
Compiler
編譯器原理

Compiler
編譯器原理

Yuan-Hao Chang (張原豪)
johnsonchang@ntut.edu.tw
Department of Electronic Engineering
National Taipei University of Technology

mailto:johnsonchang@ntut.edu.tw

March 3, 2011 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Syllabus
• 授課教師: 張原豪 (207-2 室、分機 2288)

• 上課時間:星期三下午5:10~6:00, 星期五上午10:10~12:00
• 教室: 三教 303, 403
• 教科書：

– Compilers: Principles, Techniques, and Tools, second edition, 2007
Authors: Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman
Publisher: Person International Edition
ISBN: 0-321-49169-6

• 課程網頁:
– http://www.ntut.edu.tw/~johnsonchang/ 點 Lecturing 或
– http://www.ntut.edu.tw/~johnsonchang/courses/Compiler201102/

• 成績評量：(subject to changes)
作業: (10%), 期中考(40%), 期末考(40%), 平時表現(10%)

• 需求：具有 C 或 Java (或其他高階) 程式語言之概念

http://www.ntut.edu.tw/~johnsonchang/
http://www.ntut.edu.tw/~johnsonchang/courses/Compiler201102/

March 3, 2011 3

Copyright © All Rights Reserved by Yuan-Hao Chang

Overview
• Part 1

– Introduce motivational material and background issues.

• Part 2
– Develop a miniature compiler and introduce important

concept.

• Part 3
– Cover lexical analysis, regular expression, finite-state

machines, and scanner-generator tools (Lex).

• Part 4
– Introduce the major parsing methods (top-down LL and

bottom-up LR), including the parser generator (Yacc).

March 3, 2011 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Overview (Cont.)
• Part 5

– Introduce the principal ideas in syntax-directed definition
and translation.

• Part 6
– Use the theory in Part 5 to generate intermediate code.

• Part 7
– Introduce run-time environment, especially the run-time

stack and garbage collection.

• Part 8
– Object-code generation

Chapter 1
Introduction

Chapter 1
Introduction

March 3, 2011 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• Language processors

• The structure of a compiler

• The evolution of programming languages

• The science of building a compiler

• Applications of compiler technology

• Programming language basics

Language ProcessorsLanguage Processors

March 3, 2011 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Introduction
• Compilers are fundamental to modern computing.

– The computing world depends on programming
languages.

– Programming languages depend on compilers to
translate the source program to target program.

– The principles and techniques for compiler design are
applicable to many other domains.

Compiler
Source program

(e.g., programming
language)

Target program
(e.g., machine language
or assembly language)

March 3, 2011 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Language Processors
• Machine-language program as the target program
produced by a compiler (faster)

• Another language processor: Interpreter
– It executes the source program statement by statement

(better error diagnostics)

Target programInput output

Interpreter
Source program

outputinput

March 3, 2011 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Language Processors (Cont.)
• Hybrid compiler

– Combine compilation and interpretation
– E.g., Java language processor

- Java source program is first compiled into an intermediate form
called bytecodes.

- The bytecodes are then interpreted by a virtual machine.

– High portability (cross platform)
- Bytecodes compiled on one machine can be interpreted on

another machine.

Virtual
Machine

intermediate program
outputinput

Translator

Source program

March 3, 2011 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Language Processing System

Preprocessor

Compiler

Modified source program

Source program

Assembler

Target assembly program

Relocatable machine code
Library files
Relocatable object filesLinker/Loader

Target machine code

March 3, 2011 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Language Processing System (Cont.)
• Preprocessor

– Collect source programs
– Expand macros

• Compiler
– It usually produces assembly-language program because assembly

language is easier to produce and to debug.

• Assembler
– Produce relocatable machine code

• Linker
– Link pieces of a large program together
– Resolve external memory addresses

• Loader
– Put all of the executable object files into memory for execution

The Structure of
a Compiler

The Structure of
a Compiler

March 3, 2011 14

Copyright © All Rights Reserved by Yuan-Hao Chang

The Structure of a Compiler
• A compiler consists of two major parts

– Analysis part (front end)
- Break the source program into pieces with the grammatical

structure.
- Provide informative messages when syntactically ill formed

or semantically unsound.
- Collect and organize information from source program to

the symbol table, which is passed to the synthesis part.
- Generate the intermediate representation.

– Synthesis part (back end)
- Construct the target program from the intermediate

representation and the symbol table.

Lexeme: 語彙
 Syntax: 語法

 Semantic: 語意

March 3, 2011 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Phases of a Compiler

Lexical Analyzer
(scanner)

Syntax Analyzer
(parser)

Token stream

Character stream

Semantic Analyzer

Syntax tree

Syntax tree
Intermediate Code

Generator

Intermediate representation

Machine-Independent
Code Optimizer (optional)

Code Generator

Intermediate representation

Machine-Dependent
Code Optimizer (optional)

Target-machine code

Target-machine code

Symbol Table

Analysis
part

Synthesis
part

Used by all phases
of the compiler

March 3, 2011 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Lexical Analysis - Scanning (語彙分析)
• The lexical analyzer

– Read the source program
– Group the characters into meaningful sequences called

lexemes
– Output each lexeme as a token as the following form:

<token-name, attribute-value>
- token-name: an abstract symbol used in syntax analysis
- attribute-value: point to the entry in the symbol table for this token

– Tokens in the symbol table are needed for semantic
analysis and code generation.

March 3, 2011 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Lexical Analysis (Cont.)
• E.g., (for example)

position = initial + rate * 60 (1.1)
– position: a lexeme mapped to the token <id, 1>, where

- id: an abstract symbol standing for identifier
- 1: the entry for “position” in the symbol table to hold information about the

identifier, such as its name and type.
– Assignment symbol =: a lexeme mapped into the token <=>

- No attribute-value so that it can be omitted
– initial: a lexeme mapped to the token <id, 2>
– +: a lexeme mapped to the token <+>
– rate: a lexeme mapped to the token <id, 3>
– *: a lexeme mapped to the token <*>
– 60: a lexeme mapped to the token <60>

<id, 1> <=> <id, 2> <+> <id, 3> <*> <60> (1.2)

1 position …
2 initial …
3 rate …

Symbol Table

March 3, 2011 18

Copyright © All Rights Reserved by Yuan-Hao Chang

• Syntax analyzer uses tokens produced by lexical
analyzer to create syntax trees that are usually
used in syntax and semantic analysis
– Interior node

- It represents an operation.
- Its children represent the arguments of the operation.

– E.g., <id, 1> <=> <id, 2> <+> <id, 3> <*> <60>

Syntax Analysis – Parsing (語法分析)

=
<id, 1> +

<id, 2> *

<id, 3> 60

Syntax tree

March 3, 2011 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Semantic Analysis (語義分析)
• Semantic analyzer uses the syntax tree and the symbol

table to check the semantic consistency, and then update
the syntax tree and symbol table.
– Type checking

- E.g., an array index should be an integer.

– Type conversion (coercion)
- E.g., 3.5 + 5 (The compiler converts

the integer into a floating-point number)

=

<id, 1> +

<id, 2> *

<id, 3> inttofloat

Syntax tree 60

March 3, 2011 20

Copyright © All Rights Reserved by Yuan-Hao Chang

• Important properties of intermediate representation:
– Easy to produce
– Easy to translate into the target machine.

• Three-address code (a commonly used intermediate form)
– Consist of a sequence of assembly-like instructions with

three operands, each of which acts like a register.
E.g., <id, 1> <=> <id, 2> <+> <id, 3> <*> <60>

Intermediate Code Generation

t1 = inttoflota(60)
t2 = id3 * t1 (1.3)
t3 = id2 + t2
id1 = t3

March 3, 2011 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Intermediate Code Generation (Cont.)
• Three-address code

– There is at most one operator on the right side.
– The compiler must generate a temporary name to hold

the value computed by a three-address instruction.
– An instruction might have fewer than three operands.

t1 = inttoflota(60)
t2 = id3 * t1 (1.3)
t3 = id2 + t2
id1 = t3

March 3, 2011 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Code Optimization
• Machine-independent code-optimization is to
improve the intermediate code.
– E.g., faster, shorter code, target code consuming less

power

• Code optimization might slow down the compilation.

t1 = inttoflota(60)
t2 = id3 * t1 (1.3)
t3 = id2 + t2
id1 = t3

t1 = id3 * 60.0 (1.4)
id1 = id2 + t1

- Convert 60 to 60.0 automatically.
- t3 is used only once.

March 3, 2011 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Code Generation
• Map the intermediate representation to the target
language.
– E.g., if the target is machine code,

- Registers or memory locations are selected for each variable
used in the program.

- Then the intermediate representation is translated into machine
instructions.

t1 = id3 * 60.0 (1.4)
id1 = id2 + t1

LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2 (1.5)
ADDF R1, R1, R2
STF id1, R1

dest.

- F stands for for floating point.
- LD(load)/ST(store) are used to access memory.
- The issue of storage allocation is ignored here.

Immediate
constant

March 3, 2011 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Translation of An Assignment Statement

Lexical Analyzer
(scanner)

Syntax Analyzer
(parser)

Token stream

Character stream

Semantic Analyzer

Syntax tree

Syntax tree
Intermediate Code

Generator

Intermediate representation

position = initial + rate * 60

1 position …
2 initial …
3 rate …

Symbol Table

<id, 1> <=> <id, 2> <+> <id, 3> <*> <60>
=

<id, 1> +

<id, 2> *

<id, 3> 60=

<id, 1> +

<id, 2> *

<id, 3> inttofloat
60

t1 = inttoflota(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

March 3, 2011 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Translation of An Assignment Statement (Cont.)
Intermediate representation

Machine-Independent
Code Optimizer (optional)

Code Generator

Intermediate representation

Machine-Dependent
Code Optimizer

Target-machine code

Target-machine code

t1 = inttoflota(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

t1 = id3 * 60.0
id1 = id2 + t1

LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

1 position …
2 initial …
3 rate …

Symbol Table

March 3, 2011 26

Copyright © All Rights Reserved by Yuan-Hao Chang

Symbol-Table Management
• The symbol table

– Is a data structure containing a record for each variable
name (e.g., identifiers and keywords) with fields for the
attributes of the name.

– Should be designed to allow the compiler
- To find the record for each name quickly and
- To store or retrieve data from that record quickly.

March 3, 2011 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Grouping of Phases into Passes
• A pass

– Groups several phases together and
– Reads an input file and writes an output file.

• E.g.,
– Pass 1 consists of the front-end (analysis) phases:

- Lexical analysis, syntax analysis, semantic analysis, and
intermediate code generation

– Pass 2 consists of the back-end (synthesis) phase:
- Code generation for a particular target machine

Note: code optimization might be an optional pass.

March 3, 2011 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Grouping of Phases into Passes (Cont.)
• Benefits

– Combine different front ends with the back end for a
target machine.

– Combine a front end with back ends for different target
machines. (e.g., gcc for different processors)

March 3, 2011 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Compiler-Construction Tools
• Scanner generators (e.g., Lex) :

– Produce lexical analyzers from a regular-expression description of
the tokens of a language.

• Parser generators (e.g., Yacc):
– Automatically produce syntax analyzers from a grammatical

description of a programming language.

• Syntax-directed translation engines:
– Produce collections of routines for walking a parse tree and

generating intermediate code.

• Code-generator generators:
– Produce a code generator from a collection of rules for translating

the intermediate language.

March 3, 2011 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Compiler-Construction Tools (Cont.)
• Data-flow analysis engines:

– Help gather information on value transmission from one
part of a program to the other part.

– Data-flow analysis is a key part of code optimization.

• Compiler-construction toolkits:
– Provide an integrated set of routines for constructing

various phases of a compiler

The Evolution of
Programming Languages

&
The Science of Compilers

The Evolution of
Programming Languages

&
The Science of Compilers

March 3, 2011 32

Copyright © All Rights Reserved by Yuan-Hao Chang

The Move to High-Level Languages
• In the 1940’s:

– The first electronic computer appeared and programmed in machine
language by sequences of 0’s and 1’s.

• In the early 1950’s:
– Development of mnemonic(助記符號) assembly languages

- Instructions for mnemonic representation of machine instructions
- Macro instruction for frequently used sequences of machine instructions

with parameters.

• In the late 1950’s:
– Development of higher-level languages

- Fortran (for scientific computing), Cobol (for business data processing),
and Lisp (for symbolic computation)

• In the following decades:
– Thousands of high-level programming languages are developed.

March 3, 2011 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Classification of Programming Languages

• By Generation:
– First generation: machine languages
– Second generation: assembly languages
– Third generation: higher-level languages

- E.g., Fortran, Cobol, Lisp, C, C++, C#, and Java

– Fourth generation: languages for specific applications
- E.g., SQL for database queries, and Postscript for text formatting

– Fifth generation: logic- and constraint-based languages
- E.g., Prolog and OPS5

March 3, 2011 34

Copyright © All Rights Reserved by Yuan-Hao Chang

Classification of Programming Languages (Cont.)

• Imperative (命令) / Declarative (陳述)
– Imperative language: specify how a computation is to be done.

- E.g., C, C++, C#, and Java
– Declarative language: specify what computation is to be done.

- E.g., Functional languages such as ML and Haskell, and constraint logic
languages such as Prolog

• von Neumann language
– Based on the von Neumann architecture

- E.g., Fortran, and C

• Object-oriented language
– A program consists of a collection of objects.
– E.g., Smalltalk, C++, C#, and Java

• Scripting language
– Interpreted languages called scripts, such as JavaScript, Perl, and

PHP, Python, and Tcl

March 3, 2011 35

Copyright © All Rights Reserved by Yuan-Hao Chang

Impacts on Compilers
• Compilers and programming languages are closely
related.
– Compiler can help reduce overhead of programs.
– Compilers are critical in making high-performance

computer architecture effective on user applications.

• Compiler writing is challenging.
– A compiler itself is a large program.

(參考書:人月神話)

• A compiler must translate correctly.
• The problem of generating the optimal
target code is undecidable. (NP-hard problem)

March 3, 2011 36

Copyright © All Rights Reserved by Yuan-Hao Chang

Modeling in Compiler Design
• Fundamental models:

– Finite-state machines and regular
expressions are useful for describing
lexical units of programs.
- Finite-state machine is a model of behavior

composed of a finite number of states,
transitions between those states, and actions.

- Regular expressions provide a concise and
flexible means for matching strings of text.

– Context-free grammars are used to
describe the syntactic structure such as
the nesting of parentheses or control
constructs.

An Example of Finite-
State Machine

March 3, 2011 37

Copyright © All Rights Reserved by Yuan-Hao Chang

Objectives of Compiler Code Optimization

• The optimization must be correct.

• The optimization must improve the performance of
many programs.
– E.g., Speed, code size in embedded system, and power

in mobile devices

• The compilation time must be kept reasonable.

• The engineering effort required must be
manageable.

Applications of
Compiler Technology

Applications of
Compiler Technology

March 3, 2011 39

Copyright © All Rights Reserved by Yuan-Hao Chang

Compiler Technology for High-Level
Programming Languages
• Register keyword (in C language):

– Let programmers to control registers.

• Data-flow optimization
– E.g., reduce redundant load-store operation to variables.

• Procedure inlining
– Replacement a procedure call by the body of the procedure

• Development trend: Increase levels of abstraction to handle
things for programmers.

– We use Java as an example:
- Type-safe: an object can only be used in related types.
- Boundary checks for arrays
- No pointers
- Built-in garbage collection

March 3, 2011 40

Copyright © All Rights Reserved by Yuan-Hao Chang

Optimization for Computer Architectures
• The evolution of computer architectures has led to new

demand for new compiler technology.
• E.g., high performance systems usually adopt:

– Parallelism:
- Instruction level: Multiple instructions are executed simultaneously.

· E.g., VLIW (Very Long Instruction Word) such as Intel IA64 to process a vector
of data at the same time. (Compilers could adopt the instruction set.)

- Processor level: Different threads of the same application are run on
different processors.

· Compilers could translate sequential program into multiprocessor code.
– Memory hierarchies:

- Registers (B), caches (KB), physical memory (MB~GB), secondary
storage (GB~TB) ~ two to three orders of magnitude

- Compilers can change
· The order of instructions and layout of data to improve the effectiveness of

memory hierarchy. (especially data caches)
· The layout of code to improve the effectiveness of instruction caches.

March 3, 2011 41

Copyright © All Rights Reserved by Yuan-Hao Chang

Optimization for Computer Architectures
(Cont.)

a[0][0] a[1][0] a[2][0] a[0][1] a[1][1] a[2][1] a[0][2] a[1][2] a[2][2]

for (i=0;i<2;i++) {
for (j=0;j<2;j++) {

a[j][i] = 0;
}

}

for (i=0;i<2;i++) {
for (j=0;j<2;j++) {

a[i][j] = 0;
}

}

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] a[2][0] a[2][1] a[2][2]

Layout of data

March 3, 2011 42

Copyright © All Rights Reserved by Yuan-Hao Chang

Design of New Computer Architectures

• Compilers are now developed in the processor-
design stage to evaluate the HW architecture.

• Some HW architectures:
– RISC (Reduced Instruction-Set Computer)

- Compilers can use small number of simple instructions to reduce
the redundancies in complex instructions. (Optimization issue)
(Note: CISC: Complex Instruction-Set Computer)

- E.g., PowerPC, MIPS (Note: x86 is with CISC but adopts many
design ideas of RISC)

– Specialized architecture
- E.g., Data-flow machine, VLIW, SIMD (Single instruction multiple

data) array of processors, multiprocessors with shared/distributed
memory.

March 3, 2011 43

Copyright © All Rights Reserved by Yuan-Hao Chang

Program Translation Assisted by Compilers
• Binary Translation

– Translate the binary code for one machine to the other.

• Hardware Synthesis
– Hardware designs are now described in high-level languages like Verilog, VHDL

(Very high-speed integrated circuit Hardware Description Language)
– Hardware designs are typically designed at the register transfer level (RTL):

- Variables represent registers.
- Expressions represent combinational logic.

– Hardware-synthesis tools translate RTL into gates automatically. (circuit
optimization takes hours.)

• Database Query Interpreters
– SQL (Structured Query Language) that can be interpreted or compiled

• Compiled Simulation (Emulation)
– Instead of writing a simulator that interprets the design, it is faster to compile the

design to produce machine code that simulates the particular design.

March 3, 2011 44

Copyright © All Rights Reserved by Yuan-Hao Chang

Software Productivity Tools
• Testing is the primary technique for locating errors so as to

improve software productivity.

• Finding all program errors is undecidable. (NP-hard)
– Practical error detectors are often neither sound nor complete.

(Reported errors are not all real errors, and only partial errors are
found.)

• Some detection techniques
– Type checking
– Bounds checking

- E.g., data flow analysis to detect buffer overflow.
– Memory-management tools

- E.g., garbage collection to prevent memory leaks

Programming Language
Basics

Programming Language
Basics

March 3, 2011 46

Copyright © All Rights Reserved by Yuan-Hao Chang

The Static / Dynamic Distinction
• Policies

– Static policy:
- A decision allowed to be made at compile time

– Dynamic policy:
- A decision allowed to be made at run time

• Scope:
– The scope of a declaration of x is the region of the

program in which uses of x refer to this declaration(宣告).
- Static scope (or lexical scope): based on space

· Determine the scope of a declaration by looking only at the program.
· E.g., C and Java, and most languages

- Dynamic scope: based on time
· The same use of x could refer to any of several different declarations of x.

March 3, 2011 47

Copyright © All Rights Reserved by Yuan-Hao Chang

Static Variable in Java
• A variable is a name for a location in memory to hold a data

value.
– In Java, a “static” (class) variable means that all the instances of the

class share the same copy of the variable.
– E.g., class stcla {

public staticstatic int x;
…

}
…
a = new stcla();
b = new stcla();
a.x = 1;
b.x = 2;
System.out.write(a.x); // 2

class stcla {
public int x;
…

}
…
a = new stcla();
b = new stcla();
a.x = 1;
b.x = 2;
System.out.write(a.x); // 1

a.x

b.x
2

a.x

b.x

1

2

March 3, 2011 48

Copyright © All Rights Reserved by Yuan-Hao Chang

Two-Stage Mapping from Names to Values
• Environment:

– A mapping from names to locations in the store or memory.
– In “C” language, “l-values” refers to the locations.

• State:
– A mapping from locations in the store to their values.
– In “C” language, “r-value” refers to values.

names locations
(variables)

values

environment state
x 1

int x = 1;

value
location

name

r-valuel-value

March 3, 2011 49

Copyright © All Rights Reserved by Yuan-Hao Chang

Two Declarations of the Name i
• The local i is local to
function f.

• The local i is given a place
on the run-time stack.

• Declarations in C must
precede their use.
– The function g can access

neither local i nor global i.
– The function h can’t access

local i, but can access global i.

g() {…}
…
int i;
…
void f(…) {

int i;
…
i = 3;
…

}
…
x = i + 1;
…
h() {…}

/* global i */

/* local i */

/* use of local i */

/* use of global i */

March 3, 2011 50

Copyright © All Rights Reserved by Yuan-Hao Chang

Binding
• Static/dynamic binding of names to locations:

– Most binding of names to locations is dynamic.
– E.g., in the previous example, local i is dynamic binding,

but the global i is static binding.
(Here the relocation issue is ignored since the loader and
the operating system will handle it.)

• Static/dynamic binding of locations to values:
– Most bindings of locations to values are dynamic.
– The value in a location could be changed from time to

time.
– Exception: constants

- E.g., #define ARRAYSIZE 1000 /* C language */

March 3, 2011 51

Copyright © All Rights Reserved by Yuan-Hao Chang

Names, Identifiers, and Variables
• Identifier: a string of characters to identify(識別) an
entity(實體)
– All identifiers are names, but not all names are identifiers.
– E.g., x.y  x, y, and x.y are names, but only x and y are

identifiers.

• Variable: a particular location of the store
– An identifier could be declared more than once, and each

declaration introduces a new variable.
– E.g., an identifier (or a name) local to a recursive procedure

will refer to different locations of the store at different times.
(e.g., recursion to solve FibonacciFibonacci series: 1, 1, 2, 3, 5, series: 1, 1, 2, 3, 5, …….)

March 3, 2011 52

Copyright © All Rights Reserved by Yuan-Hao Chang

Static Scope and Block Structure
• Most languages adopt static scope.

– The scope of a declaration is determined implicitly by where the
declaration appears.

– C++, Java, and C# provide explicit control over scopes through
keywords, such as publicpublic, privateprivate, and protectedprotected.

• Block structure
– Block is a grouping of declarations and statements, and can be used

to define a static scope.
- E.g., “C” uses { }, Pascal uses “begin” and “end”.

– Block structure allows blocks to be nested inside each other.
- A declaration D belongs to a block B if B is the most closely nested block

containing D.  That is, D is located within B, not within any block within B.

March 3, 2011 53

Copyright © All Rights Reserved by Yuan-Hao Chang

Main () {

}

int a = 1;
int b = 1;
{

}
cout << a << b; // 1 1

A Block Example with C++

int b = 2;
{

}
{

}
cout << a << b; // 1 2

int a = 3;
cout << a << b; // 3 2

int b = 4;
cout << a << b; // 1 4

B1

B2

B3

B4

Declaration Scope
int a = 1; B1 - B3

int b = 1; B1 - B2

Int b = 2; B2 - B4

int a = 3; B3

int b = 4; B4

Note: B1 - B3 stands for
B1 exclusive B3

March 3, 2011 54

Copyright © All Rights Reserved by Yuan-Hao Chang

Explicit Access Control
• Java and C++ provide explicit control with the
keywords “privateprivate”, “protectedprotected”, and “publicpublic” so
as to support encapsulation(encapsulation(封裝封裝)).
– Private names give a scope within that class and its

friend classes (in C++ term).
– Protected names are accessible to subclasses (or the

same package in Java).
– Public names are accessible from outside the class.

March 3, 2011 55

Copyright © All Rights Reserved by Yuan-Hao Chang

Explicit Access Control (Cont.)
• An example with Java

package P1; // cla_a.java
public class cla_a {

public int x;
protected int y;
private int z;
…

}
package P2; // cla_b.java
public class cla_b extends cla_a {

public test() {
x = 1; // accessible
y = 1; // accessible
z = 1; // notnot accessible

}
…

}

import P1.*; // Main.java
import P2.*;
class Main {

static void main(String[] args) {
cla_a a = new cla_a();
cla_b b = new cla_b();
a.x = 1; // accessible
a.y = 1; // notnot accessible
a.z = 1; // notnot accessible
b.test();

}
}

Program
entry

March 3, 2011 56

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Scope
• Dynamic scope

– It is based on factors that can be known only when the
program executes.

– A use of a name x refers to the declaration of x in the
most recently called procedure with such a declaration.
- E.g.:

· Method resolution (in object-oriented programming)

Notes:
• In C, procedures are implemented as functions that returns value,

where procedures don’t return any value.
• In object-oriented languages, procedures of a class are also

implemented as functions called methods, and variables of a class
are called attributes.

March 3, 2011 57

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Scope Resolution
• Essentials for polymorphic(多型) procedures.

– A procedure that has two or more definitions depends
only on the types of the arguments.

E.g.:
1. There is a class C with a method named m().
2. D is a subclass of C, and D has its own method named m().
3. There is a use of m of the form x.m(), where x is an object of

class C.
 Normally, it is impossible to tell at compile time where x will be

of class C or D.

March 3, 2011 58

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Scope Resolution (Cont.)
public class cla_a { // cla_a.java

public void test(cla_c x) {
x.m();

}
}

class Main { // Main.java
static void main(String[] args) {
cla_c c = new cla_c();
cla_d d = new cla_d();
cla_a a = new cla_a();
a.test(c); // “c”
a.test(d); // “d”
}

}

public class cla_c { // cla_c.java
public void m() {

System.out.println(“c");
}

}
// cla_d.java
public class cla_d extends cla_c {
public void m() {

System.out.println(“d");
}

}

March 3, 2011 59

Copyright © All Rights Reserved by Yuan-Hao Chang

Declarations (宣告) and Definitions (定義)
• Declarations / Definitions

– Declarations tell us about the types
of things.
- E.g., int i;

– Definitions tell us about their
values or contents.
- E.g., i = 1;

int i = 1;

• For example:
– In C++, a method is declared in a

class definition.
– It is common to define a C function

in one file and declare it in other
files where the function is used.

// definition
int Callee() { // Callee.c

…
}

int Callee(); // declaration
int CallerA() { // CallerA.c

Callee();
…

}

int Callee(); // declaration
int CallerB() { // CallerB.c

Callee();
…

}

March 3, 2011 60

Copyright © All Rights Reserved by Yuan-Hao Chang

Parameter Passing
• Parameters

– Actual parameters: used in the call of a procedure
– Formal parameters: used in the procedure definition

• Mechanisms
– Call-by-value

- The value of the actual parameter is passed to the callee.
– Call-by-reference

- The address of the actual parameter is passed to the callee, and the
corresponding formal parameters can’t point to any other address.

– Call-by-address(/pointer)
- The address of the actual parameter is passed to the callee, and the

corresponding formal parameters can point to other addresses.
– Call-by-name

- The actual parameter literally substitutes the formal parameter in the
callee (similar to a macro).

int main() {
int x = 5;
foo(&x);

}
void foo(int *x) {

(*x)++;
}

int main() {
int x = 5;
foo(x);

}
void foo(int &x) {

x++;
}

Call-by-reference

Call-by-address

March 3, 2011 61

Copyright © All Rights Reserved by Yuan-Hao Chang

Aliasing
• Aliasing is that two formal parameters refer to the
same location.

void q(char *x, char *y) {
x[10] = 2;
printf(“%d\n”, y[10]); // 2

}

void p () {
char a[20];
q(a, a);

}

The formal variables x and y are aliasing to each other. (C language)

	Compiler�編譯器原理
	Syllabus
	Overview
	Overview (Cont.)
	投影片編號 5
	Outline
	投影片編號 7
	Introduction
	Language Processors
	Language Processors (Cont.)
	Language Processing System
	Language Processing System (Cont.)
	投影片編號 13
	The Structure of a Compiler
	Phases of a Compiler
	Lexical Analysis - Scanning (語彙分析)
	Lexical Analysis (Cont.)
	Syntax Analysis – Parsing (語法分析)
	Semantic Analysis (語義分析)
	Intermediate Code Generation
	Intermediate Code Generation (Cont.)
	Code Optimization
	Code Generation
	Translation of An Assignment Statement
	Translation of An Assignment Statement (Cont.)
	Symbol-Table Management
	Grouping of Phases into Passes
	Grouping of Phases into Passes (Cont.)
	Compiler-Construction Tools
	Compiler-Construction Tools (Cont.)
	The Evolution of Programming Languages�&�The Science of Compilers
	The Move to High-Level Languages
	Classification of Programming Languages
	Classification of Programming Languages (Cont.)
	Impacts on Compilers
	Modeling in Compiler Design
	Objectives of Compiler Code Optimization
	Applications of �Compiler Technology
	Compiler Technology for High-Level Programming Languages
	Optimization for Computer Architectures
	Optimization for Computer Architectures (Cont.)
	Design of New Computer Architectures
	Program Translation Assisted by Compilers
	Software Productivity Tools
	Programming Language Basics
	The Static / Dynamic Distinction
	Static Variable in Java
	Two-Stage Mapping from Names to Values
	Two Declarations of the Name i
	Binding
	Names, Identifiers, and Variables
	Static Scope and Block Structure
	A Block Example with C++
	Explicit Access Control
	Explicit Access Control (Cont.)
	Dynamic Scope
	Dynamic Scope Resolution
	Dynamic Scope Resolution (Cont.)
	Declarations (宣告) and Definitions (定義)
	Parameter Passing
	Aliasing

