polynomial time.
 - -2. The answer are the same. That is, the answer for α is "yes" if and only if the answer for β is also "yes."

Reductions (Cont.)

- We can call such a procedure a polynomial-time reduction algorithm and, it provides us a way to solve problem A in polynomial time:
 - 1. Given an instance α of problem A, use a polynomial-time reduction algorithm to transform it to an instance β of problem B.
 - 2. Run the polynomial-time decision algorithm for B on the instance β .
 - 3. Use the answer for β as the answer for α .

Reductions (Cont.)

- NP-completeness is about showing how hard a problem is rather than how easy it is.
- We use polynomial-reductions in the opposite way to show that no polynomial-time algorithm can exist for a particular problem B.:
 - Suppose we have a decision problem A for which we already know that no polynomial-time algorithm can exist.
 - Suppose further that we have a polynomial-time reduction transforming instances of A to instances of B.

• A first NP-complete problem

- Because the technique of reduction relies on having a problem already known to be NP-complete in order to prove a different problem NP-complete, we need a "first" NPC problem.
 - E.g., Circuit-satisfiability problem.

Polynomial Time

Polynomial Time

Note: A Turing machine takes a tape with a string of symbols on it as an input, and can respond to a given symbol by changing its internal state, writing a new symbol on the tape, shifting the tape right or left to the next symbol, or halting. The inner state of the Turing machine is described by a finite state machine. It has been shown that if the answer to a computational problem can be computed in a finite amount of time, then there exists an *abstract Turing machine* that can compute it.

Polynomial time solvable problem are regarded as tractable.

- Even if the current best algorithm for a problem has a running time of $\Theta(n^{100})$, it is likely that an algorithm with a much better running time will soon be discovered.
- For many reasonable models of computation, a problem can be solved in one model can be solved in polynomial in another.
 - E.g., the problems solvable in polynomial time by the serial randomaccess machine are solvable in polynomial time on abstract Turing machines.
- Polynomial-time solvable problems has a nice closure property.
 - Polynomials are closed under addition, multiplication, and composition.
 - E.g., If an algorithm takes a constant number of calls to polynomial-time subroutines and performs an additional amount of work that also takes polynomial time, then the running time of the composite algorithm is polynomial.

17

Abstract Problems

- An abstract problem Q is a binary relation on a set I of problem *instances* and a set S of problem *solutions*.
 - E.g., An instance for SHORTEST-PATH is a triple consisting of a graph and two vertices.
 - A solution is a sequence of vertices in the graph, with perhaps the empty sequence denoting that no path exists.
 - The problem SHORTEST-PATH itself is the relation that associates each instance of a graph and two vertices with a shortest path in the graph that connects the two vertices.
- The theory of NP-completeness restricts attention to *decision problems:* those having a yes/no solution.
 - We can view an abstract decision problem as a function that maps the instance set / to the solution set {0, 1}.
 - E.g., A decision problem related to SHORTEST-PATH is the problem PATH:
 - If I = <G, u, v, k> is an instance of the decision problem PATH, then PATH(i)=1 if a shortest path from u to v has at most k edges. Otherwise, PATH(i)=0.

 Optimization problems can be re-casted as a decision problem that is no harder.

Encodings

- In order for a computer program to solve an abstract problem, we must represent problem instances in a way that the problem understands.
- An *encoding* of a set S of abstract objects is a mapping *e* from S to *the set of binary strings*.

- $\{0,1,2,3,\ldots\} = \{0,1,10,11,\ldots\}$
- Using this encoding, e(17) = 10001.
- E.g.,
 - ASCII code: the encoding of A is 10000001.
- We can encode a compound object as a binary string by combining the representations of its constituent parts.
 - E.g., Polygons, graphs, functions, ordered pairs, and programs.

Concrete Problems

- A computer algorithm that solves some abstract decision problem actually takes an *encoding* of a problem instance as *input*.
- We call a problem whose instance sets is *the set of binary strings* a *concrete problem*.
 - We say that an algorithm **solves** a concrete problem in time O(T(n)) if, when it is provided a problem instance *i* if length n=|i|, the algorithm can produce the solution in at most time O(T(n)).
- A concrete problem is *polynomial-time solvable* if there exists an algorithm to solve it in time O(n^k) for some constant k.
- The *complexity class P* is the set of *concrete decision problems* that are solvable in polynomial time.

Abstract Problems vs. Concrete Problems.

- Using *encoding* as the bridge between abstract problems and concrete problems.
- We can use encodings to map abstract problems to concrete problems.
 - Given an abstract decision problem Q:
 - Input: $i \in$ instance set I
 - Output: $Q(i) \in \{0, 1\}$
 - An encoding to encode *i* to e(i), where $e: I \rightarrow \{0, 1\}^*$ (binary string)
 - The related concrete decision problem e(Q):
 - Input: $e(i) \in \{0, 1\}^*$
 - Output: Q(*i*) ∈ {0, 1}
- The concrete problem produces the same solutions as the abstract problem on binary-string instances that represent the encodings of abstract-problem instances.
 - For convenience, we assume that any non-meaningful abstractproblem instance maps arbitrarily to 0. Copyright © All Rights Reserved by Yuan-Hao Chang

Comment.
4555

Unary vs. Binary Encodings

- The efficiency of solving a problem should not depend on how the problem is encoded.
- However, it depends heavily on the encoding.
 - For example:
 - An integer *k* is to be provided as the sole input to an algorithm, and the running time of the algorithm is Θ(k).
 - *n* is the input length (i.e., the input size).

			I	Polynomial
Problem	input <i>k</i>	complexity O(<i>k</i>)		time
unary	$k \rightarrow 111$	$\Theta(k) = \Theta(n)$		Exponential time
binary	$n = \lfloor \lg k \rfloor + 1$	$\Theta(k) = \Theta(2^n)$		(Superpolynomial time)

21

Unary vs. Binary Encodings (Cont.)

• For NP-complete problems:

- If the input is encoded in unary, then there exists a polynomial-time algorithm for it. We say that the problem is NP-complete in the ordinary sense. The algorithm is said to be pseudo-polynomial.
- If a problem remains even NP-complete when the input is encoded in unary, then we say that the problem is NP-complete *in the strong* sense.
- In practice, if we rule out "expensive" encodings such as unary ones, the actual encoding of a problem makes little difference to whether the problem can be solved in polynomial time.
 - E.g., Representing integers in base 3 instead of binary has no effect on whether a problem is solvable in polynomial time, because we can convert an integer represented in base 3 to base 2 in polynomial time.

Polynomial-Time Computable

- A function f: {0, 1}* → {0, 1}* is polynomial-time computable if there exists a polynomial time algorithm A that, given any x∈{0, 1}*, produces as output f(x).
 - For any set *I* of problem instances, we say that two encodings e_1 and e_2 are **polynomial related** if there exist two polynomial-time computable functions f_{12} and f_{21} such that for any $i \in I$, we have $f_{12}(e_1(i))=e_2(i)$ and $f_{21}(e_2(i))=e_1(i)$.
 - That is, a polynomial-time algorithm can compute the encodings $e_2(i)$ from the encoding $e_1(i)$, and vice versa.

Polynomial-Time Computable (Cont.)

• Lemma 34.1

- Let Q be an abstract decision problem on an instance set I, let e_1 and e_2 be polynomially related encodings on I. Then, $e_1(Q) \in P$ if and only if $e_2(Q) \in P$.

Proof

- Suppose that $e_1(Q)$ can be solved in $O(n^k)$ for some constant k.
- Suppose that for any problem instance *i*, the encoding $e_1(i)$ can be computed from the encoding $e_2(i)$ in time $O(n^c)$ for some constant *c*, where $n = |e_2(i)|$.
- To solve problem $e_2(Q)$, on input $e_2(i)$,
 - |e₁(i)| = O(n^c) since the output of a serial computer cannot be longer than its running time.
 - Solving the problem on $e_1(i)$ takes time $O(|e_1(i)|^k) = O(n^{ck})$ that is polynomial since both *c* and *k* are constants.

Polynomial-Time Computable (Cont.)

- The encoding of a finite set is polynomially related to its encoding as a list of its elements, enclosed in *braces* and *separated by commas*. (ASCII is one such encoding scheme)
 - With such a "standard" encoding in hand, we can derive reasonable encodings of other mathematical objects (such as *tuples*, *graphs*, and *formulas*)
 - <G> denotes the standard encoding a graph G.
- We shall assume that the encoding of an integer is polynomially related to its *binary representation*.
- We shall assume that all problem instances are *binary strings* encoded using the standard encoding.
- We shall typically neglect the distinction between abstract and concrete problems. (because the actual encoding of a problem makes little difference to whether the problem can be solved (in polynomial time)).

Formal-Language Framework

- An *alphabet* \sum is a finite set of symbols.
- A *language L* over Σ is any set of strings made up of symbols from Σ .
 - $-E.g., if \sum = \{0, 1\}, the set L = \{10, 11, 101, 111, 1011, 1101, 1101, 10001, ...\}$ Is the language of binary representation of prime numbers.
- The *empty string* is ε.
- The language of all strings over Σ is Σ^* .
 - $-E.g., \Sigma = \{0, 1\}, \text{ then } \Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots\}$

- Formal-Language Framework
 Set-Theoretic Operations
- Union: $L_1 \cup L_2$
- Intersection: $L_1 \cap L_2$
- **Complement** (of L): $\overline{L} = \Sigma^* L$
- Concatenation: $L = \{x_1x_2 : x_1 \in L_1 \text{ and } x_2 \in L_2\}$
- Closure (or Kleene star): $L^* = \{\epsilon\} \cup L^1 \cup L^2 \cup L^3 \cup ...$
 - $-L^{k}$ is the language obtained by concatenating L to itself k times.

28

Formal-Language Framework - Language Theory

- The set of instances for any decision problem *Q* is simply the set ∑^{*}, where ∑ = {0, 1}.
- Since Q is entirely characterized by those problem instances that produce a 1(yes) answer, we can view Q as a language L over ∑ = {0, 1}, where L = {x ∈ ∑^{*}: Q(x) = 1}.

• For example:

- The decision problem **PATH**:

- PATH = { <*G*, *u*, *v*, *k*> :

G = (V, E) is an undirected graph, $u, v \in V$, $k \ge 0$ is an integer, and there exists a path from u to v in G consisting of at most k edges. }

Formal-Language Framework Accept vs. Decide

- The formal-language framework allows us to express concisely the relation between *decision problems* and *algorithms that solve them*.
 - Algorithm A *accepts* a string $x \in \{0, 1\}^*$ if, given input x, the algorithm's output A(x)=1.
 - The language *accepted* by an algorithm A is the set of strings $L = \{x \in \{0, 1\}^* : A(x) = 1\}$.
 - That is, the set of strings that the algorithm accepts.
 - Algorithm A *rejects* a string x if A(x)=0.
 - Even if language *L* is accepted by an algorithm *A*, the algorithm will not necessarily reject a string x ∉L.
 - A language *L* is *decided* by an algorithm *A* if every *binary string* in *L* is accepted by *A* and every binary string not in *L* is rejected by *A*.

• A language L is accepted in polynomial time by an algorithm A if

- It is accepted by A and
- If there exists a constant *k* such that for any length-n string x∈L, algorithm A accepts x in time $O(n^k)$.
- A language L is decided in polynomial time by an algorithm A if there exists a constant k such that for any length-n string x∈{0, 1}*, the algorithm correctly decides whether x∈L in time O(n^k).
- Note:
 - To *accept* a language, an algorithm must produce an answer when provided a string in L.
 - To *decide* a language, an algorithm must correctly accept or reject every string in {0, 1}*. Copyright © All Rights Reserved by Yuan-Hao Chang

Formal-Language Framework Accept vs. Decide (Cont.)

• The language PATH

- If G encodes an undirected graph and the path found from u to v has at most k edges, then the algorithm outputs 1 and halts.
 - This algorithm does not decide PATH, since it does not explicitly output 0 for instances in which a shortest path has more than k edges.
 - If this algorithm could output 0 and halts when there is not a path from *u* to *v* with at most *k* edges, then the algorithm decides PATH.

• Turing's halting problem

- This is the problem of deciding, given a program and an input, whether the program will eventually halt when run with that input, or will run forever.
- There exists an accepting algorithm, but no decision algorithm exists.

Complexity Class P

- A *complexity class* is a set of languages of an algorithm that determines whether a given string *x* belongs to language *L*.
- The membership in a set of languages is determined by a *complexity measure*, such as running time.
- Definition of the complexity class **P**:
 - $\mathbf{P} = \{ L \subseteq \{0, 1\}^* : \text{there exists an algorithm } A \text{ that decides } L \text{ in polynomial time } \}.$
 - In fact, P is also the class of languages that can be accepted in polynomial time.

Complexity Class P (Cont.)

• Theorem 34.2

 $-P = \{ L : L \text{ is accepted by a polynomial-time algorithm } \}.$

• Proof

- We need only show that if L is *accepted* by a polynomial-time algorithm, it is *decided* by a polynomial-time algorithm.
 - Let *L* be the language accepted by some polynomial-time algorithm *A*. We construct A' that decides L.
 - Because A accepts L in time O(n^k) steps for some constant k, there also exists a constant c such that A accepts L in at most cn^k steps.
 - For any input string x, the algorithm A' simulates *cn^k* steps of A.
 After simulating cn^k steps,
 - · A' accepts x if A has accepted x.
 - A' rejects x if A has not accepted x.

Polynomial-Time Verification

Hamiltonian Cycles

- A *hamiltonian cycle* of an undirected graph G=(V, E) is a simple cycle that contains each vertex in V.
- A graph that contains a hamiltonian cycle is said to be *hamiltonian*; otherwise, it is *nonhamiltonian*.
- A *bipartite graph* with an *odd number* of vertices is *nonhamiltonian*.

A **bipartite graph** (or **bigraph**) is a graph whose vertices can be divided into two disjoint sets *U* and *V* such that every edge connects a vertex in *U* to one in *V*; that is, *U* and *V* are independent sets.

Copyright © All Rights Reserved by Yuan-Hao Chang

Hamiltonian Cycles (Cont.)

• Hamiltonian-cycle problem:

- -HAM-CYCLE = { <G> : G is a hamiltonian graph }
- How might an algorithm decide the language HAM-CYCLE?
 - Given a problem instance <G>, one possible decision algorithm lists all permutations of the vertices of G and then checks each permutation to see if it is a hamiltonian path.
 - Input size $n = |\langle G \rangle|$ is the length of the encoding of G.
 - The number of vertices $m = \Omega(n^{1/2})$ or $m \ge n^{1/2}$.
 - Thus, the running time is $\Omega(m!) = \Omega((n^{1/2})!) = \Omega(2^{n^{1/2}})$ that is not $O(n^k)$ for any constant *k*.
 - In fact, the hamiltonian-cycle problem is NP-complete.

Copyright © All Rights Reserved by Yuan-Hao Chang

m≤n≤m²

Verification Algorithms

- Suppose that someone tells you that a given graph *G* is hamiltonian, and then offers to prove it by giving you the vertices in order along the hamiltonian cycle.
 - You should certainly implement an O(n²)-time verification algorithm to check whether the given vertices form a hamiltonian cycle.
- A verification algorithm is a *two-argument algorithm A*.
 - One argument is an ordinary *input string x*.
 - The other is a *binary string y* called *certificate*.
- A two-argument algorithm A verifies an input string x if there exists a certificate y such that A(x, y) = 1.
 - The *language verified* by a verification algorithm A is $L = \{ x \in \{0, 1\}^* : \text{there exists } y \in \{0, 1\}^* \text{ such that } A(x, y) = 1 \}.$

Verification Algorithms (Cont.)

- Intuitively, an algorithm A verifies a language L,
 - If for any string $x \in L$, there exists a certificate y that A can use to prove that $x \in L$.
 - If any string $x \notin L$, there must be no certificate proving that $x \in L$.

• For example

- In the hamiltonian-cycle problem, the *certificate* is the list of vertices in some hamiltonian cycle.
 - If a graph is hamiltonian, the hamiltonian cycle itself offers enough information to verify this fact.
 - If a graph is not hamiltonian, there is no list of vertices that fools the verification algorithm into believing that the graph is hamiltonian.

Complexity Class NP

- The *complexity class NP* is the class of languages that can be verified by a polynomial-time algorithm.
 - That is, a language L belongs to NP if and only if there exist a *two-input polynomial-time algorithm A* and a constant *c* such that L = { x ∈ {0, 1}* : there exists a certificate y with |y| = O(|x|^c) such that A(x, y) = 1 }.
 - We say that A verifies language L in polynomial time.

|x| is the input size

• For example:

- HAM-CYCLE \in NP.
- If $L \in P$, then $L \in NP$.
 - Because if there is a polynomial-time algorithm *decide L*, the algorithm can be easily converted to a two-argument verification algorithm that simply ignores any certificate and accepts exactly those input strings it determines to be in *L*. Thus, P ⊆ NP.
- It is unknown whether P = NP, but most researchers believe that P \neq NP.

Co-NP

- Does $L \in NP$ imply $\overline{L} \in NP$?
 - No one knows whether the class NP is closed under complement.
- The complexity class co-NP is the set of languages L such that L ∈ NP.
- Since P is closed under complement, so that $P \subseteq NP \cap co-NP$.

NP-Completeness and Reducibility

Reducibility

- If any NP-complete problem can be solved in polynomial time, then every problem in NP has a polynomial-time solution.
- A problem *Q* can be reduced to another problem *Q*' if any instance of *Q* can be "*easily rephrased*" as an instance of *Q*', then solution to which provides a solution to the instance of *Q*.
 - -E.g., Given an instance ax + b = 0, we can transform it to $0x^2 + ax + b = 0$.
 - Thus, if a problem Q reduces to another problem Q', then Q is "*no harder to solve*" than Q'.

Reducibility (Cont.)

- A language L₁ is polynomial-time reducible to a language L₂, written L₁ ≤_P L₂, if there exists a polynomial-time computable function f : {0, 1}* → {0, 1}* such that for all x ∈ {0, 1}*, x ∈ L₁ iff f(x) ∈ L₂.
 - f: the *reduction function*.
 - F : a *reduction algorithm* that computes f in polynomial time.

Providing an answer to whether $f(x) \in L_2$ directly provides the answer to whether $x \in L_1$.

If $x \in L_1$ then $f(x) \in L_2$. If $x \notin L_1$ then $f(x) \notin L_2$.

Polynomial-Time Reducible

• Lemma 34.3

– If L1, L2 \subseteq {0, 1}^{*} are languages such that L₁ \leq_P L₂, then L₂ \in P implies L₁ \in P.

• Proof

- Let A_2 be a polynomial-time algorithm that decides L_2 .
- Let F be a polynomial-time reduction algorithm that computes the reduction function f.
- Thus, we can construct a polynomial-time algorithm A_1 that decides L_1 .

Copyright © All Rights Reserved by Yuan-Hao Chang

NP-Completeness

- **Polynomial-time reduction** provides a formal means for showing that one problem is at least as hard as another.
- A language $L \subseteq \{0, 1\}^*$ is **NP-complete (NPC)** if
 - -1. L ∈ NP, (L 屬於NP) and
 - -2. L' ≤_P L for every L' ∈ NP. (所有NP的問題L'都可reduce到L)
- If a language *L* satisfies *property* 2, but not necessarily *property* 1, then *L* is *NP-hard*.

NP-Completeness (Cont.)

• Theorem 34.4

 If any NP-complete problem is polynomial-time solvable, then P = NP. Equivalently, if any (one) problem in NP is not polynomial-time solvable, then no NP-complete problem is polynomial-time solvable.

• Proof

- Suppose that $L \in P$ and $L \in NPC$.
- For any L' \in NP, we have L' \leq_P L because L \in NPC.
- By Lemma 34.3, L' \in P, which proves the first statement of this theorem. (Because L' \leq_P L and L \in P)

46

Circuit Satisfiability

- The first NPC problem
- Term definition
 - Boolean combinational circuits are built from boolean combinational elements that are interconnected by wires.
 - A boolean combinational element is any circuit element that has a constant number of boolean inputs and outputs and that performs a well-defined function.
 - **Boolean values** are drawn from the set {0, 1}.
 - The three basic logic gates are

Tim

Circuit Satisfiability (Cont.)

- A boolean combinational circuit consists of one or more boolean combinational elements interconnected by wires.
- A wire can connect the output of one element to the input of another.
- The number of element inputs fed by a wire is called the *fan-out* of the *wire*.
- A *truth assignment* is a set of *boolean input value*.
- A circuit is satisfiable if it has a satisfying assignment that makes the circuit output 1.

 $< x_1 = 1, x_2 = 1, x_3 = 0 >$ Satisfiable circuit

Unsatisfiable circuit Copyright © All Rights Reserved by Yuan-Hao Chang 47

Computer Hardware

- A *computer program* is stored in the computer memory as *a sequence of instruction*.
- A typical instruction encodes
 - An operation to be performed,
 - Addresses of operands in memory, and
 - An address where the result is to be stored.
- A special memory location (called the *program counter*) keeps track of which instruction is to be executed next.
 - The program counter automatically increments upon fetching each instruction, causing the computer to execute instructions sequentially.
 - The execution of some instructions can cause a value to be written to the program counter, so as to allow loop or conditional braches.
- Any particular state of computer memory is called a *configuration*.
 - We can view the execution of an instruction as *mapping one configuration* to another.
 - The hardware that accomplishes this mapping can be implemented as a *boolean combinational circuit* (denoted as *M*).

S AMTER
Level .

Circuit Satisfiability Problem

Problem definition:

- Given a boolean combinational circuit composed of AND, OR, and NOT gates, is it satisfiable?
- The size of a boolean combinational circuit is the number of boolean combinational elements plus the number of wires in the circuit.
 - We can encode any given *circuit C* into a *binary string <C>* whose length is polynomial in *the size of the circuit*.
 - When the size of C is polynomial in the **k** inputs, checking each one takes $\Omega(2^k)$.
- As formal language, we can define:
 CIRCUIT-SAT = { <C> : C is a satisfiable boolean combinational circuit. }

In the computer-aided hardware optimization, if a subcircuit always produces 0, that subcircuit is unnecessary.

- To prove the circuit satisfiability problem C an NPC problem, we should prove the following two things:
 - $-1.C \in NP$
 - 2. C is at least as hard as any language in NP (or *C is NP-hard*)

• Lemma 34.5

- The circuit-saisfiability problem belongs to the class NP.

Proof

- We shall provide a two-input, *polynomial-time* algorithm A
 - One input is a boolean combinational circuit **C**.
 - The other input is a *certificate* corresponding to an assignment of boolean values to the wires in *C*.
- For each logic gate in the circuit, the algorithm A checks that the value provided by the certificate on the output wire is correctly computed.
- Then, if the output of the entire circuit is 1, the algorithm *A* outputs 1.
 Otherwise, *A* outputs 0.

ÎN
4555

• Lemma 34.6

- The circuit satisfiability problem is NP-hard

• Proof

- Let *L* be any language in NP.
- We shall describe a polynomial-time algorithm F computing a reduction function f that maps every binary string x to a circuit C = f(x) such that $x \in L$ iff $C \in CIRCUIT$ -SAT.
- The algorithm *F* uses the *two-input polynomial-time algorithm A* ('cause L∈NP) to compute the reduction function *f*.
 - Let *T(n)* denote the worst-case running time of A on *length-n input strings*.
 - Let k≥1 be a constant such that T(n) = O(n^k) and the length of the certificate is O(n^k)

Proof (Cont.)

- Represent the computation of A as a sequence of configurations.
- We can break down each configuration into parts consisting of the program for *A*.
- The combinational circuit M that implements the computer maps each configuration c_i to the next configuration c_{i+1} , from c_0 .
- If A runs for at most T(n) steps, the output appears as one of the bits in $c_{T(n)}$.

^{0/1} output Copyright © All Rights Reserved by Yuan-Hao Chang

Proof (Cont.)

- The *reduction algorithm F* constructs a single combinational circuit that computes all configurations produced by a given initial configuration.
 - Paste the circuit M for T(n) copies.
 - The output if the i_{th} circuit (*c_i*) feeds directly into the input of the (i+1)st circuit.
 - Thus, the configurations reside as values on the wires connecting copies of *M*.
- Mission of the *reduction algorithm F*
 - Given an input x, it must compute a circuit C=f(x) that is satisfiable iff there exists a certificate y such that A(x, y) = 1.
 - When *F* obtains an input *x*, it computes n = |x| and constructs a combinational circuit *C*' consisting of T(n) copies of M.
 - The input to C' is an initial configuration corresponding to a computation on A(x, y), and the output is the configuration $c_{T(n)}$.

- Mission of the reduction algorithm F (Cont.)
 - Algorithm F modifies C' to construct C = f(x).
 - First, it wires the inputs and certificate y to C'.
 - Second, it ignore all outputs from C', except the output bit of $c_{T(n)}$.
 - This circuit C compute C(y) = A(x, y) for any *input y of length* $O(n^k)$.
 - We need to provide two properties:
 - First, *F* correctly computes a reduction function *f*.
 - i.e., C is satisfiable iff there exists a certificate y such that A(x, y)=1.
 - » Suppose there exists a certificate y such that A(x, y)=1. Because $C(y) = A(x, y), C(y) = 1 \rightarrow C$ is satisfiable (*reverse direction*).
 - » Suppose C is satisfiable such that C(y)=1. Because A(x, y) = C(y), A(x, y) = 1 (*forward direction*)

· Second, F runs in polynomial time.

- The number of bits to represent a configuration is polynomial in n = |x|.
 - » The program for A itself has constant size.
 - » The length of the input x is n.
 - » The length of the certificate y is O(n^k). (by algorithm A's definition)
 - » The amount of working storage required by A is polynomial in n because the algorithm runs for at most O(n^k).
 - » The combinational circuit M has size polynomial in the length of a configuration $(O(n^k))$. $\rightarrow M$ usually implements *the logic of the memory system*.
 - » The circuit C consists of at most $t = O(n^k)$ copies of M. Hence it has size polynomial in *n*.
- $\cdot \rightarrow$ Therefore, F can construct C in polynomial time.
- Therefore, CIRCUIT-SAT is at least as hard as any language in NP, and since it is in NP, it is NP-Complete.

NP-Completeness Proofs

December 27, 2010

NP-Complete Basis

• Lemma 34.8

- If L is a language such that $L' \leq_P L$ for some $L' \in NPC$, then L is NP-hard. If, in addition, $L \in NP$, then $L \in NPC$.

• Proof

- Since L' is NP-complete, for all L'' \in NP, we have L'' \leq_{P} L'.
- By supposition, L' \leq_P L, and thus by transitivity, we have L'' \leq_P L, which shows that L is NP-hard.
- If $L \in NP$, we also have $L \in NPC$.

Sec. N

NP-Complete Proof Method

- By reducing a known NP-complete language L' to L, we implicitly reduce every language in NP to L. Thus, the proving steps:
 - 1. Prove $L \in NP$.
 - 2. Prove L is NP-hard.
 - 1. Select a known NP-complete language L'.
 - 2. Describe an algorithm that computes a function *f* mapping every instance x ∈ {0, 1}*.
 - 3. Prove that the function f satisfies $x \in L'$ iff $f(x) \in L$ for all $x \in \{0, 1\}^*$.
 - 4. Prove that the algorithm computing *f* runs in polynomial time.

Proving CIRCUIT-SAT∈NPC has given us a "foot in the door."

S NEIT
4550

Formula Satisfiability Problem

- Formula satisfiability problem (**SAT**):
 - An instance of SAT is a boolean formula ϕ composed of
 - 1. *n* boolean variables: x₁, x₂, ..., x_n;
 - 2. *m* boolean connectives: any boolean function with one or two inputs and one output, such as ∧ (AND), ∨(OR), and ¬(NOT), →(implication), ↔(if and only if); and
 - 3. parentheses. (Without loss of generality, we assume that there are no redundant parentheses.)
 - We can easily encode a boolean formula ϕ in a length that is polynomial in n+m.

Satisfiable formula

- A *truth assignment* for a boolean formula ϕ is a set of values for the variables of ϕ .
- A satisfying assignment is a truth assignment that causes it to evaluate to 1.
- A formula with a satisfying assignment is a *satisfiable* formula.

Formula Satisfiability Problem (Cont.)

 The satisfiability problem asks whether a given boolean formula is satisfiable:

SAT = { $\langle \phi \rangle$: ϕ is a satisfiable boolean formula}

• For example:

 $\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$

has the satisfying assignment $\langle x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1 \rangle$, since

$$\phi = ((0 \to 0) \lor \neg ((\neg 0 \leftrightarrow 1) \lor 1)) \land \neg 0$$

$$= (1 \lor \neg (1 \lor 1)) \land 1$$

$$= (1 \lor 0) \land 1$$

= 1.

A formula with n variables has 2^n possible assignments. If the length of $\langle \phi \rangle$ is polynomial in *n*, then checking every assignment requires $\Omega(2^n)$ time.

and thus this formula ϕ belongs to SAT.

Formula Satisfiability Problem (Cont.)

• Theorem 34.9

- Satisfiability of boolean formulas is NP-complete.

• Proof

-1. Start by proving that SAT∈NP. (Verify in polynomial time)

- Show that a certificate consisting of a satisfying assignment for an input formula ϕ can be verified in polynomial time.
 - The verifying algorithm replaces each variable in the formula with its corresponding value and then evaluates the expression.
 - This task is easy to do in polynomial time.

-2. Then prove SAT is NP-hard. (CIRCUIT-SAT \leq_P SAT)

- For each wire x_i in the circuit C, the formula ϕ have a variable x_i .
- Then, express each gate as a small formula involving the variables of its incident wires.

Formula Satisfiability Problem (Cont.)

- 2. Then prove SAT is NP-hard. (Cont.)

- The formula ϕ produced by the reduction algorithm is the AND of the circuit-output variable with the conjunction of clauses describing the operation of each gate.

- Given a circuit C, it is straightforward to produce such a formula ϕ in polynomial time.
- When we assign wire values to variables in ϕ , each clause of ϕ evaluates to 1, and thus the conjunction of all evaluates to 1.
- Conversely, if some assignment causes ϕ to evaluate to 1, the circuit C is satisfiable by an analogous argument.

62

December 27, 2010

Copyright © All Rights Reserved by Yuan-Hao Chang

Conjunctive Normal Form (CNF)

- The reduction algorithm must handle any input formula, and 3-CNF-SAT is one convenient language to simply the NPC proofs.
- 3-CNF-SAT
 - A *literal* in a boolean formula is an occurrence of a variable or its negation.
 - A boolean formula is in *conjunctive normal form*, or *CNF*, if it is expressed as an AND of *clauses*.
 - Each clause is the **OR** of one or more *literals*.
 - A boolean formula is in *3-CNF*, if each clause has exactly three distinct literals.

3-CNF Satisfiability (3-CNF-SAT)

• Theorem 34.10

- Satisfiability of boolean formulas in 3-CNF is NP-complete. $\phi = ((x_1 \rightarrow x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$

Proof

– 1. 3-CNF-SAT∈NP. (Verify in polynomial time)

- The verifying algorithm (in polynomial time) replaces each variable in the formula with its corresponding value and then evaluates the expression.
- 2. SAT \leq_P 3-CNF-SAT (Separated into 3 steps)
 - Step 1: Construct a binary "parse" tree
 - Construct a binary "parse" tree for the input formula \u03c6 with *literals as leaves* and connectives as internal nodes.
 - · The input formula is fully parenthesized.

Copyright © All Rights Reserved by Yuan-Hao Chang

3-CNF Satisfiability (3-CNF-SAT) (Cont.)

- Step 1: Construct a binary "parse" tree (Cont.)
 - · Introduce a variable y_i for the output of each internal node.
 - Thus, obtain a formula ϕ' , each clause of which has at most 3 literals, but fail to meet that each clause has exactly 3 literals.

 $\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$ $\phi' = y_1 \land (y_1 \leftrightarrow (y_2 \land \neg x_2))$ $\land (y_2 \leftrightarrow (y_3 \lor y_4))$ $\land (y_3 \leftrightarrow (x_1 \to x_2))$ $\land (y_4 \leftrightarrow \neg y_5)$ $\land (y_5 \leftrightarrow (y_6 \lor x_4))$ $\land (y_6 \leftrightarrow (\neg x_1 \leftrightarrow x_3))$

65

3-CNF Satisfiability (3-CNF-SAT) (Cont.)

- Step 2: Convert each clause of ϕ' into CNF.
 - Construct a truth table for each clause to evaluate all possible assignments to its variables.
 - Build a disjunctive normal form (DNF) an OR of ANDs, and then use DeMorgan's laws for propositional logic.

Copyright © All Rights Reserved by Yuan-Hao Chang

3-CNF Satisfiability (3-CNF-SAT) (Cont.)

- **Step 3:** Transform each clause of ϕ ' into exactly 3 literals. We construct the final 3-CNF formula ϕ '''
 - If C_i has 3 distinct literals, then simply include C_i as a clause of ϕ''' .
 - If C_i has 2 distinct literals, that is, if $C_i = (l_1 \vee l_2)$, where l_1 and l_2 are literals, then include $(l_1 \vee l_2 \vee p) \wedge (l_1 \vee l_2 \vee \neg p)$ as clauses of ϕ''' .
 - If C_i has just 1 distinct literal l, then include $(l \lor p \lor q) \land (l \lor p \lor \neg q) \land (l \lor \neg p \lor q) \land (l \lor \neg p \lor \neg q)$ as clauses of ϕ''' .
- The reduction can be computed in polynomial time.
 - Constructing ϕ ' from ϕ introduces at most 1 variable and 1 clause per connective in ϕ . (one y_i variable and its corresponding clause)
 - Constructing ϕ '' from ϕ ' introduces at most 8 clauses into ϕ '' for each clause from ϕ '. (according to the *truth table*)
 - Constructing ϕ''' from ϕ''' introduces at most 4 clauses into ϕ'''' for each clause from ϕ'' . (according to the number of literals in the clause)

NP-Complete Problems

The Structure of NPC Proofs

Copyright © All Rights Reserved by Yuan-Hao Chang

December 27, 2010

The Clique Problem

- A *clique* is a complete subgraph of G.
 - In other words, a *clique* in an undirected graph G = (V, E) is a subset V' ⊆ V of vertices, each pair of which is connected by an edge in E.
- The *size* of a clique is the number of vertices it contains.
- The *clique problem* is the optimization problem of finding a clique of maximum size in a graph.
- As a *decision problem*, we ask simply whether a *clique* of a given size *k* exists in the graph:

CLIQUE = { $\langle G, k \rangle$: G is a graph containing a clique of size k}

The running time of this algorithm is $\Omega(k^2 \binom{|V|}{k})$. In general, k could be near |V|/2, in which case the algorithm runs in superpolynomial time.

The Clique Problem (Cont.)

• Theorem 34.11

- The clique problem is NP-complete.

• Proof

- 1. CLIQUE∈NP. (Verify in polynomial time)

- For a given graph G = (V, E), we use the set $V' \subseteq V$ of vertices in the clique as a *certificate* for G. We can check whether V' is a clique in polynomial time by checking whether, for each pair u, $v \in V'$, the edge (u, v) belongs to E.

– 2. 3-CNF-SAT≤_P CLIQUE (Prove CLIQUE is NP-hard)

- Let $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ be a boolean formula in 3-CNF with *k* clauses.
- For r = 1, 2, ..., k, each clause C_r has exactly three distinct literals I_1^r, I_2^r, I_3^r .
- We shall construct a graph G such that *\u03c6* is satisfiable iff G has a clique of size k.

The Clique Problem (Cont.)

-2. 3-CNF-SAT≤_P CLIQUE (Cont.)

- For each clause $C_r = (I_1^r \vee I_2^r \vee I_3^r)$ in ϕ , we place a triple of vertices v_1^r , v_2^r , and v_3^r into V.
- We put an edge between two vertices v_i^r and v_j^s if both of the following holds (*Reduction rules*):
 - 1. v_i^r and v_j^s are in different triples, that is r \neq s, and (同一triple的vertex 無edge)
 - 2. their corresponding literals are *consistent* (I_i^r is not the negation of I_j^s) (互為negation的literals無edge)
- We can build this graph from the formula ϕ in polynomial time.
 - · Forward proof:

Suppose that ϕ has a satisfying assignment.

- » Then each clause C_r contains at least one literal I_i^r that is assigned to 1, and each such literal corresponds to a vertex v_i^s .
- » Picking one such "true" literal from each clause yields a set V' of k vertices. \rightarrow V' is a clique. (according to the reduction rules)

The Clique Problem (Cont.)

-2. 3-CNF-SAT ≤_P CLIQUE (Cont.)

· Reverse proof:

Suppose that G has a clique V' of size k.

- » No edges in G connect vertices in the same triple → V' contains exactly one vertex per triple.
- » Assign 1 to each literal I_i^r such that $v_i^r \in V' \rightarrow Each$ clause is satisfied and so ϕ is satisfied.

 $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$

Satisfy assignment: x₂=0, x₃=1

The Vertex-Cover Problem

- A vertex cover of an undirected graph G = (V, E) is a subset V' ⊆ V such that if (u, v)∈E, then u ∈ V' or v ∈ V' (or both).
 - That is, each vertex "covers" its incident edges, and a vertex cover for G is a set of vertices that covers all the edges in E.
 - The **size** of a vertex cover is the number of vertices in it.
- The vertex-cover problem is to find a vertex cover of minimum size in a given graph.
- Restating this optimization problem as a *decision problem*, we wish to determine whether a graph has a vertex cover of a given size *k*. As a language, we define

VERTEX-COVER = { $\langle G, k \rangle$: graph G has a vertex cover of size k}

December 27, 2010

The Vertex-Cover Problem (Cont.)

• Theorem 34.12

- The vertex-cover problem is NP-complete.

Proof

- 1. VERTEX-COVER∈NP. (Verify in polynomial time)

- Suppose we are given a graph G = (V, E) and an integer *k*.
- The certificate we choose is the vertex cover V' \subseteq V itself.
- The verification algorithm affirms that |V'|=k, and then it checks, for each edge (u, v)∈E, that u ∈ V' or v ∈ V'. We can easily verify the certificate in polynomial time.

- 2. CLIQUE \leq_P VERTEX-COVER (Prove CLIQUE is NP-hard)

Given an undirected graph G = (V, E), we define the *complement* of G as $\overline{G} = (V, \overline{E})$, where $\overline{E} = \{(u, v) : u, v \in V, u \neq v, \text{ and } (u, v) \notin E\}$. In other words, \overline{G} is the graph containing exactly those edges that are not in G.

The Vertex-Cover Problem (Cont.)

– 2. CLIQUE ≤_P VERTEX-COVER (Cont.)

- The reduction algorithm takes as input an instance <G, k> of the clique problem. It computes the complement G, which we can easily do in polynomial time.
- To complete the proof, we show that this *transformation* is indeed a *reduction*:

The graph G has a clique of size k if and only if the graph G has a vertex cover of size |V|-k.

- Forward proof:

Suppose that G has a clique V' \subseteq V with |V'|=k. we claim that V-V' is a vertex cover in G.

- Let (u, v) be any edge in E. Then (u, v)∉E, which implies that at least one of u or v does not belong to V', since every pair of vertices in V' is connected by an edge of E.
 - \rightarrow Every edge (u, v) is covered by a vertex in V-V'.

The Vertex-Cover Problem (Cont.)

- Reverse proof:

Suppose that \overline{G} has a vertex cover V' \subseteq V, where |V'|=|V|-k.

- Then for all $u, v \in V$, if $(u, v) \in \overline{E}$, then $u \in V'$ or $v \in V'$ or both.
 - → for all u, v ∈ V, if u ∉ V' and v ∉ V', then (u, v) ∈ E.
 - \rightarrow In other words, V-V' is a clique, and its size = |V|-|V'| = k.

Copyright © All Rights Reserved by Yuan-Hao Chang