



# Topic 8: Approximation Algorithms



January 3, 2011





## Outline

- Overview
- The Vertex-cover problem





# Overview







### **NP-Complete Problems in Practice**

- NP-complete problems are too important to abandon.
- Even if a problem is NP-complete, there may be hope.
- We have at least three ways to get around NPcompleteness.
  - If the actual inputs are small, an algorithm with exponential running time may be perfectly satisfactory.
  - 2. We may be able to isolate important special cases that we can solve in polynomial time.
  - 3. we might come up with approaches to find *near-optimal* solutions in polynomial time (either in the worst case or the expected case).
    - We call an algorithm that returns near-optimal solutions an *approximation algorithm*.



### **Performance Ratios**

An algorithm for a problem has an *approximation ratio* of ρ(n) if, for any input of size n, the cost C of the solution produced by the algorithm is within a factor of ρ(n) of the cost C\* of an optimal solution:

$$\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \le \rho(n)$$

- If an algorithm achieves an approximation ratio of ρ(n), we call it a ρ(n)-approximation algorithm.
  - For a maximization problem,  $0 < C \le C^*$  and ratio =  $C^*/C$
  - For a minimization problem,  $0 < C^* \le C$  and ratio =  $C/C^*$
- The approximation ratio of an approximation algorithm is *never less than 1*.



# **Approximation Scheme**

- An *approximation scheme* for an optimization problem:
  - An approximation algorithm that takes as input not only an instance of the problem, but also a value  $\varepsilon > 0$  such that for any fixed  $\varepsilon$ , the scheme is a  $(1+\varepsilon)$ -approximation algorithm.
    - Polynomial-time approximation scheme (PTAS)
      - If for any fixed  $\varepsilon > 0$ , the scheme runs in time polynomial in the size *n* of its input instance. E.g.,  $O(n^{1/\varepsilon})$ ,  $O(n^{2/\varepsilon})$
    - Fully Polynomial-time approximation scheme (FPTAS)
      - If the scheme is an approximation scheme and its running time is polynomial in both  $1/\epsilon$  and the size *n* of the input instance. E.g., O( (1/e)n ), O(1/\epsilon)<sup>2</sup> n<sup>3</sup>).
      - Any constant-factor decrease in  $\epsilon$  comes with a corresponding constant-factor increase in the running time.





# **The Vertex-Cover Problem**







### **Vertex-Cover Problem**

- A *vertex cover* of an undirected graph G = (V, E) is a subset  $V' \subseteq V$  such that if (u, v) is an edge of G, then either  $u \in V'$  or  $v \in V'$  (or both).
- The size of a vertex cover is the number of vertices in it.
- The *vertex-cover problem* is to find a vertex cover of minimum size in a given undirected graph. We call such a vertex cover an *optimal vertex cover*.
- This problem is the *optimization version* of an NP-complete decision problem.



#### **A 2-Approximation Algorithm**

Using *adjacency lists* to represent E', the running time of this algorithm is O(V+E).



jht













(c)



APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

#### • Proof

- APPROX-VERTEX-COVER runs in polynomial time: O(V+E)
- Let A denote the set of edges that line 4 of APPROX-VERTEX-COVER picked.
  - In order to cover the edges in A, any vertex cover (including an optimal cover C\*) must include at least one endpoint of each edge in A.
  - No two edges in A share an endpoint, since once an edge is picked in line 4, all other edges that are incident on its endpoints are deleted from E' in line 6. → |C\*| ≥ |A|
- Each execution of line 4 picks an edge for which neither of its endpoints is already in C.  $\rightarrow$  |C| = 2|A|
- Therefore,  $|C| = 2|A| \le 2|C^*|$



### A 2-Approximation Algorithm (Cont.)

- How to prove without knowing the optimal vertex cover?
  - →Rely on the *lower bound*.
- The set **A** of edges is a a *maximal matching* that is a *lower bound* on the size of an optimal vertex cover.







maximal matching: a matching that is not a proper subset of any other matching maximum matching : A matching that contains the largest possible number of edges. Also a maximal matching •

perfect matching : A matching that matches all vertices of the graph. Also a maximum matching