
Chapter 2
A Simple Syntax-Directed

Translator

Chapter 2
A Simple Syntax-Directed

Translator

April 1, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
•Introduction to the compiler front end
•Syntax definition
•Syntax-directed translation
•Parsing
•A translator for simple expressions
•Lexical analysis
•Symbol tables
•Intermediate code generation

Introduction to the
Compiler Front End
Introduction to the
Compiler Front End

April 1, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Introduction
• This chapter emphasizes on the front end of a
compiler with a working Java program.
– A simple example to introduce lexical analysis, parsing,

and intermediate code generation
– A simple syntax-directed translator is created

- To map infix arithmetic expressions to postfix expressions.
- To map code fragments into three-address code.

– The syntax specification used in this simple translator is
the context-free grammar or BNF (Backus-Naur Form)
- Context free means parentheses of different types should be

nested (and should not overlap).

April 1, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Introduction (Cont.)
• In a programming language

– The syntax describes the proper form of its programs.
– The semantics defines what its programs mean (i.e.,

what each program does when it executes.)

Syntax
tree

Three-address
code

Lexical
Analyzer

Intermediate
Code

Generator
ParserSource

program

Symbol
Table

Tokens

Note: The semantic analysis is skipped in this figure.

April 1, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Introduction (Cont.)
• Two forms of intermediate code:

– E.g., “do i = i + 1; while (a [i] < v);”

do-while
body <

[] v

a i

assign

i +

i 1

1: i= i + 1
2: t1 = a [i]
3: if t1 < v goto 1

(Abstract) syntax tree

Three-address code

Syntax DefinitionSyntax Definition

April 1, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Context-Free Grammar
• Components

– Terminal (also called tokens)
- The elementary symbols of the language defined by the grammar.

– Nonterminal (also called syntactic variables)
- Each nonterminal represents a set of strings of terminals.

– Production
- Each production consists of a nonterminal (called the head or left

side of the production), an arrow, and a sequence of
terminals/nonterminals (called the body or right side).

– Start symbol
- A designation of one of the nonterminals as the start symbol

• Productions for the start symbol is listed first.

April 1, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Context-Free Grammar (Cont.)
• An example:

if (expression) statement else statement

An if-else statement

stmt if (expr) stmt else stmt

Context-free grammar

Can have the form

(A production)

• Variables like expr and stmt are nonterminals (i.e., sequences of terminals).
• Keywads (“if” and “else”) and parentheses are called terminals.

April 1, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Tokens vs. Terminals
• A token consists of a token name and an attribute
value.
– A token name is a terminal that is an abstract symbol for

syntax analysis
– An attribute value is a pointer to the symbol table

containing additional information about the token. (not
part of the grammar)

April 1, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Simple Example of Productions
• A string consists of digits (single digit), plus, and
minus signs. E.g., 9-5+2
• 13 productions
• 2 nonterminals: list, digit
• 12 terminals: + - 0 1 2 3 4 5 6 7 8 9

list list + digit (2.1)
list list – digit (2.2)
list digit (2.3)
digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (2.4)

list list + digit | list – digit | digit

Note: a production is for a nonterminal if the nonterminal is the head of the
production.

Start symbol

April 1, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Derivations
• Derivations(推導):

– A grammar derives strings by
- beginning with the start symbol and
- repeatedly replacing a nonterminal by the body of a production for

that nonterminal.

– The terminal strings that can be derived from the start
symbol form the language defined by the grammar.

• E.g., 9-5+2
– 9 is a list by production (2.3) since 9 is a digit
– 9-5 is a list by production (2.2) since 9 is a list and 5 is a digit.
– 9-5+2 is a list by production (2.1) since 9-5 is a list and 2 is a digit.

list list + digit (2.1)
list list – digit (2.2)
list digit (2.3)
digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (2.4)

April 1, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

A Grammar for Empty List of Parameters

• A function call might consist of an empty list of
parameters.
– E.g., a function call max()

• An example of the grammar for empty list of
parameters:

call id (optparams)
optparams params | ε
params params, param | param

Optional
parameter list

Empty list
(epsilon)

April 1, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Parsing
• Parsing is the problem of

– Taking a string of terminals
– Figuring out how to derive it from the start symbol of the

grammar
– Reporting syntax errors within the string if it can’t be

derived.

• Parsing is one of the most fundamental problems
in all of compiling.

April 1, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Parse Tree
• A parse tree pictorially shows how the start symbol
of grammar derives a string in the language.
– Given a context-free grammar (or grammar), a parse tree

according to the grammar is a tree.
– Parse tree properties:

- The root is labeled by the start symbol.
- Each leaf is labeled by a terminal or by ε.
- Each interior node is labeled by a nonterminal.
- If A is an interior node and X1, X2, …, Xn

are the children of that node from left to right,
there must be a production A X1 X2 … Xn,
where each Xi stands for a terminal or nonterminal.

A

X ZY

A XYZ
Production

Parse
tree

April 1, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of the Parse Tree
• The parse tree of 9-5+2

– Each node is labeled
with a grammar symbol.

– An interior node and its
children correspond to a
production.
- Interior node: head of the production
- Children: body of the production

• Parsing a tree is to find a parse
tree for a given string of
terminals.

list list + digit (2.1)
list list – digit (2.2)
list digit (2.3)
digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (2.4)

list

list digit

+ 2

list digit

-

digit

9 5

Parse
tree

Productions

April 1, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Ambiguity
• A grammar is ambiguous if it can have more than
one parse tree generating a given string of terminals.
– A string with more than one parse tree usually has more

than one meaning.

• E.g., 9-5+2 string string + string | string – string | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

string

string string+

Productions

2string string-

59

string

string string-

9 string string+

25

Two parse
tree

(9-5)+2 9-(5+2)

April 1, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Ambiguity (Cont.)
• E.g., 9-5+2

list list + digit (2.1)
list list – digit (2.2)
list digit (2.3)
digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (2.4)

list

list digit

+ 2

list digit

-

digit

9 5

Parse
tree

Productions

listNo such
a parse

tree
list

-

digit

9

list

list digit

+

digit

5 2

April 1, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Associativity of Operators
• Left associativity:

– Operators of the same precedence are processed from
left to right.

– E.g., 9+5+2 = (9+5)+2

• Right associativity:
– Operators of the same precedence are processed from

right to left.
– E.g., a=b=c equals to a=(b=c)

right letter = right | letter
letter a | b | … | z

April 1, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Associativity of Operators (Cont.)
right letter = right | letter
letter a | b | … | z

letter right=

a letter right=

letterb

a=b=c

right

c

list list + digit
list list – digit
list digit
digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

list digit+

2list digit-

5digit

9-5+2

list

9
Left-associative Right-associative

April 1, 2010 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Precedence of Operators
• A grammar for arithmetic expressions can be
constructed from a table showing the associativity
and precedence of operators.
– E.g.,

– E.g., 9+5*2 = 9+(5*2), 9*5+2 = (9*5)+2

Left-associative: + - (lower precedence)
Left-associative: * / (higher precedence)

April 1, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Grammar with Precedence (+ - * /)
• Define nonterminals:

– factor: for generating basic units in expressions
– term: for the precedence level of * and /
– expr: for the precedence level of + and –

• Guidance:
– n precedence levels need (n+1) nonterminals

• Grammar
expr expr + term | expr – term | term
term term * factor | term / factor | factor
factor digit | (expr)

Start
symbol

April 1, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Grammar with Precedence (+ - * /) (Cont.)

• E.g., 9+5*2 expr expr + term | expr – term | term
term term * factor | term / factor | factor
factor digit | (expr)

expr term+

term term factor*

2factor

expr

5

factor

9

April 1, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

A Grammar for a Subset of Java Statements

stmt id = expression ;
| if (expression) stmt
| if (expressoin) stmt else stmt
| while (expression) stmt
| do stmt while (expression) ;
| {stmts}

stmts stmts stmt
| ε

The semicolon
come from other

expressions

Syntax-Directed
Translation

Syntax-Directed
Translation

April 1, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

Syntax-Directed Translation
• Syntax-directed translation is done by attaching
rules or programs to productions in a grammar.
– E.g.,

expr expr1 + term
The subscript in expr1 is
only used to distinguish

the instance of expr.
translate expr1;
translate term;
handle +;

translation

Pseudo-code

April 1, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Concepts Related to Syntax-Related
Translation
• Two main concepts:

– Attributes:
- An attribute is any quantity associated with a programming

construct (程式結構).
- E.g.,

· Data types of expressions
· The number of instructions in the generated code
· The location of the first instruction in the generated code for a construct.

– Translation schemes:
- A translation scheme is a notation for attaching program fragments

to the productions of a grammar.
· The program fragments are executed when the production is used during
syntax analysis.

April 1, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Synthesized Attributes
• Attribute synthesis:

– Attach associate attributes with nonterminals and terminals.
– Then attach (semantic) rules to the productions of the grammar.

- These rules describe how the attributes are computed at nodes of the parse tree.
- A production is used to relate a node to its children.

• Attribute evaluation:
– For a given input string x,

- Construct a parse tree for x.
- Then apply the semantic rules to evaluate attributes at each nodes in the parse

tree.

• An attribute is synthesized if its value at a parse-tree node N is
determined from attributes values at the node N and the children of the
node N.

• Synthesized attributes can be evaluated during a single bottom-up
traversal of a parse tree.

April 1, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Postfix Notation
• Postfix notation is easier to generate the three-
address code.

• No parentheses are needed in postfix notation.

• Definition of postfix notation:
– Rule 1: E is a variable or constant EE
– Rule 2: E is an expression of the form EE11 op Eop E22 where op is a

binary operator, EE11 EE22 opop
– Rule 3: E is a parenthesized expression of the form (E(E11)) EE11

• E.g., Infix Postfix
(9-5)+2 95-2+

April 1, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Postfix Notation (Cont.)
• The steps to solve the postfix expression:

1. Scan the postfix string from the left until encountering
an operator.

2. Look to the left for the proper number of operands.
3. Evaluate the operator on the operands, and replace

them by the result.

• E.g., 9 5 2 + - 3 *
9 5 2 +5 2 + - 3 *

9 7 – 3 *
9 7 9 7 –– 3 *
2 3 *
2 3 *2 3 *
6

April 1, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Annotated Parse Tree
• Annotated parse tree is a parse tree showing the attribute

values at each node.
– E.g., 9-5+2

expr term+

2expr term-

5term

9-5+2

expr

9
Parse tree

expr expr + term | expr – term | term
term 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Productions

expr.t = 95- term.t = 2+

2expr.t = 9 term.t = 5-

5term.t = 9

9-5+2

expr.t = 95-2+

9

Annotated parse tree: postfix

t is the attribute of
expr and term.

April 1, 2010 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Syntax-Directed Definition for Infix to
Postfix Translation

Production Semantic Rules
expr expr1 + term expr.t = expr1.t || term.t || “+”
expr expr1 - term expr.t = expr1.t || term.t || “-”
expr term expr.t = term.t
term 0 term.t = ‘0’
term 1 term.t = ‘1’
… …

term 9 term.t = ‘9’

|| : String concatenation
Attach strings as attributes

expr.t = 95- term.t = 2+

2expr.t = 9 term.t = 5-

5term.t = 9

9-5+2

expr.t = 95-2+

9

Annotated parse tree

Formalization of the definition
of postfix expression

April 1, 2010 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Tree Traversals
• Tree traversals are used

– for describing attribute evaluation and
– for specifying the execution of code fragments in a

translation scheme.

• A tree traversal starts at the root and visits each
node of the tree in the same order.
– A depth-first traversal starts at the root and recursively

visits the children of each node in any order (not
necessary from left to right).

– Synthesized attributes can be evaluated during any
bottom-up traversal.
- i.e., attributes of a node can only be evaluated after the attributes

of its children are evaluated.

April 1, 2010 34

Copyright © All Rights Reserved by Yuan-Hao Chang

Postorder and Preorder Traversal
• If we traverse a tree by visiting the children of each node of a tree from

left to right,
– Postorder: the action of the node is done when we leave the node.
– Preorder: the action of the node is done when we first visit the node.

expr.t = 95- term.t = 2+

2expr.t = 9 term.t = 5-

5term.t = 9

9-5+2

expr.t = 95-2+

9

Annotated parse tree: postorder

expr.t = -95 term.t = 2+

2expr.t = 9 term.t = 5-

5term.t = 9

9-5+2

expr.t = +-952

9

Annotated parse tree: preorder

April 1, 2010 35

Copyright © All Rights Reserved by Yuan-Hao Chang

Tree Traversals (Cont.)
• An example of a depth-first traversal

Procedure visit(node NN) {
for (each child CC of NN, from left to right) {

visit(C);
}
evaluate semantic rules at node N;

}

Procedure visit(node NN) {
evaluate semantic rules at node N;
for (each child CC of NN, from left to right) {

visit(C);
}

}

Postorder
traversal

Preorder
traversal

April 1, 2010 36

Copyright © All Rights Reserved by Yuan-Hao Chang

Translation Schemes
• A syntax-directed translation scheme is to attach
program fragments to productions in a grammar.
– Similar to a syntax-directed definition (syntax definition),

except that the order of evaluation of the semantic rules
is explicitly specified.

• A syntax-directed translation scheme often serves
as the specification for a translator.

April 1, 2010 37

Copyright © All Rights Reserved by Yuan-Hao Chang

Semantic Actions
• Semantic actions are program fragments
embedded within production bodies. (encoded in { })
– E.g., Rest + term {print(‘+’)} rest1

Semantic
actions

+ rest1{print(‘+’)}

rest

term

An extra leaf for a
semantic action

April 1, 2010 38

Copyright © All Rights Reserved by Yuan-Hao Chang

Semantic Actions (Cont.)
• E.g., translate 9-5+2 into 95-2+ (infix into postfix)

expr expr + term
expr expr - term
expr term
term 0
term 1
…
term 9

{printf(‘+’)}
{printf(‘-’)}

{printf(‘0’)}
{printf(‘1’)}
…
{printf(‘9’)}

expr term {print(‘+’)}

expr

+

2 {print(‘2’)}expr term {print(‘-’)}-

5 {print(‘5’)}term

9 {print(‘9’)}

Translation scheme with semantic actions into postfix notation
print the translation incrementally

Parse tree with semantic actions
in a postorder traversal.

April 1, 2010 39

Copyright © All Rights Reserved by Yuan-Hao Chang

Semantic Actions (Cont.)
• Semantic actions (the implementation of a translation
scheme)
– Should be performed in the order they would appear during

tree traversal.
– Need not actually construct a parse tree.
– Need not any storage for the translation of subpexressions.

ParsingParsing

April 1, 2010 41

Copyright © All Rights Reserved by Yuan-Hao Chang

Parsing
• Parsing is the process of determining how a string of

terminals can be generated by a grammar.
– A parser doesn’t need to construct a parse tree, but should be able

to construct a parse tree so as to guarantee the correctness of the
translation.

– Parsers almost make a single left-to-right scan over the input,
looking ahead one terminal at a time (to construct the parse tree).

• Time complexity
– For any context-free grammar, there is a parser that takes at most

O(n3) to parse a string of n terminals.
– In general, linear time algorithms suffice to parse essentially all

languages in practice.

April 1, 2010 42

Copyright © All Rights Reserved by Yuan-Hao Chang

Parsing Methods
• Two parsing classes:

– Top-down method (by hand-designed parsers):
- Constructions start at the root and proceeds towards the leaves.
- Efficient parsers can be constructed more easily.

– Bottom-up method (preferred by software generated parsers):
- Constructions start at the leaves toward the root.
- A larger classes of grammars and translation schemes can be

handled with software tools.

April 1, 2010 43

Copyright © All Rights Reserved by Yuan-Hao Chang

Top-Down Parsing
• Start with the root, and repeatedly perform the

following two steps:
1. At node N (labeled with nonterminal A),

1. Select one of the productions for A and
2. Construct children at N for the symbols in the production body.

2. Find the next node at which a subtree is to be
constructed.

• The current terminal being scanned in the input
is referred to as the lookahead symbol.

April 1, 2010 44

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of Top-Down Parsing (Cont.)
stmt expr ;

| if (expr) stmt
| for (optexpr ; optexpr ; optexpr) stmt
| other

optexpr ε
| expr

A grammar for some statements in C and Java

for

stmt

(optexpr optexpr; optexpr;) stmt

ε expr expr other

A parse tree of the for
statement:

for (; expr ; expr) other

ε epsilon (e in Greek)
empty (or null)

April 1, 2010 45

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of Top-Down Parsing (Cont.)
PARSE stmt
TREE

INPUT

PARSE
TREE

INPUT

for

stmt

(optexpr optexpr; optexpr;) stmt

for (optexpr optexpr; optexpr;) stmt

for (optexpr optexpr; optexpr;) stmt

PARSE
TREE

INPUT

for

stmt

(optexpr optexpr; optexpr;) stmt

for (optexpr optexpr; optexpr;) stmt

(a)

(b)

(c)

Match for: expend
the parse tree

Advance to the next
child

April 1, 2010 46

Copyright © All Rights Reserved by Yuan-Hao Chang

Predictive Parsing
• The problems of top-down parsing:

– The selection of a production for a nonterminal may
involve trial-and-error (heuristic method).

– Backtracking is needed if a selected production is
unsuitable.

• Predictive parsing
– Is a recursive-descent parsing (a top-down method), in

which the lookahead symbol unambiguously determines
the flow of control through the procedure body for each
nonterminal.

– Relies on information about the first symbols that can be
generated by a production body.

– Consists of a procedure for every nonterminal.

April 1, 2010 47

Copyright © All Rights Reserved by Yuan-Hao Chang

Pseudocode for a Predictive Parser
void stmt () {

switch (lookaheadlookahead) {
case expr:

match(expr); match(‘;’); break;
case if:

match(if); match(‘(’); match(expr); match(‘)’); stmt();
case for:

match(for); match(‘(’);
optexpr(); match(‘;’); optexpr(); match(‘;’); optexpr();
match(‘)’); stmt(); break;

case other:
match(other); break;

default:
report(“syntax error”);

}
}

stmt expr ;
| if (expr) stmt
| for (optexpr ; optexpr ; optexpr) stmt
| other

optexpr ε
| expr

void optexpr() {
if (lookaheadlookahead == expr) match(expr);

}

void match(terminal t) {
if (lookaheadlookahead == t) lookahead = nextTerminal;
else report(“syntax error”);

}

Grammar

FIRST(stmt) = {expr, if, for, other}
FIRST(expr;) = {expr}

Define FIRST(α) to be the set of
terminals that appear as the first
symbols of one or more strings of
terminals generated from α.

E.g., for (; expr ; expr) other

Global
variable

terminal

nonterminal

April 1, 2010 48

Copyright © All Rights Reserved by Yuan-Hao Chang

FIRST(α)
• Define FIRST(α) to be the set of terminals that
appear as the first symbols of one or more strings
of terminals generated from α.
– If α begins with a terminal, the terminal is the only

symbol in FIRST(α).
- E.g.,

– If α begins with a nonterminal, the first terminal in each
body of its productions is in FIRST(α).
- E.g.,

– If α is ε or can generate ε, then ε is also in FIRST(α).

FIRST(expr ;) = {expr}

FIRST(stmt) = {expr, if, for, other}

April 1, 2010 49

Copyright © All Rights Reserved by Yuan-Hao Chang

Predictive Parser Design
• The procedure of a predictive parser for a
nonterminal A does two things:
– First decide which A-production to use by examining the

lookahead symbol.
- The production with body α is used if the lookahead symbol is in

FIRST(α).
- If the lookahead symbol is not in the FIRST set for any production

body for A, the ε-production (for A) is used.
– Then mimic the body of the chosen production.

- A nonterminal is executed by a call to the procedure for that
nonterminal.
· A terminal matching the lookahead symbol is executed by reading the
next input symbol.

· If the terminal in the body of the matched production doesn’t match the
lookahead symbol, a syntax error is reported.

April 1, 2010 50

Copyright © All Rights Reserved by Yuan-Hao Chang

Left Recursion
• A recursive-descent parser might loop forever due
to the “left-recursive” productions.
– E.g., the leftmost symbol is the same as the nonterminal

at the head of the production.

– The lookahead symbol changes only when a terminal in
the body is matched, so that the call to expr might loop
forever.

• Left recursive productions lead the tree growing
down the left.

expr expr + term

April 1, 2010 51

Copyright © All Rights Reserved by Yuan-Hao Chang

Left Recursion (Cont.)
• The way to prevent loop-forever in left recursion:

– Consider a nonterminal A with two productions:

- If A = expr, string α = + term, and string β = term, then

- When A is finally replaced by β, we have a β followed by a
sequence of zero or more α’s.

A Aα | β

expr expr + term | term

β α α ... α

Α
Α

Α
Α

April 1, 2010 52

Copyright © All Rights Reserved by Yuan-Hao Chang

Right Recursion
• Right recursive productions lead the tree growing
down the right.

A βR
R αR | ε

β α α ... α ε

R
R

R
R

A

A Aα | β

β α α ... α

Α
Α

Α
Α

Left recursion to
right recursion

Left-recursion
elimination

A Translator for Simple
Expressions

A Translator for Simple
Expressions

April 1, 2010 54

Copyright © All Rights Reserved by Yuan-Hao Chang

Abstract and Concrete Syntax Trees
• Abstract syntax tree (Syntax tree)

– Each interior node represents an operation.
– Children of the node represent the operands of the

operator.
– No helper nodes (e.g., factor, term) for single

productions are needed.

• Concrete syntax tree (Parse tree)
– Each interior node represent a nonterminal.
– Many nonterminals represent programming construct,

but others are “helpers.”
– The underlying grammar for the parse tree is called a

concrete syntax.

Single production: a production whose body consists of a single nonterminal.
(e.g., “expr term” is a single production)

- 2

5

+

9
9-5+2

Syntax tree

April 1, 2010 55

Copyright © All Rights Reserved by Yuan-Hao Chang

Left Recursion Elimination

expr expr + term
| expr - term
| term

term 0
| 1

…
| 9

{printf(‘+’)}
{printf(‘-’)}

{printf(‘0’)}
{printf(‘1’)}
…
{printf(‘9’)}

Actions to translate into postfix notation

A = expr, α = + term, β = - term, γ = term
A Aα | Aβ | γ

A γR
R α R | βR | ε

Left recursion

right recursion
Left recursion

elimination

expr term rest
rest + term {print(‘+’)} rest

| - term {print(‘-’)} rest
| ε

term 0 {print(‘0’)}
| 1 {print(‘1’)}

…
| 9 {print(‘9’)}

A = expr
R = rest
α = + term {print(‘+’)}
β = - term {print(‘-’)}
γ = term

April 1, 2010 56

Copyright © All Rights Reserved by Yuan-Hao Chang

Left Recursion Elimination (Cont.)
• Left-recursion elimination must be done carefully to ensure the

order of semantic actions.
– E.g., actions {print(‘+’)} and {print(‘-’)} in the middle of a production body

- If the print actions are moved to the end, the translation would be incorrect.
(9-5+2 would become 952+-)

restterm

expr

9 {print(‘9’)}
- {print(‘-’)}term

5 {print(‘5’)}

2 {print(‘2’)}

rest

+ {print(‘+’)}term rest

ε9-5+2 to 95-2+

expr term rest
rest + term {print(‘+’)} rest

| - term {print(‘-’)} rest
| ε

term 0 {print(‘0’)}
| 1 {print(‘1’)}

…
| 9 {print(‘9’)}

Translation scheme

April 1, 2010 57

Copyright © All Rights Reserved by Yuan-Hao Chang

Procedure for the Nonterminals
void expr () {

term(); rest();
}

void rest () {
if (lookahead == ‘+’) {

match(‘+’); term(); print(‘+’); rest();
}
else if (lookahead == ‘-’) {

match(‘-’); term(); print(‘-’); rest();
}
else { } // do nothing with the input

}

void term () {
if (lookahead is a digit) {

t = lookahead; match(lookahead); print(‘t’);
}
else report(“syntax error”);

}

expr term rest
rest + term {print(‘+’)} rest

| - term {print(‘-’)} rest
| ε

term 0 {print(‘0’)}
| 1 {print(‘1’)}

…
| 9 {print(‘9’)}

Translation scheme

Procedure for the nonterminals

void match(terminal t) {
if (lookaheadlookahead == t) lookahead = nextTerminal;
else report(“syntax error”);

}

Tail
recursive

Tail
recursive

April 1, 2010 58

Copyright © All Rights Reserved by Yuan-Hao Chang

Translation Simplification
• When expressions with multiple levels of precedence are

translated, simplifications could reduce the number of
needed procedures.

– Tail recursion can be replaced by iterations.
- Tail recursion is when the last statement executed in a procedure body is

a recursive call to the same procedure.

void rest () {
if (lookahead == ‘+’) {

match(‘+’); term(); print(‘+’); rest();
}
else if (lookahead == ‘-’) {

match(‘-’); term(); print(‘-’); rest();
}
else { } // do nothing with the input

}

Tail
recursive

void rest () {
while (true) {

if (lookahead == ‘+’) {
match(‘+’); term(); print(‘+’); continue;

}
else if (lookahead == ‘-’) {

match(‘-’); term(); print(‘-’); continue;
}
break; // break out of the while loop

}
}

Tail recursion
elimination

April 1, 2010 59

Copyright © All Rights Reserved by Yuan-Hao Chang

Translation Simplification (Cont.)

void rest () {
if (lookahead == ‘+’) {

match(‘+’); term(); print(‘+’); rest();
}
else if (lookahead == ‘-’) {

match(‘-’); term(); print(‘-’); rest();
}
else { } // do nothing with the input

}

Tail recursive
void rest () {

while (true) {
if (lookahead == ‘+’) {

match(‘+’); term(); print(‘+’); continue;
}
else if (lookahead == ‘-’) {

match(‘-’); term(); print(‘-’); continue;
}
break; // break out of the while loop

}
}

Tail recursion
elimination

void expr () {
term(); rest();

}

void expr () {
term();
while (true) {

if (lookahead == ‘+’) {
match(‘+’); term(); print(‘+’); continue;

}
else if (lookahead == ‘-’) {

match(‘-’); term(); print(‘-’); continue;
}
break; // break out of the while loop

}
}

MergeMerge
exprexpr()()
andand
restrest()()

April 1, 2010 60

Copyright © All Rights Reserved by Yuan-Hao Chang

An Infix-to-Postfix Translator (in Java)
Import java.io.*; // include the IO package
Class Parser { // in file Parser.java

static int lookahead;

public Parser() throws IOException{ //constructor
lookahead = System.in.read(); //read first char

}

void expr() throws IOException {
term();
while (true) {

if(lookahead == ‘+’) {
match(‘+’); term(); System.out.write(‘+’);

}
else if (lookahead == ‘-’) {

match(‘-’); term(); System.out.write(‘-’);
}
else return;

}
}

void term() throws IOException {
if (Character.isDigit((char)lookahead)) {

System.out.write ((char)lookahead);
match(lookahead);

}
else throw new Error(“syntax error”);

}

void match (int t) throws IOException {
if (lookahead == t) lookahead = System.in.read();
else throw new Error(“syntax error”);

}
}

public class Postfix { // in file Postfix.java
public static void main(String[] args) throws IOException {

Parser parse = new Parser();
parse.expr(); System.out.write(‘\n’);

} Entry function

Exception
occurs when
no input to be

read.

Read next
char / symbol

Lexical AnalysisLexical Analysis

April 1, 2010 62

Copyright © All Rights Reserved by Yuan-Hao Chang

Lexical Analyzer
• Lexical analyzer read characters from the input and groups

them into “token objects.”
– A token object is a terminal symbol (for parsing decision) with

additional information in the form of attribute values.
– A sequence of input characters that comprises a single token is

called a lexeme.

• Assumption
– The lexical analyzer allows

numbers, identifiers, and
“white space.”

– Attribute
- num.value: integer value
- id.lexeme: string for its name

expr expr + term
| expr – term
| term

term term * factor
| term / factor
| factor

term (expr)
| num
| id

{ print(‘+’) }
{ print(‘-’) }

{ print(‘*’) }
{ print(‘/’) }

{ print(num.value) }
{ print(id.lexeme) }

April 1, 2010 63

Copyright © All Rights Reserved by Yuan-Hao Chang

Removal of White Space and Comments

• Most languages
– Allow arbitrary amounts of white space

- While space includes blank, tab, newline.

– Ignore comments during parsing
– Show line numbers and context within error messages.

for (; ; peek = next input character) {
if (peek is a blank or a tab) do nothing;
else if (peek is a newline) line = line + 1;
else break;

}

April 1, 2010 64

Copyright © All Rights Reserved by Yuan-Hao Chang

Reading Ahead
• Lexical analyzers might need to read ahead some
characters before deciding a token.
– E.g., when the character > is seen:

- The lexeme for the token might be >= or >.
– One-character read-ahead usually suffices (but not

always).
- Suppose that the read-ahead character is stored in variable peek

that is blank if the read-ahead character (e.g., *) is not necessary.

• Input buffer
– A general approach is to maintain an input buffer for the

lexical analyzer to read and push back characters.
– It is usually more efficient to fetch a block of characters

instead of reading a character at a time.

April 1, 2010 65

Copyright © All Rights Reserved by Yuan-Hao Chang

Constants
• Arbitrary integer constants

– When a sequence of digits appears in the input stream,
the lexical analyzer passes a token to the parser.
- The token consists of the terminal num along with an integer-

valued attribute computed from the digits.
- E.g., The input 31 + 28 + 59 is transformed into

<num, 31> <+> <num, 28> <+> <num, 59>
if (peek holds a digit) {

v = 0;
do {

v = v * 10 + integer value of digit peek;
peek = next input character;

} while (peek holds a digit);
return token<num, v>;

}

April 1, 2010 66

Copyright © All Rights Reserved by Yuan-Hao Chang

Recognizing Keywords and Identifiers
• Difference between keywords and identifiers:

– Keywords:
- Are character strings to identify programming constructs.
- E.g., for, do, if

– Identifiers:
- Are character strings to name variables, arrays, function, and the

like.
- Treated as terminals to simplify the parser.

• A mechanism is needed for deciding whether a
lexeme forms a keyword or an identifier.

April 1, 2010 67

Copyright © All Rights Reserved by Yuan-Hao Chang

Recognizing Keywords and Identifiers (Cont.)

• E.g.,
– The input:

- count = count + increment;

– The parser considers the input as:
- id = id + id;

– The token for id has an attribute that holds the lexeme.
Write tokens as tuples:
- <id, “count”> <=> <id, “count”> <+> <id, “increment”> <;>

April 1, 2010 68

Copyright © All Rights Reserved by Yuan-Hao Chang

• One solution to recognize keywords and identifiers
is to maintain a table to hold character strings. It
solves two problems:
– Single representation:

- A string table can insulate the rest of the compiler from the
representation of strings.

- The compiler can work with references or pointers to the strings in
the string table because references can be manipulated more
efficiently.

– Reserved words:
- Reserved words can be implemented by initializing the string

table with the reserved strings and their tokens.
- When the lexical analyzer reads a string or lexeme, it checks

whether the lexeme is in the string table. If so, it returns the token;
otherwise, it returns a token with terminal id.

Recognizing Keywords and Identifiers (Cont.)

April 1, 2010 69

Copyright © All Rights Reserved by Yuan-Hao Chang

Recognizing Keywords and Identifiers (Cont.)

• An example with Java:
– Create a hash table as the string table

– Distinguish keywords and identifiers (pseudocode)

Hashtable words = new Hashtable();

if (peek holds a letter) {
Collect letters or digits into a buffer b; // collect a string beginning with a letter
s = string formed from the characters in b; // put the collected string to ss as a lexeme
w = token returned by words.get(s); // check the string table
if (w is not null) return w; // the token for lexeme ss exists
else {

Enter key-value pair (s, <id, s>) into words; // put the ss (as the key) to the table as a new token
return token <id, s>; // return the newly created token for lexeme ss.

}
}

April 1, 2010 70

Copyright © All Rights Reserved by Yuan-Hao Chang

Token Scanner
• An example of the token scanner is as follows
(pseudocode):

Token scan() {
Skip white space;
Handle numbers;
Handle reserved words and identifiers;
// if we get here, treat read-ahead character peek as a token
Token t = new Token(peek); // might be an operator or others
peek = blank; // initialization
return t;

}

April 1, 2010 71

Copyright © All Rights Reserved by Yuan-Hao Chang

Token Scanner in Java

class Token
int tag

class Num
int value

class Word
string lexeme

// for parsing decision

// integer value // reserved words
or identifiers

package lexer

April 1, 2010 72

Copyright © All Rights Reserved by Yuan-Hao Chang

Token Scanner in Java (Cont.)
package lexer; // file Token.java
public class Token {

public final int tag;
public Token (int t) { tag = t; }

} // t = ‘+’;

package lexer; // file Tag.java
public class Tag {

public final static int
NUM = 256, ID = 257;
TRUE = 258, FALSE = 259;

}

package lexer; // file Num.java
public class Num extends Token {

public final int value;
public Num (int v) {

super(Tag.NUM);
value = v; // 30

}
}

package lexer; // file Word.java
public class Word extends Token {

public final String lexeme;
public Word (int t, String s) {

super(t); // setup tag value, t = 258
lexeme = new String(s); //s = “true”

}
}

Identify
package

“final” can’t be
changed once it is

set.

Constructor:
e.g., new Token(‘+’);

Constants. Equal to #define NUM 256 in C
0~255 are reserved for ASCII (e.g., operator *, +)

Calls the constructor
of its parent

e.g., new Num(30); For keywords and identifiers
e.g., new Word(Tag.TRUE, “true”);

April 1, 2010 73

Copyright © All Rights Reserved by Yuan-Hao Chang

Token Scanner in Java (Cont.)
package lexer; // file Token.java
Import java.io,*, import java.util.*;
public class Lexer {

public int line = 1; // initialize line counts
private char peek = ‘ ‘; // initialize peek
private Hashtable word = new Hashtable();
void reserve(Word t) { words.put(t.lexeme, t); }
public Lexer() {

reserve(new Word(Tage.TRUE, “true”);
reserve(new Word(Tage.FALSE, “false”);

}
public Token scan() throws IOException {

for (; ; peek = (char)System.in.read()) {
if (peek == ‘ ‘ || peek == ‘\t’) continue;
else if (peek == ‘\n’) line = line + 1;
else break;

}
}

if(Character.isDigit(peek)) {
int v = 0;
do {

v = 10*v + Character.digit(peek. 10);
peek = (char)System.in.read();

} while (Character.isDigit(peek));
return new Num(v);

}
if (Character.isLetter(peek)) {

StringBuffer b = new StringBuffer();
do {

b.append(peek);
peek = (char)System.in.read();

} while (Character.isLetterOrDigit(peek));
String s = b.toString();
Word w = (Word)words.get(s);
if (w != null) return w;
w = new Word(Tag.ID, s); //add new word
words.put(s, w);
return w;

}
Token t = new Token(peek);
peek = ‘ ‘; // Read-ahead is not necessary
return t;

Count line
number

Skip white
space

For reserved
words

Handle
numbers

Handle
reserved

words and
identifiers

not reserved
word, identifiers,
white space, or

numbers

Look up
the string

table

Symbol TablesSymbol Tables

April 1, 2010 75

Copyright © All Rights Reserved by Yuan-Hao Chang

Symbol Tables
• Symbol tables are data structures to hold information about

source-program constructs.
– Collected incrementally by the analysis phase
– Used by the synthesis phases to generate the target code.

• Symbol tables typically need to
– Support multiple declarations of the same identifier.
– Separate a table for each scope. E.g.,

- A program block with declarations has its own symbol table with an entry
for each declaration in the block.

- E.g., A class would have its own table with any entry for each field and
method.

• Entries in symbol tables
– Contain information about an identifier, e.g., its lexeme, type,

position in storage, and any other relevant information.

April 1, 2010 76

Copyright © All Rights Reserved by Yuan-Hao Chang

Sample Program
• E.g., { int x; char y; { bool y; x; y; } x; y; }

A use of the identifier
(simplified version)

A definition of
the identifier

{ { x:int; y: bool; } x:int; y:char; }

The goal is to remove the
declarations, and to show each
statement with an identifier
followed by a colon and its type.

Reference
outer x

Reference
inner y

Reference
outer x

Reference
outer y

April 1, 2010 77

Copyright © All Rights Reserved by Yuan-Hao Chang

Symbol Table Per Scope
• Scopes are important.

– The same identifier can be declared multiple times.
– Common names like i and x often have multiple uses.
– Subclasses can redeclare a method name to override a

method in a superclass.

• E.g.,
– If stmts can generate a block, then nested blocks can be

created and an identifier could be redeclared.

block ‘{‘ decls stmts ‘}’

April 1, 2010 78

Copyright © All Rights Reserved by Yuan-Hao Chang

Most-Closely Nested Rule
• The most-closely nested rule:

– An identifier x is in the scope of the most-closely nested
declaration of x.
- i.e., the declaration of x found by examining blocks inside-out,

starting with the block where x appears.

– This rule can be implemented by chaining symbol tables.
- That is, the table for a nested block points to the table for its

enclosing block. 1) { int x1; int y1;
2) { int w2; bool y2; int z2;
3) … w2 …; … x1 …; … y2 …; … z2 …;
4) }
5) … w0 …; … x1 …; … y1 …;
6) }
The subscript is the line number of the declaration.

April 1, 2010 79

Copyright © All Rights Reserved by Yuan-Hao Chang

Most-Closely Nested Rule (Cont.)
1) { int x1; int y1;
2) { int w2; bool y2; int z2;
3) … w2 …; … x1 …; … y2 …; … z2 …;
4) }
5) … w0 …; … x1 …; … y1 …;
6) }

w
…

B0:

x int
y int

B1:

w int
y bool
z int

B2:

B0 and B1 are
visible

B0 is visible

Chained symbol tables (form a tree)

April 1, 2010 80

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of Chained Symbol Tables in Java
package symbols;
import java.util.*;
Public class Env {

private Hashtable table;
protected Env prev;

public Env (Env p) { // constructor
table = new Hashtable(); // create a new symbol table
prev = p; // point to the previous (above) Env object

}
public void put (String s, Symbol sym) {

table.put(s, sym);
}
public Symbol get (String s) {

for (Env e = this; e != null; e = e.prev) {
Symbol found = (Symbol) (e.table.get(s));
if (found != null) return found;

}
return null;

}
}

Constructor: reate a
hash table with an
parameter pointing to
the previous Env object

Put a symbol to the
symbol table s: key

sym: value

Search the chained
tables for the entry
of an identifier

April 1, 2010 81

Copyright © All Rights Reserved by Yuan-Hao Chang

The Use of Symbol Tables
• The role of a symbol table is to pass information
from declarations to uses.
– A semantic action “puts” information about identifier x

into the symbol table when the declaration of x is
analyzed.

– Then, a semantic action associated with a production
such as factor id “gets” information about the identifier
from the symbol table.

April 1, 2010 82

Copyright © All Rights Reserved by Yuan-Hao Chang

The Use of Symbol Tables (Cont.)
Grammar Semantic Action

program

block

decls
decl

stmts

stmt

factor

block
‘{‘

decls stmts ‘}’

decls decl | ε
type id;

stmts stmt | ε

block
| factor;

id

{ top = null;}

{ saved = top;
top = new Env(top);
print(“{“); }

{ top = saved;
print(“} “); }

{ s = new Symbol;
s.type = type.lexeme;
top.put(id.lexeme, s); }

{ print(“; “); }
{ s = top.get(id.lexeme);

print(idid.lexeme);
print(“:”);
print(s.type); }

{ int x; char y; { bool y; x; y; } x; y; }

{ { x:int; y: bool; } x:int; y:char; }

The translation scheme creates and
discards symbol tables upon block

entry and exit, respectively.

Top table

Save a reference to the current
table with the local variable savedsaved

Restore top (i.e., pup up
the top table)

Create a new table, and set the
variable toptop to the newly

created and chained table

Put a new declaration (identifier)
with its type into the table

Use the chained symbol tables
to get the entry for the identifier

Intermediate Code
Generation

Intermediate Code
Generation

April 1, 2010 84

Copyright © All Rights Reserved by Yuan-Hao Chang

Intermediate Representations
• Two kinds of intermediate representations

– Trees, including parse trees and (abstract) syntax trees.
- Syntax-tree nodes are created to represent significant programming

constructs.
- As analysis proceeds, information is added to the nodes in the form of

attributes.
· The choice of attributes depends on the translation to be performed.

– Linear representations, especially “three-address code.”
- Three-address code

· Is a sequence of elementary program steps without hierarchical structure.
· Is helpful for significant code optimization.

- The sequence of three-address statements forms a program into “basic
blocks”.

· Statements in a basic block are executed one-after-the-other without branching.

April 1, 2010 85

Copyright © All Rights Reserved by Yuan-Hao Chang

Construction of Syntax Trees
• Syntax trees can be created for any construct.

– Each construct is represented by a node with children for
the semantically meaningful components of the construct.

– E.g., Syntax tree construction with Java
- Each node is implemented as objects of class Node.
- Class Node has two immediate subclasses:

· Expr for all kinds of expressions.
· Stmt for all kinds of statements.

» Each type of statement has a corresponding
subclass of Stmt.

» E.g., operator while corresponds to subclass While,
where While is a subclass of Stmt.

while

expr stmt

op

E1 E2

while (expr) stmt

new While (x, y) The constructor corresponds to the operator While.
The parameters x and y corresponds to the operands.

April 1, 2010 86

Copyright © All Rights Reserved by Yuan-Hao Chang

Syntax Trees for Statements
• For each statement construct, we define an
operator in the abstract syntax.
– For constructs beginning with a keyword, we should use

the keyword for the operator.
- An operator whilewhile for while statements
- An operator dodo for do-while statements
- Operators ifelseifelse and ifif for if-statements with and without an else

part, respectively.

– Each statement operator has a corresponding class of
the same name.
- E.g., class If corresponds to if.

class Seq represents a sequence of statements.

April 1, 2010 87

Copyright © All Rights Reserved by Yuan-Hao Chang

Syntax Trees for Statements (Cont.)
• An example of the construction of syntax tree nodes

– The semantic action
- Defines the node stmt.n as

a new object of subclass If.
- Creates a new node labeled if

with the nodes expr.n and stmt1.n as children.

– Expression statements do not begin with a keyword.
- An operator eval and class Eval (a subclass of Stmt) to represent

expressions that are statements.
- E.g.,

stmt if (expr) stmt1 { stmt.n = new If(expr.n, stmt1.n); }

Each nonterminal in this translation
scheme has an attribute nn.

stmt expr ; { stmt.n = new Eval(expr.n); }

April 1, 2010 88

Copyright © All Rights Reserved by Yuan-Hao Chang

Representing Blocks in Syntax Trees
• An example of blocks in syntax trees:

stmt block ; { stmt.n = block.n; }
block ‘{‘ stmts ‘}’ { block.n = stmts.n; }

When a statement is a
block, it has the same
syntax tree as the block.

The syntax tree for nonterminal
block is simply the syntax tree for the
sequence of statements in the block.

– Information from declarations is incorporated into the
symbol table, so that declarations are not in the syntax
tree.

– Blocks, w/wo declarations, appear to be just another
statement construct in intermediate code.

April 1, 2010 89

Copyright © All Rights Reserved by Yuan-Hao Chang

Sequence of Statements
• A sequence of statements is represented by using

– A leaf null for an empty statement
– An operator seq for a sequence of statements

• E.g.,
stmts stmts1 stmt { stmts.n = new Seq(stmts1.n, stmt.n); }

seq
seq

seq

seq

null

if

some
tree for an
expression

some
tree for an
expression

while

some
tree for an
expression

some
tree for an
expression

While
statement

If
statement

April 1, 2010 90

Copyright © All Rights Reserved by Yuan-Hao Chang

Syntax Trees for Expressions
• Grouping of operators

– To reduce the number of cases and subclasses of nodes
in implementation

– E.g.,

Concrete Syntax
=
||

&&
== !=

< <= >= >
+ -

* / %
!

-(unary)
[]

Abstract Syntax
assign
cond
cond
rel
rel
op
op
not

minus
access

Increasing
precedence

term term1 * factor { term.n = new Op(‘*’, term1.n, factor.n); }
Create a node of class Op that implements the operators grouped under op.

April 1, 2010 91

Copyright © All Rights Reserved by Yuan-Hao Chang

Translation Scheme for Construction of
Syntax Trees

program
block
stmts

stmt

expr

rel

add

term

factor

block
‘{‘ stmts ‘}’

stmts1 stmt
| ε

expr ;
| if (expr) stmt1
| while (expr) stmt1
| do stmt1 while (expr) ;
| block

rel = expr1
| rel

rel1 < add
| rel1 <= add
| add

add1 + term
| term

term1 * factor
| factor

(expr)
| num

{ return block.n;}
{ block.n = stmts.n; }
{ stmts.n = new Seq (stmts1.n, stmt.n); }
{ stmts.n = null; }
{ stmt.n = new Eval (expr.n); }
{ stmt.n = new If (expr.n, stmt1.n); }
{ stmt.n = new While (expr.n, stmt1.n); }
{ stmt.n = new Do (stmt1.n, expr.n); }
{ stmt.n = block.n; }
{ expr.n = new Assign (‘=‘, rel.n, expr1.n); }
{ expr.n = rel.n; }
{ rel.n = new Rel (‘<‘, rel1.n, add.n); }
{ rel.n = new Rel (‘<=‘, rel1.n, add.n); }
{ rel.n = add.n; }
{ add.n = new Op (‘+‘, add1.n, term.n); }
{ add.n = term.n; }
{ term.n = new Op (‘*‘, term1.n, factor.n); }
{ term.n = factor.n; }
{ factor.n = expr.n; }
{ factor.n = new Num (num.value); }

April 1, 2010 92

Copyright © All Rights Reserved by Yuan-Hao Chang

Static Checking
• Static checks are consistency checks and includes:

– Syntactic checking:
- Check syntactic constraints that are not part of grammar, e.g.,

· An identifier can be declared at most once in a scope.
· A break statement must have an enclosing loop or switch statement.

– Type checking:
- Ensure that an operator or function is applied to the right number

and type of operands, e.g.,
· When an integer is added to a float, the type-checker can insert an
operator in the syntax tree to represent the type conversion (coercion).

• Complex static checks may need to be done by
first constructing an intermediate representation.

April 1, 2010 93

Copyright © All Rights Reserved by Yuan-Hao Chang

L-values and R-values
• Differences

– L-value refers to location that are appropriate on the left
side of an assignment.

– R-value refers to values that are appropriate on the right
side of an assignment.

i = 5;
i = i + 1;

L-value: where
to be stored

R-value: what’s
the value

April 1, 2010 94

Copyright © All Rights Reserved by Yuan-Hao Chang

Type Checking
• Type checking assures that the type of a construct
matches the expected type.
– E.g., if (expr) stmt (expr is expected to have type boolean.)

• Type checking rules follow the operator / operand
structure.
– E.g., the operator rel represents relational operators, such

as <=.
- The type rule for the relational operator is to have two operands

with the same type and to have the result with type boolean.

if (E1.type == E2. type) E.type = boolean;
else error;

April 1, 2010 95

Copyright © All Rights Reserved by Yuan-Hao Chang

Type Checking (Cont.)
• Type matching continues to apply even in the
following situations:
– Coercions:

- The type of an operand is automatically converted.
· E.g., 2 * 3.14 the integer 2 is converted into 2.0

- The language definition specifies the allowable coercions.

– Overloading:
- A symbol is overloaded if it has different meanings depending on

its context.
· E.g., a = “b” + “c”; // string concatenation
· a = 2 + 3; // integer addition

April 1, 2010 96

Copyright © All Rights Reserved by Yuan-Hao Chang

• Once syntax trees are constructed, the tree-address code
could be generated by walking the syntax trees.
– Three-address instructions

- E.g.,

- Flow control of the three-address instructions

- Copy a value:

Three-Address Instruction

x = y op z
- x, y, and z are names, constants, or compiler-generated temporaries.
- op stands for an operator.

x[y] = z
x = y[z]

put the value of z in the location x[y].
put the value of y[z] in the location x.

ifFalse x goto L
ifTrue x goto L
goto L

If x is false, next execute the instruction labeled L.
If x is true, next execute the instruction labeled L.
next execute the instruction labeled L

A label L can be attached to any instruction by prepending a prefix L:
x = y

April 1, 2010 97

Copyright © All Rights Reserved by Yuan-Hao Chang

Translation of Statements
• Statements are translated into three-address code
by using jump instructions to control the flow.

Code to compute
expr into x

ifFalse x goto after

Code for stmt1

after

Class If extends Stmt {
Expr E; Stmt S;
public If (Expr x, Stmt y) {

E = x; S = y; after = newlabel();
}
public void gen() {

Expr n = E.rvalue (); // the boolean result
emit (“ifFalse” + n.toString() + “goto” + after);
S.gen(); // call gen() of class Stmt
emit (after + “:”);

}
}One the entire syntax tree is

constructed, the function gen() is
called at the root of the syntax tree. Function gen() in class If

All statement classes
contain a function gen()

April 1, 2010 98

Copyright © All Rights Reserved by Yuan-Hao Chang

Translation of Expressions
• Simple approach

– Generate one three-address instruction for each operator
node in the syntax tree for an expression.

– Don’t generate code for identifiers or constants since
they can appear as addresses in instructions.

– E.g., if a node x of class Expr has operator op, then an
instruction is emitted to compute the value at node x into
a compiler generated “temporary” name.

i – j + k t1 = i – j
t2 = t1 + k

Translated to

2*a[i] t1 = a [i]
t2 = 2 * t1

Translated to

If a[i] appears on the
left side, we can’t

simply use a temporary
in place of a[i].

April 1, 2010 99

Copyright © All Rights Reserved by Yuan-Hao Chang

Translation of Expressions (Cont.)
• Functions lvalue and rvalue of the simple approach

– When function rvalue is applied to a nonleaf node x, it
- Generates instructions to compute x into a temporary and
- Returns a node representing the temporary.

– When function lvalue is applied to a nonleaf node x, it
- Generates instructions to compute the subtrees below x, and
- Returns a node representing the “address” of x.

April 1, 2010 100

Copyright © All Rights Reserved by Yuan-Hao Chang

Function lvalue
• Cases of function lvalue

– Function lvalue simply returns x if x is the node for an identifier.
– When node x represents an array access (e.g, a[i]), x will have the

form Access(y,z), where
- class Access is a subclass of Expr,
- y is the name of the accessed array, and
- z is the offset (index) of the chosen element in that array.

Expr lvalue (x : Expr) {
if (x is an Id node) return x;
else if (x is an Access(y,z) node and y is an Id node) {

return new Access (y, rvalue (z)); // compute the rvalue
}
else error;

}

a [2*k]

e.g., a [2 * k]:
y = a
z = 2 * k

a [t]
(t = 2 * k)

New node x’ represents
the l-value a[t].

New node z’ represents
the temporary name t.

April 1, 2010 101

Copyright © All Rights Reserved by Yuan-Hao Chang

Function rvalue
• Function rvalue generates instructions and returns a possible new node.

Expr rvalue (x : Expr) {
if (x is an Id node or a Constant node) return x; //return itself
else if (x is an Op(op, y, z) or a Rel(op, y, z) node) {

t = new temporary; // 2. t1, 4. t3
emit string for t = rvalue(y) op rvalue(z); // 4. t3 = j-k, 2. t1=2*t2
return a new node for t; // 4. return t3, 2. return t1

}
else if (x is an Access(y, z) node) {

t = new temporary; // 3. t2
call lvalue(x), which returns Access(y,z’); // z’ = t3
emit string for t = Access(y,z’); // 3. t2=a[t3]
return a new node for t; // return t2

}
else if (x is an Assign(y, z) node) {

z’ = rvalue(z); // z’ = t1
emit string for lvalue(y) = z’; //1. a[i]=t1
return z’;

}
}

a [i] = 2*a[j-k]

t3 = j – k
t2 = a [t3]
t1 = 2 * t2
a [i] = t1

1. a[i] = 2*a[j-k]

2. 2*a[j-k]

2 3. a[j-k]

a[j-k]

rvalue(j-k)

4. j-k

April 1, 2010 102

Copyright © All Rights Reserved by Yuan-Hao Chang

Better Code for Expressions
• We can improve the function rvalue:

– Reduce the number of copy instructions.
- E.g., t = i + 1 and i = t i = i + 1

– Generate fewer instructions by taking context into account.
- E.g.,

· If the left side of a three-address assignment is an array access a[t],
then the right side must be a name, a constant, or a temporary (that
needs just one address).

· If the left side is a name x, the right side can be an operation y op z that
uses two addresses.

null = j + k

i = j + k

t1 = j + k
i = t1

The null result address is later
replaced by either an identifier
or a temporary.

	Outline
	Introduction
	Introduction (Cont.)
	Introduction (Cont.)
	Context-Free Grammar
	Context-Free Grammar (Cont.)
	Tokens vs. Terminals
	Simple Example of Productions
	Derivations
	A Grammar for Empty List of Parameters
	Parsing
	Parse Tree
	An Example of the Parse Tree
	Ambiguity
	Ambiguity (Cont.)
	Associativity of Operators
	Associativity of Operators (Cont.)
	Precedence of Operators
	Grammar with Precedence (+ - * /)
	Grammar with Precedence (+ - * /) (Cont.)
	A Grammar for a Subset of Java Statements
	Syntax-Directed Translation
	Concepts Related to Syntax-Related Translation
	Synthesized Attributes
	Postfix Notation
	Postfix Notation (Cont.)
	Annotated Parse Tree
	Syntax-Directed Definition for Infix to Postfix Translation
	Tree Traversals
	Postorder and Preorder Traversal
	Tree Traversals (Cont.)
	Translation Schemes
	Semantic Actions
	Semantic Actions (Cont.)
	Semantic Actions (Cont.)
	Parsing
	Parsing Methods
	Top-Down Parsing
	An Example of Top-Down Parsing (Cont.)
	An Example of Top-Down Parsing (Cont.)
	Predictive Parsing
	Pseudocode for a Predictive Parser
	FIRST(a)
	Predictive Parser Design
	Left Recursion
	Left Recursion (Cont.)
	Right Recursion
	Abstract and Concrete Syntax Trees
	Left Recursion Elimination
	Left Recursion Elimination (Cont.)
	Procedure for the Nonterminals
	Translation Simplification
	Translation Simplification (Cont.)
	An Infix-to-Postfix Translator (in Java)
	Lexical Analyzer
	Removal of White Space and Comments
	Reading Ahead
	Constants
	Recognizing Keywords and Identifiers
	Recognizing Keywords and Identifiers (Cont.)
	Recognizing Keywords and Identifiers (Cont.)
	Recognizing Keywords and Identifiers (Cont.)
	Token Scanner
	Token Scanner in Java
	Token Scanner in Java (Cont.)
	Token Scanner in Java (Cont.)
	Symbol Tables
	Sample Program
	Symbol Table Per Scope
	Most-Closely Nested Rule
	Most-Closely Nested Rule (Cont.)
	An Example of Chained Symbol Tables in Java
	The Use of Symbol Tables
	The Use of Symbol Tables (Cont.)
	Intermediate Representations
	Construction of Syntax Trees
	Syntax Trees for Statements
	Syntax Trees for Statements (Cont.)
	Representing Blocks in Syntax Trees
	Sequence of Statements
	Syntax Trees for Expressions
	Translation Scheme for Construction of Syntax Trees
	Static Checking
	L-values and R-values
	Type Checking
	Type Checking (Cont.)
	Three-Address Instruction
	Translation of Statements
	Translation of Expressions
	Translation of Expressions (Cont.)
	Function lvalue
	Function rvalue
	Better Code for Expressions

