
Chapter 4
Syntax Analysis

Chapter 4
Syntax Analysis

June 15, 2011 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• Introduction to the parser

• Context-free grammars

• Writing a grammar

• Top-down parsing

• Bottom-up parsing

• Introduction to LR parsing: simple LR

• More powerful LR parsers

• Using ambiguous grammars

• Parser generator Yacc

Introduction to the ParserIntroduction to the Parser

June 15, 2011 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Benefits of Grammars for Programming
Languages
• Give a precise syntactic specification of a
programming language.

• Construct automatically a parser that determines
the syntactic structure of a source program.
– Parser-construction process could reveal syntactic

ambiguities and trouble spots.

• Make the source program translation and error
detection easier.

• Make the adding of new constructs for a language
easier.

June 15, 2011 5

Copyright © All Rights Reserved by Yuan-Hao Chang

The Role of the Parser
• The parser obtains a string of tokens from the lexical analyzer, and

verifies them with the grammar for the language.
– Collect information about various tokens into the symbol table.
– Perform type checking and other semantic analysis.
– Generate intermediate code.

• In practice, parsers are expected to
– Report syntax errors and
– Recover from commonly occurring errors.

Parse
tree

Intermediate
representation

Lexical
Analyzer

Reset of
Front End

ParserSource
program

Symbol
Table

Tokens

Get next
token

No strategy is proven universally
acceptable, and the simplest
approach for the parser is to quit
with an error message when it
detects the first error.

June 15, 2011 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Types of Parsers
• There are three general types of parsers:

– Universal parsing
- These general methods are too inefficient to use in production

compilers.
- E.g., Cocke-Younger-Kasami algorithm and Earley’s algorithm

– Top-down parsing
- Build parse trees from the root to the leaves.

– Bottom-up parsing
- Build pares trees from the leaves to the root.

June 15, 2011 7

Copyright © All Rights Reserved by Yuan-Hao Chang

Representative Grammars
E E + T | T
T T * F | F (4.1)
F (E) | id

E TE’
E’ + TE’ |
T FT’ (4.2)
T’ * FT’ |
F (E) | id

E E + E | E * E | (E) | id (4.3)

E: expressions consisting of terms separated by + signs.
T: terms consisting of factors separated by * signs.
F: factors that can be either parenthesized expressions or identifiers.

• Belong to LR grammars, suitable for bottom-up parsing
• Easy to add additional operators and precedence levels
• Not suitable for top-down parsing due to its left-recursion.

We will concentrate on
expressions because of the
associativity and precedence
of operators.

• Left-recursion (LR) elimination to be a non-left recursion.
• Suitable for top-down parsing

To demonstrate the
handling of ambiguities

June 15, 2011 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Common Programming Errors
• Lexical errors

– Misspellings of identifiers, keywords, or operators.
- E.g., use elipseSize instead of ellipseSize (楕圓形).

– Missing quotes around text intended as a string.

• Syntactic errors
– Misplaced semicolons
– Extra or missing braces “{“ and “}”

• Semantic errors
– E.g., type mismatches

• Logical errors
– Incorrect reasoning on the part of the programmer

- E.g., in a C program, the comparison operator is == instead of the
assignment operator =.

June 15, 2011 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Error Handling in a Parser
• Parsers should have the viable-prefix property.

– Viable-prefix property is to detect errors as soon as the stream of
tokens from the lexical analyzer cannot be parsed further.

• Accurate detection of semantic and logical errors at compile
time is a difficult but important task for parsers.

• The goal of the error handler in a parser:
– Report the presence of errors clearly and accurately.
– Recover from each error quickly enough to detect subsequent errors.
– Add minimal overhead to the processing of correct programs.

• Most programming language specifications do not describe
how a compiler should respond to errors.

– A common place to report errors is where an error is detected in the
source program.

June 15, 2011 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Error Recovery Strategies
• Panic-mode recovery

– On discovering an error, the parser discards input symbols until one of synchronizing
tokens is found.

– Synchronizing tokens are usually delimiters such as semicolon or }.
• Phrase-level recovery

– On discovering an error, the parser replace a prefix of the remaining input by some
string that allows the parser to continue.

- E.g., replace a comma by a semicolon, delete an extraneous semicolon, or insert a missing
semicolon.

– Major drawback is the difficulty on coping with the actual error occurring before the
point of detection.

– Need careful replacement selection to prevent from infinite loops.
• Error productions

– Augment the grammar with error productions to detect the anticipated errors when an
error production is used.

• Global correction
– Given an incorrect input x, find a parse tree for y such that the number of insertions,

deletions, and changes of tokens needed to transform x to y is minimized.
– This method is lack of efficiency, but used for finding optimal replacement strings for

phrase-level recovery.

Context-Free GrammarsContext-Free Grammars

June 15, 2011 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Context-Free Grammar
• Context-free grammar is also called grammar for short. It consists of

– Terminals
- The basic symbols from which strings are formed.
- The token name is a synonym for “terminal”.

– Nonterminals
- Nonterminals are syntactic variables denote sets of strings that help define the

language generated by the grammar.
- Nonterminals impose a hierarchical structure that is key to syntax analysis and

translation.
– Start symbol

- Start symbol is the first nonterminal of the grammar and can generate the
language.

– Productions
- Productions of a grammar specify the manner in which the terminals and

nonterminals are combined to form strings. Each production consists of:
· A nonterminal called the head or left side.
· The symbol
· A body or right side that consists of zero or more terminals and nonterminals.

June 15, 2011 13

Copyright © All Rights Reserved by Yuan-Hao Chang

A Grammar to Define Arithmetic Expressions

• A grammar to define arithmetic expressions
– 7 terminals or terminal symbols: id + - * / ()
– 3 nonterminals: expression, term, factor

expression expression + term
expression expression – term
expression term
term term * factor
term term / factor
term factor
factor (expression)
factor id

June 15, 2011 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Notational Conventions
• These symbols are terminals:

– Lowercase letters early in the alphabet, e.g., a, b, c
– Operator symbols, e.g., +, -, *, /, and so on
– Punctuation symbols, e.g., parentheses, comma, and so on
– The digits 0, 1, …, 9.
– Boldface strings each of which represents a single terminal symbol,

e.g., id.

• These symbols are nonterminals:
– Uppercase letters early in the alphabet, e.g., A, B, C
– The letter S represent the start symbol
– Lowercase, italic names, e.g., expr or stmt.
– When discussing programming constructs, uppercase letters may be

used to represent nonterminals for the constructs, e.g., E, T, and F.
(E: expression, T: term, F: factor)

June 15, 2011 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Notational Conventions (Cont.)
• Grammar symbols (either nonterminals or terminals)

– Uppercase letters late in the alphabet, e.g., X, Y, Z

• Strings of terminals
– Lowercase letters late in the alphabet, e.g., u, v, …, z

• Strings of grammar symbols
– Lowercase Greek letters, e.g., , ,
– E.g., A

• A-productions
– A set of productions A 1 , A 2 , …, A K with a common head A.
– It can be written A 1 | 2 , | … | K ,
– 1 , 2 , …, K are the alternatives for A.

• The head of the first production is the start symbol.

June 15, 2011 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Grammar with Notational Convention

expression expression + term
expression expression – term
expression term
term term * factor
term term / factor
term factor
factor (expression)
factor id

E E + T | E – T | T
T T * F | T / F | F
F (E) | id

June 15, 2011 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Derivations
• The construction of a parse tree can be made
precise by taking a derivational view.
– Productions are treated as rewriting rules.
– Beginning with the start symbol, each rewriting step

replaces a nonterminal by the body of one of its
productions.
- The leftmost derivation corresponds to the top-down parsing.
- The rightmost derivation corresponds to the bottom-up parsing.

– E.g., E E + E | E * E | -E | (E) | id (4.7)
The replacement of a single E by –E is described by: E -E
E.g., E -E -(E) -(id)

read as “E derives –E”

A derivation of –(id) from E

June 15, 2011 18

Copyright © All Rights Reserved by Yuan-Hao Chang

• Consider a nonterminal A in the middle of a sequence of
grammar symbol, as in A.

–

and

are arbitrary strings of grammar symbols (either
nontermials or terminals).

– If A, then A
 A

derives

in one step

•

 … n (

derives n

Derivations (Cont.)

Derive in
one step

Derive in
zero or

more steps

Derive in
one or

more steps

 then , and If 2.
stringany for , 1.

+

*

*
* * *

June 15, 2011 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Derivations (Cont..)
• A language that can be generated by a (context-free)

grammar is a context-free language.
• If two grammars generate the same language, the

grammars are equivalent.
• The language generated by a grammar is the set of

sentences of the grammar.
– A sentential form may contain both terminals and nonterminals, and

may be empty.
– A sentence of grammar G is a sentential form with no nonterminals.

- A string of terminals w is in L(G) iff w is a sentence of G

Ggrammar of symbolstart theis where, If SS

is a sentential form of G

*

June 15, 2011 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Leftmost Derivation and Rightmost Derivation

• The string –(id + id) is a sentence of grammar (4.7)
• Leftmost derivation:

– The leftmost nonterminal in each sentential form is
always chosen. We write

– E.g.,

• Rightmost (or canonical(標準的)) derivation:
– The rightmost nonterminal in each sentential form is

always chosen. We write
– E.g.,

E E + E | E * E | -E | (E) | id (4.7)

E -E -(E) -(E + E) -(id + E) -(id + id) (4.8)

E -E -(E) -(E + E) -(E + id) -(id + id) (4.9)

rm

lm

rm rm rm rm rm

lm lm lm lm lm

June 15, 2011 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Left-Sentential and Right-Sentential Form

• Every leftmost step can be written as wA w,
where

– w

consists of terminals only.
– A is the production applied.
– is a string of grammar symbols.

• If S , then is a left-sentential form of the
grammar.

• If S , then is a right-sentential form of the
grammar.

lm
*

rm
*

June 15, 2011 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Parse Trees and Derivations
• A parse tree is a graphical representation of a derivation,

and filters out the order in which productions are applied to
replace nonterminals.

– Each interior node labeled with the nonterminal in the head of the
production to represent the application of the production.

– The children of an interior node are labeled (from left to right) by the
symbols in the body of the corresponding production.

– During derivation, the head of the production is replaced by the body
of the corresponding production.

• Yield or frontier of the tree:
– Read the leaves of a parse tree from left to right to constitute a

sentential form.

June 15, 2011 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Parse Trees and Derivations (Cont.)
Parse string -(id+id) with the grammar:

Derivation with leftmost derivation:
E -E
 -(E)
 -(E + E) (4.8)
 -(id + E)
 -(id + id)

E E + E | E * E | -E | (E) | id (4.7)

Derivation with rightmost derivation:
E -E
 -(E)
 -(E + E) (4.9)
 -(E + id)
 -(id + id)

E E

- E

 E

- E

()E

E

- E

()E

E E+

 E

- E

()E

E E+
id

 E

- E

()E

E E+
id id

Sequence of parse trees for leftmost derivation (4.8)

Yield: read
leaves from left

to right

June 15, 2011 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Relationship Induction between
Derivations and Parse Trees
• Consider any derivation 1 2 … n , where 1 is a

single nonterminal A.
– For each sentential form i , we can construct a parse tree whose

yield is i .

• Induction process on i
– BASIS: the tree for 1 = A is a single node labeled A.
– INDUCTION:

- Suppose we have constructed a parse tree with yield
i-1 =X1 X2 …Xk (where Xi is either a nonterminal or a terminal)

- Suppose i is derived from i-1 by replacing Xj with
 where Xj , and

= Y1 Y2 …Ym

 i =X1 X2 …Xj-1

Xj+1 …Xk

- To model this step:
· Find the jth leaf from the left in the current parse tree.
· Let this leaf Xj
· Give this leaf m children labeled Y1 , Y2 , … Ym

June 15, 2011 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Ambiguity
• A grammar that produces more than one parse tree for

some sentence is said to be ambiguous.
– There should be a one-to-one relationship between parse trees and

its rightmost (or rightmost) derivation.
– In other words, every parse tree has associated with a unique

leftmost and a unique rightmost derivation.

• E.g., Produce the sentence id+id*id with the grammar:
E E + E | E * E | (E) | id (4.3)

Derivation with leftmost derivation:
E E + E
 id + E
 id + E * E (4.8)
 id + id * E
 id + id * id

Derivation with another leftmost derivation:
E E * E
 E + E * E
 id + E * E (4.8)
 id + id * E
 id + id * id

Produce the
same sentence

June 15, 2011 26

Copyright © All Rights Reserved by Yuan-Hao Chang

Ambiguity (Cont.)
Derivation with leftmost derivation:
E E + E
 id + E
 id + E * E (4.8)
 id + id * E
 id + id * id

Derivation with another leftmost derivation:
E E * E
 E + E * E
 id + E * E (4.8)
 id + id * E
 id + id * id

E E*

idE E+

idid

E

E E+

id E E*

idid

E

Two parse trees for id+id*id

June 15, 2011 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Verifying the Language Generated by a Grammar

• A proof that a grammar G generates a Language L has two parts:
– Step 1. Show that every string generated by G is in L.
– Step 2. Show that every string in L can be generated by G.

• Consider S (S) S |

that generates all strings of balanced
parentheses and only such strings.

– PROOF STEP 1: Show every sentence derivable from S is balanced
– INDUCTIVE PROOF (歸納法) on the number of steps n:

- BASIS: When n = 1, the only string of terminals is the empty string.
- INDUCTION:

· Assume that all derivations of fewer than n steps produce balanced sentences.
· Consider that a leftmost derivation of exactly n steps is of the form:

S (S) S (x)S (x)ylm lm lm
* *

The derivation of x and y from S take
fewer than n steps. By the inductive
hypothesis, x and y are balanced, so
the string (x)y must be balanced.

step1
step2

June 15, 2011 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Verifying the Language Generated by a Grammar
(Cont.)
• Consider S (S) S |

that generates all strings of

balanced parentheses and only such strings.
– PROOF STEP 2: Show every balanced string is derivable from S
– INDUCTIVE PROOF (歸納法) on the length of a string

- BASIS: If the string is of length 0, it must be , which is balanced.
- INDUCTION:

· Observation: every balanced string has even length.
· Assume that every balanced string of length less than 2n is derivable from S.
· Consider a balanced string w of length 2n, n

1.
· Let (x) be the shortest nonempty prefix of w and have an equal number of left

and right parentheses.
· Then w can be written as w = (x)y, where x and y are balanced.
· Thus we can find a derivation of the form:

so that w=(x)y is derivable from S.
S (S) S (x)S (x)y* *

Since x and y are of length
less than 2n, they are
derivable from S by the
inductive hypothesis.

June 15, 2011 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Context-Free Grammars vs. Regular Expression

• Grammars are more powerful than regular expressions.
– Every construct that can be described by a regular expression can be

described by a grammar, but not vice-versa.
– Every regular language is a context-free language, but not vice-versa.

• E.g., the language L = {anbn | n1} with an equal number a’s and b’s.
– Grammar: A0 aA1 b, A1 aA1 b |
– Regular expression with finite automata:

s0

Path labeled ai

si
… f…Path labeled bi

Path labeled aj-i
…

Construct a DFA D with a finite number of states k to accept the language L.
– For an input beginning with more than k a’s, D must enter some state twice (i.e., si)
– aibi is in the language, but there is also a path labeled ajbi.

The path from si back
to itself

sk-1

Not in the language

June 15, 2011 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Construct a Grammar from NFA
• Construct a grammar to recognize the same language as

an NFA as follows:
– 1. For each state i, create a

nonterminal Ai .
– 2. If state i has a transition to

state j on input a, add the
production Ai aAj .
If state i goes to state j on input ,
add the production Ai Aj

– 3. If i is an accepting state,
add Ai

– 4. If i is the start state, make
Ai be the start symbol.

0 1
start a b

3

b

2
b

The NFA for (a|b)*abb

a

A0 aA0 | bA0 | aA1
A1 bA2
A2 bA3
A3

The grammar for (a|b)*abb

Writing a GrammarWriting a Grammar

June 15, 2011 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Lexical vs. Syntactic Analysis
• Everything described by a regular expression can
be described by a grammar. Why use regular
expressions in the lexical analysis?
– Separate the syntactic structure of a language into

lexical and non-lexical parts for modularization.
– Lexical rules of a language are frequently quite simple.
– Regular expressions generally provide a more concise

and easier-to-understand notation for tokens.
– More efficient lexical analyzers can be constructed

automatically from regular expressions.

June 15, 2011 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Eliminating Ambiguity
stmt if expr then stmt

| if expr then stmt else stmt
| other
Dangling-else grammar

E.g., if E1 then if E2 then S1 else S2

if stmtthen

stmt

expr

E1 if stmtthenexpr

S1E2

stmtelse

S2

if E1 then (if E2 then S1 else S2)

stmt

if thenexpr

E1

stmtelse

S2if stmtthen

stmt

expr

E2 S1

if E1 then (if E2 then S1) else S2

E1 (/S1) and E2 (/S2) are
different occurrences of
the same nonterminal.

Preferred: match each
else with the closest
unmatched then.

June 15, 2011 34

Copyright © All Rights Reserved by Yuan-Hao Chang

S2

Unambiguous Grammar for if-then-else
Statements

stmt matched_stmt
| open_stmt

matched_stmt if expr then matched_stmt else matched_stmt
| other

open_stmt if expr then stmt
| if expr then matched_stmt else open_stmt

Unambiguous if-then-else grammar
(Associate each else with the closest previous unmatched then)

E.g., if E1 then if E2 then S1 else S2

open_stmt

stmt

if stmtthenexpr

E1

if matched_stmtthenexpr

S1E2

matched_stmtelse

matched_stmt

A statement appearing between
a then and an else must be an
if-then-else statement or any
other unconditional statement.

June 15, 2011 35

Copyright © All Rights Reserved by Yuan-Hao Chang

Elimination of Left Recursion
• Top-down parsing methods can not handle left-
recursive grammars.

• Left-recursion elimination:
A A+E.g.,

A A’
A’ A’ |

A A

|

E E + T | T
T T * F | F (4.1)
F (E) | id

E TE’
E’ + TE’ |
T FT’ (4.2)
T’ * FT’ |
F (E) | id

A
A

A
A

A’
A’

A’
A’

A

June 15, 2011 36

Copyright © All Rights Reserved by Yuan-Hao Chang

Immediate Left Recursion Elimination

A A

| A2 | … | Am |

2 | … | n

A

A’ | 2 A’ | … | n A’
A’

A’ | 2 A’ | … | m A’ |

Left recursion elimination

Begin with A Not begin with A

This can not eliminate left recursion involving
derivations of two or more steps.

June 15, 2011 37

Copyright © All Rights Reserved by Yuan-Hao Chang

Left Recursion Elimination
• Algorithm: Eliminating left recursion

• INPUT: Grammar G with no cycles or -productions.

• OUTPUT: An equivalent grammar with no left recursion.

• METHOD:
1) arrange the nonterminals in some order A1 , A2 , …, An .
2) for (each i from 1 to n) {
3) for (each j from 1 to i-1) {
4) replace each production of the form Ai Aj

by

the productions Ai

| 2

| … | k ,

where Aj 1 | 2 | … | k are all current Aj -productions
5) }
6) Eliminate the immediate left recursion among the Ai -productions
7) }

June 15, 2011 38

Copyright © All Rights Reserved by Yuan-Hao Chang

Left Recursion Elimination (Cont.)
• E.g., S Aa | b

A Ac | Sd |

1. Sort nonterminals S, A
2. Use S-productions to replace S in A-productions

A Ac | Aad | bd |
3. Eliminate the immediate left recursion among A-productions:

S is left recursive because
S Aa Sda.
Therefore, A Sd Aad
(left recursive)

S Aa | b
A bdA’ | A’
A’ cA’ | adA’ |

June 15, 2011 39

Copyright © All Rights Reserved by Yuan-Hao Chang

Left Factoring
• Left factoring is a grammar transformation for producing a

grammar suitable for predictive (top-down) parsing.
– When the choice between two alternative A-productions is not clear,

the production is rewritten to defer the decision until enough of the
input has been seen.

• Left factoring: find the longest prefix

common to two or
more of its alternatives.

A A’
A’ 1 | 2

A 1 | 2

A A’ |
A’ 1 | 2 | … | n

A 1 | 2 | … | n |

June 15, 2011 40

Copyright © All Rights Reserved by Yuan-Hao Chang

Left Factoring (Cont.)
• E.g., on seeing the input if, we cannot tell which production

to choose to expand stmt.

• Abstracted dangling-else:

stmt if expr then stmt
| if expr then stmt else stmt
| other

S i E t S | i E t S e S | a
E b

i: if
t: then
e: else
E: conditional expression
S: statementS i E t S S’ | a

S’ eS |
E b

June 15, 2011 41

Copyright © All Rights Reserved by Yuan-Hao Chang

Non-Context-Free Language Constructs
• Non-context-free language constructs are syntactic constructs that

cannot be specified by using context-free grammars alone.
– Note: context-free grammars are context independent and only

nonterminals (excluding terminal/context) appearing at the head of
productions.

• E.g., In C and Java, identifiers need to be declared before they are used
in a program. They are presented in the form wcw:

– The first w represents the declaration of an identifier w.
– The c represents an intervenigng program fragment.
– The second w represents the use of the identifier w.
– E.g., L1 = { wcw | w is in (a|b)* } Abstract language

- L1 consists of all words composed of repeated a’s and b’s
separated by c such as aabcaab.
- L1 cannot be represented by context-free grammar, so that the
correctness needs to be checked in the semantic-analysis phase.

June 15, 2011 42

Copyright © All Rights Reserved by Yuan-Hao Chang

Non-Context-Free Language Constructs
(Cont.)
• E.g., Checking that the number of formal parameters in the

declaration of a function agrees with the number of actual
parameters in a use of function.

– E.g., strings of the form anbmcndm

- an and bm represent the formal-parameter lists of two functions declared
to have n and m arguments, respectively.

- cn and dm represent the actual-parameter lists of two functions declared
to have n and m arguments, respectively.

– E.g., the abstract language
- L2 consists of strings in the language generated by the regular

expression a*b*c*d* such that the numbers of a’s and c’s are equal and
the numbers of b’s and d’s are equal, so that L2 is not context-free.

– A function call in C:

L2 = { anbmcndm| n≥1 and m ≥1 }

stmt id (expr_list)
expr_list expr_list, expr | expr

Checking whether the number of
parameters in a call is correct is usually
done during the semantic-analysis phase.

June 15, 2011 43

Copyright © All Rights Reserved by Yuan-Hao Chang

Non-Context-Free Language Constructs
(Cont.)
• E.g., non-context-free language L3 = { anbncn| n≥1}

S aSBC
S aBC

CB HB
HB HC
HC BC
aB ab
bB bb
bC bc
cC cc
Grammar

Non-context free

S aSBC aaSBCBC
 aaaBCBCBC
 aaaBHBCBC
 aaaBHCCBC
 aaaBBCCBC
 aaaBBCHBC
 aaaBBCHCC
 aaaBBCBCC
 aaaBBHBCC
 aaaBBHCCC
 aaaBBBCCC
 aaabBBCCC
 aaabbBCCC
 aaabbbCCC
 aaabbbcCC
 aaabbbccC
 aaabbbccc

To generate
aaabbbccc

A aAb |

Top-Down ParsingTop-Down Parsing

June 15, 2011 45

Copyright © All Rights Reserved by Yuan-Hao Chang

Top-Down Parsing
• Top-down parsing can be viewed as

– Constructing a parse tree for the input string from the
root

– Creating the nodes of the parse tree in preorder
– Finding a leftmost derivation for an input string.

• The key problem is to determine the production to
be applied for a nonterminal.
– Once a production is chosen, the rest of the parsing

process is to match the terminal symbols in the
production body with the input string.

June 15, 2011 46

Copyright © All Rights Reserved by Yuan-Hao Chang

Top-Down Parsing (Cont.)
• Top-down parse for id+id*id

E TE’
E’ + TE’ |
T FT’ (4.2)
T’ * FT’ |
F (E) | id

E E

T E’
lm

 E

T E’
lm

F T’

 E

T E’
lm

F T’ + E’T

id

 E

T E’
lm

F T’
id

 E

T E’
lm

F T’

id

+ E’T

 E

T E’
lm

F T’

id F T’

+ E’T

E

T E’
lm

F T’

id F T’

id

+ E’T

E

T E’
lm

F T’

id F T’

id

* T’F

+ E’T

E

T E’
lm

F T’

id F T’

id

* T’F
id

+ E’T

E

T E’

F T’

id F T’

id

* T’F
id

lm

+ E’T

E

T E’
F T’

id F T’

id * T’F
id

lm

June 15, 2011 47

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursive-Descent Parsing
• A recursive-descent parsing consists of a set of procedures, each of which is for

one nonterminal.

• Backtracking might be needed to repeat scans over the input.
– NOTE: backtracking is not very efficient, and tabular methods such as the dynamic

programming algorithm is preferred.

• Left-recursive grammar can cause a recursive-decent parser to go into an infinite
loop. (i.e., A production might be expanded repeatedly without consuming any input.)

void A() {
1) Choose an A-production, AX1 X2 … Xk
2) for (i = 1 to k) {
3) if (Xi is a nonterminal)
4) call procedure Xi ();
5) else if (Xi equals the current input symbol a)
6) advance the input to the next symbol;
7) else /* an error has occurred */

}
}

A typical procedure for a nonterminal in a top-down parser

To allow backtracking, this
should try each production in

some order

To allow backtracking, this
should return to line (1) and try
another A-production until no

more A-productions to try.

June 15, 2011 48

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursive-Descent Parsing (Cont.)
• Input string w = cad. S cAd

A ab | a
Grammar

w = cad

c dA

S

w = cad

c dA

S

a b

backtrack

w = cad

c dA

S

a

w = cad

c dA

S

a

match

June 15, 2011 49

Copyright © All Rights Reserved by Yuan-Hao Chang

FIRST and FOLLOW
• FIRST and FOLLOW allow us to choose which production

to apply, based on the next input symbol.
– FIRST() is the set of terminals that begin strings derived from ,

where

is any string of grammar symbols. If , then

is also in
FIRST().

– FOLLOW() is (for nonterminal A) the set of terminals a that can
appear immediately to the right of A in some sentential form.
- If A can be the rightmost symbol in some sentential form, then $ is in

FOLLOW(A), where $ is a special “endmarker” symbol.

 a

S

A

c

c is in FIRST(A)
a is in FOLLOW(A)

*

A c*

S Aa*

June 15, 2011 50

Copyright © All Rights Reserved by Yuan-Hao Chang

FIRST
• Compute FIRST(X) for all grammar symbols X:

– If X is a terminal, then FIRST(X) = {X}.
– If X is a nonterminal and XY1 Y2 … Yk is a production for some k1,

- Everything in FIRST(Y1) is surely in FIRST(X).
- If Y1 does not derive , then nothing more is added to FIRST(X).
- If Y1 , then FIRST(Y2) is added to FIRST(X), and so on.

– If X

is a production, then add

to FIRST(X).

E TE’
E’ + TE’ |
T FT’ (4.2)
T’ * FT’ |
F (E) | id

*

• FIRST(F) = { (, id }
• FIRST(T’) = {*, }

– The two productions for T’ begins with * and .

• FIRST(T) = FIRST(F) = { (, id }
– T has one production beginning with F.

• FIRST(E’) = {+, }
– The two productions for E’ begins with + and .

• FIRST(E) = FIRST(T) = { (, id }
– E has one production beginning with T.

June 15, 2011 51

Copyright © All Rights Reserved by Yuan-Hao Chang

FOLLOW
• Compute FOLLOW(A) for all nonterminals A

– Place $ in FOLLOW(S), where S is the start symbol and $ is the input right endmarker.
– If there is a production A B, then everything in FIRST() except

is in FOLLOW(B).
– If there is a production A B

(or A B

with FIRST()
contains), then everything in
FOLLOW(A) is in FOLLOW(B).

E TE’
E’ + TE’ |
T FT’ (4.2)
T’ * FT’ |
F (E) | id

• FIRST(E) = { (, id }
• FIRST(E’) = { +, }
• FIRST(T) = { (, id }
• FIRST(T’) = { *, }
• FIRST(F) = { (, id }

• FOLLOW(E) = {), $ }
– E is the start symbol with the production body (E)

• FOLLOW(E’) = FOLLOW(E) = {), $ }
– E’ appears at the ends of the body of E-productions.

• FOLLOW(T) = { +,), $ }
– T only appears in the body followed by E’. Everything in

FIRST(E’) except

is in FOLLOW(T). +
– In ETE’, E’ so that everything in FOLLOW(E) is in

FOLLOW(T).

• FOLLOW(T’) = FOLLOW(T) = { +,), $ }
– In TFT’, everything in FOLLOW(T) is in FOLLOW(T’).

• FOLLOW(F) = { +, *,), $ }
– In TFT’, everything in FIRST(T’) except

is in FOLLOW(F)
– In TFT’, T’ so that everthing in FOLLOW(T) is in

FOLLOW(F) +,), $

*

*

June 15, 2011 52

Copyright © All Rights Reserved by Yuan-Hao Chang

LL(1) Grammars
• LL(1) grammar:

– First L: scan the input from left to right.
– Second L: produce a leftmost derivation.
– The “1”: use one input symbol of lookahead at each step to make parsing

action decisions.

• No left-recursive or ambiguous grammar can be LL(1).

• A grammar is LL(1) iff whenever A

|

are two distinct productions of
G, the following conditions should hold to prevent multiply defined
entries in the parsing table:

– 1. For no terminal a do both

and

derive strings beginning with a.
– 2. At most one of

and

can derive the empty string.

– 3. If , then

does not derive any string beginning with a terminal in
FOLLOW(A), and likewise if

is in FIRST().

*

FIRST() and
FIRST() are disjoint.

If is in FIRST(), then FIRST() and FOLLOW(A) are disjoint.

June 15, 2011 53

Copyright © All Rights Reserved by Yuan-Hao Chang

Predictive Parsers for LL(1) Grammars
• Predictive parsers

– Are recursive-descent parsers that need no backtracking.
– Look only at the current input symbol on applying the proper

production for a nonterminal.
– Can be constructed for a class of grammars called LL(1).

• E.g., we have the following productions:
stmt if (expr) stmt else stmt

| while (expr) stmt
| { stmt_list }

The keywords if, while and the symbol
{ tell us which alternative is the only
one that could possibly succeed if we
are to find a statement.

June 15, 2011 54

Copyright © All Rights Reserved by Yuan-Hao Chang

Transition Diagrams for Predictive Parsers
• To construct the transition diagram from a grammar:

– First eliminate left recursion, and left factor the grammar.
– Then, for each nonterminal A,

- 1. Create an initial and final (return) state.
- 2. For each production AX1 X2 …Xk , create a path from the initial to the final state,

with edges labeled X1 , X2 , …, Xk .

• Parsers have one diagram for each nonterminal.
– The labels of edges can be tokens (terminals) or nonterminals.

- A transition on a token means that the token is the next input symbol.
- A transition on a nonterminal A is a call of the procedure for A. E TE’

E’ + TE’ | 0 1 2E:
T E’

3 4 5E’:
+ T

6
E’

 0 1 2E:
T

+

Use the diagram E’ to substitute E’ in the diagram E with tail-recursion removal.

June 15, 2011 55

Copyright © All Rights Reserved by Yuan-Hao Chang

Predictive Parsing Table
• A predictive parsing table M[A, a] is a two-
dimensional array, where A is a nonterminal, and a
is a terminal or the symbol $ (the input endmarker).
– The production A

is chosen if the next input symbol a

is in FIRST().
– When =

or , we should choose A

if

- The current input symbol is in FOLLOW(A) or
- The $ on the input has been reached and $ is in FOLLOW(A).

*

June 15, 2011 56

Copyright © All Rights Reserved by Yuan-Hao Chang

Predictive Parsing Table (Cont.)
• Algorithm: Construction of a predictive parsing table

• INPUT: Grammar G.

• OUTPUT: Parsing table M.

• METHOD: For each production A

of the grammar, do
the following:

– For each terminal a in FIRST(A), add A

to M[A, a].
– If

is in FIRST(), then for each terminal b in FOLLOW(A), add

A

to M[A, b].
– If

is in FIRST() and $ is in FOLLOW(A), add A

to M[A, $].

– If (after performing the above) there is no production in M[A, a], then
set M[A, a] to error or an empty entry.

June 15, 2011 57

Copyright © All Rights Reserved by Yuan-Hao Chang

Predictive Parsing Table (Cont.)

NON-
TERMINAL

INPUT SYMBOL

id + * () $
E ETE’ ETE’

E’ E’+TE’ E’ E’

T TFT’ TFT’

T’ T’ T’*FT’ T’ T’

F Fid F(E)

E TE’
E’ + TE’ |
T FT’ (4.2)
T’ * FT’ |
F (E) | id

• FOLLOW(E) = {), $ }
• FOLLOW(E’) = {), $ }
• FOLLOW(T) = { +,), $ }
• FOLLOW(T’) = { +,), $ }
• FOLLOW(F) = { +, *,), $ }

• FIRST(E) = { (, id }
• FIRST(E’) = { +, }
• FIRST(T) = { (, id }
• FIRST(T’) = { *, }
• FIRST(F) = { (, id }

• ETE’: FIRST(TE’) = FIRST(T) = { (, id }
• E’+TE’: FIRST(+TE’) = {+}

• E’: FOLLOW(E’)={), $ }

• TFT’: FIRST(FT’)=FIRST(F)={ (, id }
• T’*FT’: FIRST(*FT’)={ * }

• T’: FOLLOW(T’)={ +,), $}

• F(E): FIRST((E))={ (}

• Fid: FIRST(id) = { id }

June 15, 2011 58

Copyright © All Rights Reserved by Yuan-Hao Chang

Predictive Parsing Table (Cont.)
• For every LL(1) grammar, each parsing-table entry uniquely identifies a

production or signals an error.
– If G is left-recursive or ambiguous, then M will have at least one multiply

defined entry.
– Although left-recursion elimination and left factoring are easy to do, some

grammars have no corresponding LL(1) grammar.

• E.g., S i E t S S’ | a
S’ eS |
E b

NON-
TERMINAL

INPUT SYMBOL

a b e i t $
S Sa SiEtSS’

S’ S’

S’eS

S’

E Eb

• SiEtSS’: FIRST(iEtSS’) = { i }

• Sa: FIRST(a) = { a }

• S’eS: FIRST(eS) = { e }

• S’: FOLLOW(S’)= {e, $}

• Eb: FIRST(b) = {b}

• FOLLOW(S’) = FOLLOW(S)

• FOLLOW(S) = {$}: start symbol

• FOLLOW(S)=FIRST(S’)={e}

ambiguity
Grammar

June 15, 2011 59

Copyright © All Rights Reserved by Yuan-Hao Chang

Nonrecursive Predictive Parsing
• A nonrecursive predictive parser is a table-driven parser

that maintains a stack explicitly instead of recursive calls.

• If w is the matched input so far, then the stack holds a
sequence of grammar symbols

such that S w*

lm

a + b $Input

X
Y
Z
$

Stack Predictive
Parsing
Program

Output

Parsing
Table M

Current input symbol

The symbol on
top of the stack

June 15, 2011 60

Copyright © All Rights Reserved by Yuan-Hao Chang

Table-Driven Predictive Parsing
• Algorithm: Table-driven predictive parsing

• INPUT: A string w and a parsing table M for grammar G.

• OUTPUT: If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

• METHOD: Initially, the parser is in a configuration with w$ in the input buffer, and
the start symbol S of G on top of the stack, above $.

set ip to the first symbol of w;
set X to the top stack symbol; /* a is the current input symbol */
while (X≠$) { /* stack is not empty */

if(X is a) pop the stack and advance ip; /* pop X */
else if (X is a terminal) error();
else if (M[X, a] is an error entry) error();
else if (M[X,a]=XY1 Y2 …Yk) {

output the production X Y1 Y2 …Yk
pop the stack; /* pop X */
push Yk Yk-1 …Y1 onto the stack with Y1 on top;

}
set X to the top stack symbol;

}

June 15, 2011 61

Copyright © All Rights Reserved by Yuan-Hao Chang

Table-Driven Predictive Parsing (Cont.)
• Input: id+id*id

E TE’
E’ + TE’ |
T FT’ (4.2)
T’ * FT’ |
F (E) | id

MATCHED STACK INPUT ACTION
E$ id+id*id$

TE’$ id+id*id$ output ETE’
FT’E’$ id+id*id$ output TFT’

idT’E’$ id+id*id$ output Fid
id T’E’$ +id*id$ match id
id E’$ +id*id$ output T’

id +TE’$ +id*id$ output E’+TE’
id+ TE’$ id*id$ match +
id+ FT’E’$ id*id$ output TFT’
id+ idT’E’$ id*id$ output Fid
id+id T’E’$ *id$ match id
id+id *FT’E’$ *id$ output T’*FT’
id+id* FT’E’$ id$ match *
id+id* idT’E’$ id$ output Fid
id+id*id T’E’$ $ match id
id+id*id E’$ $ output T’

id+id*id $ $ output E’

match $

June 15, 2011 62

Copyright © All Rights Reserved by Yuan-Hao Chang

Error Recovery in Predictive Parsing
• An error is detected during predictive parsing

– When the terminal on top of the stack does not match the next input symbol.
Or

– When nonterminal A is on top of the stack, a is the next input symbol, and
M[A, a] is error.

• Error recovery methods:
– Panic mode

- Skip symbols on the input until a token in a selected set of synchronizing tokens
appears.

- The effectiveness depends on the choice of synchronizing set.
– Phrase-level recovery

- Fill in the blank entries in the predictive parsing table with pointers to error routines.
- Error routines may change, insert, or delete symbols on the input and issue

appropriate error messages.
- An infinite loop must be prevented: checking that any recovery action eventually

consumes input symbols.

June 15, 2011 63

Copyright © All Rights Reserved by Yuan-Hao Chang

Panic-Mode Error Recovery
• Some heuristics to select synchronizing set:

– All symbols in FOLLOW(A) as the synchronizing set for nontermial A
- Skip tokens until an element of FOLLOW(A) is seen and pop A.

– The symbols that begin higher-level constructs as the synchronizing
set of a lower-level construct
- E.g., add keywords that begin statements to the synchronizing sets for

the nonterminals generating expressions.
– The symbols in FIRST(A) as the synchronizing set for nonterminal A.
– If a nonterminal can generate the empty string, the production

deriving

can be used as a default.
- To postpone some error detection, but cannot miss an error.

– If a terminal on top of the stack cannot be matched, pop the terminal,
issue a message saying that the terminal was inserted, and continue
parsing.
- This approach takes the synchronizing set of a token to consist of all of

other tokens.

June 15, 2011 64

Copyright © All Rights Reserved by Yuan-Hao Chang

Panic-Mode Error Recovery (Cont.)
• Obtain synchronizing tokens from the FOLLOW set

of the nonterminal.
– If checked M[A, a] is blank, skip the input symbol a.
– If the entry is synch, pop the nonterminal on top of the

stack.
– If a token on top of the stack does not match the input

symbol, pop the token from the stack.

E TE’
E’ + TE’ |
T FT’ (4.2)
T’ * FT’ |
F (E) | id

NON-
TERMINAL

INPUT SYMBOL

id + * () $
E ETE’ ETE’ synch synch

E’ E’+TE’ E’ E’

T TFT’ synch TFT’ synch synch

T’ T’ T’*FT’ T’ T’

F Fid synch synch F(E) synch synch

• FOLLOW(E) = {), $ }
• FOLLOW(E’) = {), $ }
• FOLLOW(T) = { +,), $ }
• FOLLOW(T’) = { +,), $ }
• FOLLOW(F) = { +, *,), $ }

June 15, 2011 65

Copyright © All Rights Reserved by Yuan-Hao Chang

Panic-Mode Error Recovery (Cont.)
E TE’
E’ + TE’ |
T FT’ (4.2)
T’ * FT’ |
F (E) | id

• Input: +id*+id
MATCHED STACK INPUT Remark

E$ +id*+id$ error, skip +
E$ id*+id$ id is in FIRST(E)

TE’$ id*+id$
FT’E’$ id*+id$

idT’E’$ id*+id$
id T’E’$ *+id$ match id
id *FT’E’$ *+id$
id* FT’E’$ +id$ match *

id* FT’E’$ +id$ Error, M[F, +]=synch
id* T’E’$ +id$ F has been popped
id* E’$ +id$

id* +TE’$ +id$
id*+ TE’$ id$ match +
id*+ FT’E’$ id$
id*+ idT’E’$ id$

id*+id T’E’$ $ match id
id*+id E’$ $
id*+id $ $

Bottom-Up ParsingBottom-Up Parsing

June 15, 2011 67

Copyright © All Rights Reserved by Yuan-Hao Chang

Bottom-Up Parse
• A bottom-up parse constructs a parse tree for an
input string beginning at the leaves towards the root.
– It describes parsing as the process of building parse trees.

A bottom-up parse for id*id

id id* F id*

id

T id*

F

id

T F*

F

id

id T F*

F

id

id

T

T F*

F

id

id

T

E

The derivation corresponds to the parse:
E T T*F T*id F*id id*id

E E + T | T
T T * F | F (4.1)
F (E) | id

A rightmost derivation

June 15, 2011 68

Copyright © All Rights Reserved by Yuan-Hao Chang

Reductions
• Bottom-up parsing is the process of “reducing” a string w to

the start symbol of the grammar.
– The goal is to construct a derivation in reverse.
– At each reduction step, a specific substring matching the body of a

production is replaced by the nonterminal at the head of the production.
– Key decisions: When to reduce and what production to apply

Reduction sequence:
id*id, F*id, T*id, T*F, T, E

E E + T | T
T T * F | F (4.1)
F (E) | id

A reduction is the reverse
of a step in a derivation.

June 15, 2011 69

Copyright © All Rights Reserved by Yuan-Hao Chang

Handle Pruning
• Bottom-up parsing during a left-to-right scan of the input

constructs a right-most derivation in reverse.
– Handle: a handle is a substring that matches the body of a

production and
– Reduction: the reduction of a handle represents one

step along the reverse of a rightmost derivation.
E E + T | T
T T * F | F (4.1)
F (E) | id

Right sentential
form Handle Reducing

production
id1 * id2 id1 Fid
F * id2 F TF
T * id2 id2 Fid

T * F T * F ET * F

June 15, 2011 70

Copyright © All Rights Reserved by Yuan-Hao Chang

Handle Pruning (Cont.)
• If S Aw

 w, given a production A,

– The

(or A) is a handle of w.

• Given a right sentential form , a handle of , a production
A, and a position of

where may be found, replace at

that position by A to produce the previous right-sentential
form in a rightmost derivation of .

• Every right-sentential form of the grammar has exactly one
handle, except ambiguous grammars.

– A rightmost derivation in reverse can be obtaine by “handle pruning”.
S

A

 w

S Aw w
rm
*

rm

Rightmost derivation

Handle pruning (rightmost derivation in reverse)

Production Ab,

*

a, b, c: a terminal
w, x, y, z: strings of terminals
A,B, C: a nonterminal
W, X, Y, Z: a grammar symbol (termina or nonterminal)
: strings of grammar symbols

June 15, 2011 71

Copyright © All Rights Reserved by Yuan-Hao Chang

Shift-Reduce Parsing
• Shift-reduce parsing is a form of bottom-up parsing in which

– a stack holds grammar symbols and
– an input buffer holds the rest of the string to be parsed.

• The handle always appears at the top of the stack just before it is
identified as the handle.

STACK INPUT
$ w$

Initial state:
Mark the
bottom of
the stack

Input
string

STACK INPUT
$S $

finish state:

The start
symbolThe top

of the
stack

June 15, 2011 72

Copyright © All Rights Reserved by Yuan-Hao Chang

Shift-Reduce Parsing (Cont.)
• Operations of shift-reduce

parsing:
– Shift: Shift the next input symbol

onto the top of the stack.
– Reduce: Locate the left end of the

string within the stack and decide
with what nonterminal to replace the
string.

– Accept: Announce successful
completion of parsing.

– Error: Discover a syntax error and
call an error recovery routine.

E E + T | T
T T * F | F (4.1)
F (E) | id

STACK INPUT ACTION
$ id1 * id2 $ shift

$id1 * id2 $ reduce by F id
$F * id2 $ reduce by T F

$T * id2 $ shift

$T* id2 $ shift

$T*id2 $ reduce by F id
$T*F $ reduce by T T*F
$T $ reduce by E T
$E $ accept

E.g., parse id1 * id2

June 15, 2011 73

Copyright © All Rights Reserved by Yuan-Hao Chang

Shift-Reduce Parsing (Cont.)
The handle will always eventually appear on top of the stack.

A

B

 y

S

 z

A

 y

S

 zx

B

S Az Byz yz
rm
*

rm rm
S BxAz Bxyz xyz
rm
*

rm rm
Leftmost
derivation

Case 1 Case 2

STACK INPUT ACTION
$ yz $ reduce B

$B yz $ shift
$By z $ reduce ABy
$ z $

STACK INPUT ACTION
$ xyz $ reduce B

$B xyz $ shift xy
$Bxy z $ reduce Ay
$ Bx z $

June 15, 2011 74

Copyright © All Rights Reserved by Yuan-Hao Chang

Conflicts During Shift-Reduce Parsing

• Some context-free grammars could let the shift-
reduce parsing encounter conflicts on deciding the
next action.
– Shift/reduce conflict

- Cannot decide whether to shift or to reduce
- E.g., shift-reduce conflict

– Reduce/reduce conflict
- Cannot decide which production should be adopted to reduce

stmt if expr then stmt
| if expr then stmt else stmt
| other

STACK INPUT
… if expr then stmt else … $

Cannot determine
whether to shift or

to reduce

Dangling-else
grammer

June 15, 2011 75

Copyright © All Rights Reserved by Yuan-Hao Chang

• E.g., a grammar for function call and array for the input p(i,j)
– A function called with parameters surrounded by parentheses.
– Indices of arrays are surrounded by parentheses.

Conflicts During Shift-Reduce Parsing (Cont.)

stmt
stmt

parameter_list
parameter_list

parameter
expr
expr

expr_list
expr_list

STACK INPUT
… id (id , id) … $

id (parameter_list)
expr := expr
parameter_list, parameter
parameter
id
id (expr_list)
Id
expr_list, expr
expr

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

Input: p(i,j) is converted to the token string id(id, id)
The correct choice is production (5) if p is a
procedure call.
The correct choice is production (7) if p is an array.

One solution to resolve this problem
is to change production into
stmt procid (parameter_list)
For the token name of procedures.

STACK INPUT
… procid (id , id) … $

A procedure call is encountered

An array is encountered

Introduction to LR Parsing:
Simple LR (SLR)

Introduction to LR Parsing:
Simple LR (SLR)

June 15, 2011 77

Copyright © All Rights Reserved by Yuan-Hao Chang

LR Parsers
• The most prevalent type of bottom-up parser is the LR(k)

parsing:
– L stands for left-to-right scanning of the input.
– R stands for constructing a rightmost derivation in reverse.
– k is number of input symbols of lookahead.

- The cases k=0 or k=1 are of practical interest.
- When (k) is omitted, k is assumed to be 1.

• Simple LR (SLR)
– The easiest method for constructing shift-reduce parsers.

• LR parsers are table driven.
– An LR grammar is a grammar whose parsing table could be

constructed by LR parsers.

June 15, 2011 78

Copyright © All Rights Reserved by Yuan-Hao Chang

Why LR Parsers?
• Advantages:

– LR parsers can recognize almost every programming-language
constructs written by context-free grammars.
- Non-LR context-free grammars exists, but they usually can be avoided.

– The LR-parsing method is the most general nonbacktracking shift-
reduce parsing method.

– An LR parser can detect a syntactic error as soon as it is possible to
do so on a left-to-right scan of the input.

– LR methods are a proper superset of the LL or predictive methods.
- With k input symbols of lookahead, an LR(k) parser can recognize the

occurrence of a production, but an LL parser can not guarantee this.

• Drawbacks:
– It is too much work to construct an LR parser by hand for a typical

programming-language grammar.

June 15, 2011 79

Copyright © All Rights Reserved by Yuan-Hao Chang

Items and the LR(0) Automation
• An LR parser makes shift-reduce decisions by maintaining

states to keep track of where we are in a parse.
– A state represents a set of “items”.
– An LR(0) item (item for short) of a grammar G is a production of G

with a dot at some position of the body.
– An item indicates how much of a production we have seen at a given

time.
- E.g., production AXYZ yields the four items:

– The production A

generates only one item A‧

A‧XYZ
A X‧YZ
A XY‧Z
A XYZ‧

Hope to see a string derivable from
XYZ next on the input.

Have just seen XY and hope next
to see a string derivable from Z.

Time to reduce
XYZ to A

June 15, 2011 80

Copyright © All Rights Reserved by Yuan-Hao Chang

Items and the LR(0) Automation (Cont.)

• Canonical LR(0) collection is one collection of sets
of LR(0) items.
– Provide the basis for constructing a deterministic finite

automation (called an LR(0) automation) that is used to
make parsing decisions.

• To construct the canonical LR(0) collection, an
augmented grammar and two functions
(CLOSURE and GOTO) are needed:
– An augmented grammar G’ of G has a new start symbol

S’ and production S’S, if S is the start symbol of G.
The new production is to indicate when it should stop
parsing and announce acceptance of the input.

June 15, 2011 81

Copyright © All Rights Reserved by Yuan-Hao Chang

The Function CLOSURE
• If I is a set of items for a grammar G, then CLOSURE(I) is

the set of items constructed from I by the two rules:
– 1. Initially, add every item in I to CLOSURE(I).
– 2. If A‧B

is in CLOSURE(I) and B

is a production, add the

item B‧

to CLOSURE(I) if it is not there.
Apply this rule until no more new items can be added to
CLOSURE(I).

• Intuitively, A‧B

in CLOSURE(I) indicates that we
might next see a substring derivable from B

as input.

– Therefore, if B

is a production, we also add B‧

in
CLOSURE(I).

June 15, 2011 82

Copyright © All Rights Reserved by Yuan-Hao Chang

Computation of CLOSURE
• If I is the set of one item {[E’‧E]}, then CLOSURE(I)

contains the set of items

E’ E
E E + T | T
T T * F | F
F (E) | id

Augmented grammar

CLOSURE(I)

E ‧E+T
E ‧T
T ‧T*F
T ‧F
F ‧(E)
F ‧id

E’‧E

June 15, 2011 83

Copyright © All Rights Reserved by Yuan-Hao Chang

Computation of CLOSURE (Cont.)

• A list of the nonterminals B whose productions were added to I by
CLOURSE is suffice.

– If one B-production is added to the closure, then all B-productions will
be similarly added to the closure.

SetOfItems CLOSURE(I) {
J = I;
repeat

for (each item A‧B

in J)
for (each production B

of G)

add B ‧

to J;
until no more items are added to J on one round;
return J;

}
Computation of CLOSURE

June 15, 2011 84

Copyright © All Rights Reserved by Yuan-Hao Chang

Kernel Items and Nonkernel Items
• Sets of items can be divided into two classes:

– Kernel items:
- The initial item, S’‧S , and all items whose dots are not at the left end.

– Nonkernel items:
- All items with their dots at the left end, except for S’‧S .

• Each set of items is formed by taking the closure of a set of
kernel items.

• Items added in the closure can never be kernel items.

June 15, 2011 85

Copyright © All Rights Reserved by Yuan-Hao Chang

The Function GOTO
• GOTO(I, X) is defined to be the closure of the set of all items [AX‧]

such that [A‧X] is in I, where
– I: a set of items
– X: a grammar symbol

• The GOTO function is used to define the transitions in the LR(0)
automation for a grammar.

• The states of the automation correspond to sets of items, and GOTO(I,X)
specifies the transition from the state for I under input X.

• E.g., If I is the set of two items { [E’E ‧], [EE ‧+T]},
– [E’E ‧] is not the item for GOTO
– [EE ‧+T] is the item for GOTO
[EE +‧T]

CLOSURE([EE +‧T])

T ‧T*F
T ‧F
F ‧(E)
F ‧id

EE +‧T
Nonkernel

items

Kernel item

GOTO(I,+)

a, b, c: a terminal
w, x, y, z: strings of terminals
A,B, C: a nonterminal
W, X, Y, Z: a grammar symbol (terminal or nonterminal)
: strings of grammar symbols

E’ E
E E + T | T
T T * F | F
F (E) | id
Augmented grammar

June 15, 2011 86

Copyright © All Rights Reserved by Yuan-Hao Chang

Canonical Collection of Sets of LR(0) Items
• The canonical collection C of sets of LR(0) items can be

computed as follows:

void items(G’) {
C = CLOSURE({ [S’‧S] });
repeat

for (each set of items I in C)
for (each grammar symbol X)

if (GOTO(I, X) is not empty and not in C)
add GOTO(I, X) to C;

until no new sets of items are added to C on a round;
}

June 15, 2011 87

Copyright © All Rights Reserved by Yuan-Hao Chang

I11

I10

I9

I8

I7

I6

I3

I4

I5

I2

I1I0

Canonical Collection of Sets of LR(0) Items (Cont.)

E ‧E+T
E ‧T
T ‧T*F
T ‧F
F ‧(E)
F ‧id

E’‧E E’E‧
EE‧+T

ET‧
TT‧*F

Fid‧

F(‧E)

E ‧E+T
E ‧T
T ‧T*F
T ‧F
F ‧(E)
F ‧id

TF‧

EE+‧T

T ‧T*F
T ‧F
F ‧(E)
F ‧id

TT*‧F

F ‧(E)
F ‧id

EE‧+T
F(E‧) F(E) ‧

TT*F‧

EE+T‧
T T ‧ *F

E

T

id

(

F

$
accept
+

E’ E
E E + T | T
T T * F | F
F (E) | id

Grammar G’

*
id

(

F

T

id

(

F

F

)

+

E
Symbol
E T F
+ *
() id

LR(0) automation =
Canonical collection
of sets of LR(0) items

Each state, except the
start state 0, has a
unique grammar symbol
associate with it.

*

June 15, 2011 88

Copyright © All Rights Reserved by Yuan-Hao Chang

Use of the LR(0) Automation
• The central idea of SLR parsing is the construction from the

grammar of the LR(0) automation.
– The states of the LR(0) automation are the sets of items from the

canonical LR(0) collections.
– The transitions are given by the GOTO function.
– The start state of the LR(0) automation is CLOSURE({[S’‧S]}),

where S’ is the start symbol of the augmented grammar.
– All states are accepting states.
– “State j” refers to the state corresponding the set of items Ij .

• The LR(0) automation helps with shift-reduce decisions on
when to shift and when to reduce.

– Shift on the next symbol a if state j has a transition a.
– Otherwise, reduce with the production indicated by the items in state j.

June 15, 2011 89

Copyright © All Rights Reserved by Yuan-Hao Chang

Parse id*id

LINE STACK SYMBOL INPUT ACTION

(1) 0 $ id1 * id2 $ shift to 5
(2) 0 5 $id1 * id2 $ reduce by F id
(3) 0 3 $F * id2 $ reduce by T F
(4) 0 2 $T * id2 $ shift to 7
(5) 0 2 7 $T* id2 $ shift to 5
(6) 0 2 7 5 $T*id2 $ reduce by F id
(7) 0 2 7 10 $T*F $ reduce by T T*F
(8) 0 2 $T $ reduce by E T
(9) 0 1 $E $ accept

At line (1), the next input symbol is id
so state 0 has a transition to state 5
on id.

At line (2), state 5 is pushed onto
the stack, and no transition from
state 5 on input *, so reduce id with
production Fid to pop state 5
from the stack, and put state 3 to
the stack (due to the transition from
state 0 to state 3 on F.

June 15, 2011 90

Copyright © All Rights Reserved by Yuan-Hao Chang

Model of an LR Parser
• The parsing table changes from one parser to another.

• The parsing program reads characters from an input buffer one at a time.

• An LR parser shifts a state. Each state summarizes the information
contained in the stack below it. (A shift-reduce parser shifts a symbol.)

a1 … ai … an $Input

sm

sm-1

…
…

Stack LR
Parsing
Program

Output

ACTION

Current input symbol

The state on
top of the stack

GOTO

Parsing table
$

June 15, 2011 91

Copyright © All Rights Reserved by Yuan-Hao Chang

Structure of the LR Parsing Table
• The parsing table consists of two parts:

– A parsing-action function ACTION
- ACTION takes a state i and a terminal a (or $). The value of

ACTION [i, a] can have one of four forms:
· Shift j, where j is a state: Shift state j representing input a to the stack.
· Reduce A: Reduce

on the top of the stack to head A.

· Accept: The parser accepts the input and finishes parsing.
· Error: The parser discovers an error in its input.

– A goto function GOTO
- If GOTO[Ii , A] = Ij , then GOTO maps a state i and a nonterminal A

to state j.

June 15, 2011 92

Copyright © All Rights Reserved by Yuan-Hao Chang

LR-Parser Configuration
• The configuration of LR-parsers is to represent the

complete state of the parser.

• A configuration of an LR parser is a pair:

– This configuration represents the right-sentential form:

where state si represents grammar symbol Xi .
– Note: the start state s0 does not represent any grammar symbol. It

serves as a bottom-of-stack marker.

(s0 s1 …sm , ai ai+1 …an $)

Stack
contents Stack top Remaining

input

(X1 X2 …Xm , ai ai+1 …an)

June 15, 2011 93

Copyright © All Rights Reserved by Yuan-Hao Chang

Behavior of the LR Parser
• The next move of the parser from the configuration is determined by the entry

ACTION[sm , ai].
– sm : the state on top of the stack
– ai : the current input symbol

• The move of ACTION:
– 1. If ACTION[sm , ai]=shift s, it shifts the next state s

onto the stack. The symbol ai need not be held on
the stack, since it can be recovered from s.

– 2. If ACTION[sm , ai]=reduce A, it executes a reduce
move, where r is the length of , =Xm-r+1 …Xm ,
and s=GOTO[sm-r ,A].

– 3. If ACTION[sm , ai]=accept, it executes parsing completed.
– 4. If ACTION[sm , ai]=error, it has discovered an error.

(s0 s1 …sm , ai ai+1 …an $)

(s0 s1 …sm s, ai+1 ai+2 …an $)

Current configuration

(s0 s1 …sm-r s, ai ai+1 …an $)

June 15, 2011 94

Copyright © All Rights Reserved by Yuan-Hao Chang

LR-Parsing Algorithm
• Algorithm: LR-parsing algorithm

• INPUT: An input string w and an LR-parsing table with functions ACTION and
GOTO for a grammar G.

• OUTPUT: If w is in L(G), the reduction steps of a bottom-up parse for w;
otherwise, an error indication.

• METHOD: Initially, the parser has the initial state s0 on its stack, where w$ in
the input buffer.

Let a be the fist symbol of w$;
while(1) { /* repeat forever */

let s be the state on top of the stack;
if(ACTION[s, a] = shift t) {

push t onto the stack;
Move a to the next input symbol;

} else if (ACTION[s, a] = reduce A

) {
pop || symbols off the stack;
let state t now be on top of the stack;
push GOTO[t, A] onto the stack;
output the production A;

} else if (ACTION[s, a] = accept) break; /* parsing is done */
else call error-recovery routine;

}

Case shift

Case
reduce

Case
accept

Case error

June 15, 2011 95

Copyright © All Rights Reserved by Yuan-Hao Chang

SLR-Parsing Table – SLR(1) Table
• Algorithm: Constructing an SLR-parsing table, i.e., SRL(1) Table.
• INPUT: An augmented grammar G’.
• OUTPUT: The SLR-parsing table functions ACTION and GOTO for G’.
• METHOD:

– 1. Construct C = {I0 , I1 , …, In }, the collection of sets of LR(0) items for G’.
– 2. State i is constructed from Ii . The parsing actions for state i are determined as

follows:
- (a) If [A．a] is in Ii and GOTO(Ii , a)=Ij , then set ACTION[i, a] to “shift j”, where a is a

terminal.
- (b) If [A．] is in Ii , then set ACTION[i, a] to “reduce A ” for all a in FOLLOW(A), where

A may not be S’.
- (c) If [S’S] is in Ii , then set ACTION[i, $] to “accept”.
- If any conflicting actions result from the above rules, the grammar is not SLR(1) and the

algorithm fails to produce a parser for it.
– 3. If GOTO(Ii , A)=Ij , then GOTO[i,A]=j.
– 4. All entries not defined by rules (2) and (3) are made “error.”
– 5. The initial state of the parser is the one constructed from the set of items

containing [S’．S]

June 15, 2011 96

Copyright © All Rights Reserved by Yuan-Hao Chang

SLR-Parsing Table
• The codes for the actions:

– si: shift and stack state i.
– rj: reduce by the production number j
– acc: accept
– blank: error

(1) E E + T
(2) E T
(3) T T * F
(4) T F (4.1)
(5) F (E)
(6) F id

STATE
ACTION GOTO

id + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

• FOLLOW(E) = {+,), $ }
• FOLLOW(T) = { *, +,), $ }
• FOLLOW(F) = {*, +,), $ }

June 15, 2011 97

Copyright © All Rights Reserved by Yuan-Hao Chang

SLR-Parsing Table (Cont.)
STACK SYMBOLS INPUT ACTION

(1) 0 id1 * id2 +id $ shift to 5
(2) 0 5 id1 * id2 +id $ reduce by F id
(3) 0 3 F * id2 +id $ reduce by T F
(4) 0 2 T * id2 +id$ shift to 7
(5) 0 2 7 T* id2 +id $ shift to 5
(6) 0 2 7 5 T*id2 +id$ reduce by F id
(7) 0 2 7 10 T*F +id$ reduce by T T*F
(8) 0 2 T +id$ reduce by E T
(9) 0 1 E +id$ shift 6
(10) 0 1 6 E+ id$ shift 5

(11) 0 1 6 5 E+id $ reduce by F id
(12) 0 1 6 3 E+F $ reduce by T F
(13) 0 1 6 9 E+T $ reduce by F E+T
(14) 0 1 E $ accept

(1) E E + T
(2) E T
(3) T T * F
(4) T F (4.1)
(5) F (E)
(6) F id

STA
TE

ACTION GOTO

id + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

June 15, 2011 98

Copyright © All Rights Reserved by Yuan-Hao Chang

SLR(1) Grammar
• A grammar using the SLR(1) table is said to be SLR(1) grammar.

– Every SLR(1) grammar is unambiguous, but many unambiguous grammars
are not SLR(1).

– E.g.,
S L=R | R
L *R | id
R L

I0
S ‧L=R
S ‧R
L ‧*R
L ‧ id
R ‧L

S’‧S

Grammar

L-value R-value

I1S’S ‧

I2R L ‧
S L ‧ =R

I3SR ‧

I4
R ‧L
L ‧*R
L ‧ id

L*‧R

I5L id ‧

I6

R ‧L
L ‧*R
L ‧ id

SL= ‧R

I7L*R‧

I8RL‧

I9
SL= R ‧

ACTION[2,=] = shift 6

FOLLOW(R) = FOLLOW(L) = { = }
ACTION[2,=] = reduce RL

Reduce/shift conflict

June 15, 2011 99

Copyright © All Rights Reserved by Yuan-Hao Chang

Viable Prefixes
• The LR(0) automation for a grammar characterizes the strings of grammar

symbols that can appear on the stack of a shift-reduce parser.
– The stack contents must be a prefix of a right-sentential form.
– If the stack holds

and the rest of the input is x, then a sequence of

reductions will take x to S. That is, the derivation S x.
– The set of valid items for a viable prefix

is exactly the set of items reached

from the initial state along the path labeled

in the LR(0) automation grammar.
• The prefixes of right sentential forms that can appear on the stack of a

shift-reduce parser are called viable prefixes.
– A viable prefix is a right-sentential form that does not continue past the right

end of the rightmost handle of that sentential form.
• SLR parsing is based on the fact that LR(0) automata recognize viable

prefixes.
– A viable prefix might have two valid actions to incur conflicts. Such conflicts

might be solved by looking at the next input symbol.
– E.g., A1．2 is valid for the prefix 1 .

- If 2 , the “shift” actions should be performed.
- If 2 , it looks whether A1 is a handle, and reduces by A1

rm
*

June 15, 2011 100

Copyright © All Rights Reserved by Yuan-Hao Chang

Viable Prefixes (Cont.)
• The string E+T* is a viable prefix of the grammar, and will

be in state 7.

E’ E
E E + T | T
T T * F | F
F (E) | id

TT*‧F

F ‧(E)
F ‧id

Precisely the items valid for E+T*

E’ E
 E+T
 E+T*F

rm
rm
rm

E’ E
 E+T
 E+T*F
 E+T*(E)

rm
rm
rm
rm

E’ E
 E+T
 E+T*F
 E+T*id

rm
rm
rm
rm

More Powerful LR ParsersMore Powerful LR Parsers

June 15, 2011 102

Copyright © All Rights Reserved by Yuan-Hao Chang

More Powerful LR Parsers
• More powerful LR parsers:

– 1. Canonical-LR parser (LR parser):
- Make full use of the lookahead symbol(s) with a large set of LR(1)

items.

– 2. Lookahead-LR parser (LALR parser):
- By carefully introducing lookaheads into the LR(0) items, the

LALR parser can handle more grammars than SLR parsers with
the parsing tables that are no bigger than the SLR tables.

June 15, 2011 103

Copyright © All Rights Reserved by Yuan-Hao Chang

Limitations of LR(0) Items or SLR(1) Parsers
• The following grammar has no right-sentential form that begins R=…

Thus state 2 (that is the state corresponding to viable prefix L) should
not call for reduction with RL.

• With LR(1) items, the reduce/shift conflict can be avoided.

S L=R | R
L *R | id
R L

I0
S ‧L=R
S ‧R
L ‧*R
L ‧ id
R ‧L

S’‧S

Grammar

I1S’S ‧

I2R L ‧
S L ‧ =R

I3SR ‧

I4
R ‧L
L ‧*R
L ‧ id

L*‧R

I5L id ‧

I6

R ‧L
L ‧*R
L ‧ id

SL= ‧R

I7L*R‧

I8RL‧

I9
SL= R ‧

ACTION[2,=] = shift 6 FOLLOW(R) = FOLLOW(L) = { = }

ACTION[2,=] = reduce RL

Reduce/shift conflict

June 15, 2011 104

Copyright © All Rights Reserved by Yuan-Hao Chang

Canonical LR(1) Items
• Purpose of LR(1) items:

– Given a production A, exactly indicate which input symbol could
follow a handle

when there is a possible reduction to A.

• The general form of an LR(1) item:
– [A．, a], where A

is a production and a is a terminal or $.

– 1 refers to the length of the second component, i.e., the lookahead.
- If

is not , the lookahead has no effect in the item [A．, a].

- If

is , the item [A．, a] can call for a reduction by A

if the next

input symbol is a.
a, b, c: a terminal
w, x, y, z: strings of terminals
A,B, C: a nonterminal
W, X, Y, Z: a grammar symbol (a terminal or a nonterminal)
: strings of grammar symbols

June 15, 2011 105

Copyright © All Rights Reserved by Yuan-Hao Chang

Canonical LR(1) Items (Cont.)
• Formally, LR(1) item [A．, a] is valid for a viable prefix

if there is a

derivation , where
– 1. , and
– 2. Either a is the first symbol of w, or w is

and a is $.

• E.g.,

– There is a rightmost derivation
- Item [Ba．B, a] is valid for a viable prefix =aaa by letting
=aa, A=B, =a, =B, and w=ab.

– There is another rightmost derivation
- Item [Ba．B, $] is valid for prefix Baa by letting
=Ba, A=B, =a, =B, and w=.

S BB
B aB | b

SaaBab aaaBab*
rm rm

SAw w*
rm rm

SBaB BaaB*
rm rm

June 15, 2011 106

Copyright © All Rights Reserved by Yuan-Hao Chang

Constructing LR(1) Sets of Items
• Algorithm: Construction of the sets

of LR(1) items.

• INPUT: An augmented grammar G’.

• OUTPUT: The sets of LR(1) items
that are the sets of items valid for
one or more viable prefixes of G’.

• METHOD: The procedures
CLOSURE and GOTO and the main
routin items

SetOfItems CLOSURE(I) {
repeat

for (each iteam [A‧Ba] in I)
for (each production B

in G’)
for (each terminal b in FIRST(a))

add [B ‧, b] to set I;
until no more items are added to I;
return I;

}

SetOfItems GOTO(I, X) {
initialize J to be the empty set;
for (each iteam [A．Xa] in I)

add item [AX．,] to set J;
return CLOSURE(J);

}

void items(G’) {
initialize C = CLOSURE({ [S’‧S, $] });
repeat

for (each set of items I in C)
for (each grammar symbol X)

if (GOTO(I, X) is not empty and not in C)
add GOTO(I, X) to C;

until no new sets of items are added to C;
}

June 15, 2011 107

Copyright © All Rights Reserved by Yuan-Hao Chang

Constructing LR(1) Sets of Items (Cont.)

• Why b must be in FIRST(a)
– Consider an item of the for [A ‧B, a] in the set of items valid for

some viable prefix .
– Then there is a rightmost derivation , where =.

- Suppose ax derives terminal string by.
- For each production B for some ,

we can have derivation
- Thus, [B．, b] is valid for .

– For b, there are two conditions:
- 1. b is the first terminal derived from .
- 2. b is a if derives . That is, axby
- So that b must be any terminal in FIRST(ax) = FIRST(a)

SAax Bax*
rm rm

SBby by*
rm rm

rm
*

a, b, c: a terminal
w, x, y, z: strings of terminals
A,B, C: a nonterminal
W, X, Y, Z: a grammar symbol (terminal or nonterminal)
: strings of grammar symbols

June 15, 2011 108

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of LR(1) Sets of Items
• Consider the grammar, we begin from CLOSURE{[S’．S, $]}

– Step 1:
- Watch item [S’．S, $] with the item [A‧B, a].

A=S’, =, B=S, =, and a = $.
- Function CLOSURE tells us to add [B．, b] for each production B

and
terminal b in FIRST(a).
Thus, B

must be SCC. Since =

and a = $, so that b = FIRST(a) = $.
- Therefore, we add [S．CC, $] to the closure.

– Step 2:
- Match [S．CC, $] against [A‧B, a].

A=S, =, B=C, =C, and a = $.
- Compute the closure by adding all items [C．, b] for b in FIRST(C$).

Since b= FIRST(C$) = {c, d}, we add [C．cC, c], [C．cC, d], [C．d, c], and
[C．d, d].

– Step 3:
- None of the new items has a

nonterminal immediately to the right
of the dot, so we have completed the
first set of LR(i) items.

S’ S
S CC
C cC | d

I0
S ．CC, $
C ．cC, c/d
C ．d, c/d

S’．S, $

June 15, 2011 109

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of LR(1) Sets of Items (Cont.)
• Next, compute GOTO(I0 , X) for the various values of X.

– For X=S, close the item [S’S．, $] and no additional closure
is possible because the dot is at the right end. Thus we have

– For X=C, close [SC．C, $] due to [S．CC, $] to add C-productions with
second component $ to yield:

– For X=c, close [Cc．C, c/d] to add C-productions with second component
c/d to yield:

– For X=d, close [Cd．, c/d] to wind up:

I0
S ．CC, $
C ．cC, c/d
C ．d, c/d

S’．S, $

I1S’S．, $

I2
C ．cC, $
C ．d, $

SC．C, $

I3
C ．cC, c/d
C ．d, c/d

Cc．C, c/d

I4Cd．, c/d

S’ S
S CC
C cC | d

June 15, 2011 110

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of LR(1) Sets of Items (Cont.)
• GOTO(I1 , X) goes to no new sets.

• Compute GOTO(I2 , X) for the various values of X
– For X=C, add [SCC．, $] and no additional closure is possible.

– For X=c, we take the closure of [Cc．C, $] to obtain:

– For X=d, we take GOTO(I2 , d)

• Compute GOTO(I3 , X).
– GOTO(I3 , c) and GOTO(I3 , d) are I3 and I4 , respectively.
– GOTO(I3 , C) is

• GOTO(I6 , C) is

I2
C ．cC, $
C ．d, $

SC．C, $
I5SCC．, $

I6
C ．cC, $
C ．d, $

Cc．C, $ I6 differs from I3 only in second components. In
LR(0), these sets of LR(1) items will coincide to
the same set of LR(0) items.

I7Cd ．, $ I3
C ．cC, c/d
C ．d, c/d

Cc．C, c/d

I4Cd．, c/dI8CcC．, c/d

I9CcC．, $

I4 , I5 , I7 , I8 , and I9
have no GOTOs.

GOTO(I6 , c) and GOTO(I6 , d)
are I6 and I7 , respectively.

S’ S
S CC
C cC | d

I1S’S．, $

June 15, 2011 111

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of LR(1) Sets of Items (Cont.)
S’ S
S CC
C cC | d

I0
S ．CC, $
C ．cC, c/d
C ．d, c/d

S’．S, $ I1S’S．, $S

I2
C ．cC, $
C ．d, $

SC．C, $
C

I5SCC．, $

C

I6
C ．cC, $
C ．d, $

Cc．C, $
c

I7Cd ．, $d
d

I3
C ．cC, c/d
C ．d, c/d

Cc．C, c/d
c

I4Cd．, c/d
d

c

d

I8CcC．, c/dC

I9CcC．, $

C

accept
$

c

June 15, 2011 112

Copyright © All Rights Reserved by Yuan-Hao Chang

Canonical LR(1) Parsing Table
• Algorithm: Construction of canonical-LR parsing tables. (Algorithm 4.56)
• INPUT: An augmented grammar G’.
• OUTPUT: The canonical-LR parsing table functions ACTION and GOTO for G’.
• METHOD:

– 1. Construct C’ = {I0 , I1 , …, In }, the collection of sets of LR(1) items for G’.
– 2. State i of the parser is constructed from Ii . The parsing actions for state i

are determined as follows:
- (a) If [A．a, b] is in Ii and GOTO(Ii , a)=Ij , then set ACTION[i, a] to “shift j”,

where a must be a terminal.
- (b) If [A．, a] is in Ii , and AS’, then set ACTION[i, a] to “reduce A ”
- (c) If [S’S．, $] is in Ii , then set ACTION[i, $] to “accept”.
- If any conflicting actions result from the above rules, the grammar is not LR(1) and

the algorithm fails to produce a parser for it.
– 3. If GOTO(Ii , A)=Ij , then GOTO[i,A]=j.
– 4. All entries not defined by rules (2) and (3) are made “error.”
– 5. The initial state of the parser is the one constructed from the set of items

containing [S’．S, $]

June 15, 2011 113

Copyright © All Rights Reserved by Yuan-Hao Chang

Canonical LR(1) Parsing Table (Cont.)

STATE
ACTION GOTO

c d $ S C
0 s3 s4 1 2
1 acc
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2

9 r2

S’ S
(1) S CC
(2) C cC
(3) C d

Regular language: c*dc*d

June 15, 2011 114

Copyright © All Rights Reserved by Yuan-Hao Chang

Lookahead-LR (LALR) Parser
• LALR and SLR tables for a grammar always have the same number of

states.
– E.g., typically several hundred states for a language like C.

• The canonical LR(1) (or simply LR) table would typically have several
thousand states for the same size language.

– Different states in LR parser might consists
of the same items (called cores) with
different lookheads.

- E.g., I4 and I7 , I3 and I6 , I8 and I9
– For the regular language c*dc*d,

- When reading cc…cdcc…cd
· The parser shifts the first group of c’s and their

following d to enter state 4, and then reduce Cd.
· The parser enters state 7 after reading the second d.

- If input is ccd, declare error after entering state 4.
- If input is cdcdc, declare error after entering state 7.

S’ S
(1) S CC
(2) C cC
(3) C d

Regular language: c*dc*d

June 15, 2011 115

Copyright © All Rights Reserved by Yuan-Hao Chang

LALR Parser (Cont.)
• Revise the parser for the

regular language c*dc*d
– I4 and I7 replaced by I47 [Cd．, c/d/$]
– I3 and I6 replaced by I36

[Cc．C, c/d/$]
[C．cC, c/d/$]
[C．d, c/d/$] }

– I8 and I9 replaced by I89 [CcC．, c/d/$]

• The revised parser might reduce Cc
where the original parser would declare
error. But the error will eventually be
caught before any more input symbols are
shifted.

Regular language: c*dc*d

S’ S
(1) S CC
(2) C cC
(3) C d

June 15, 2011 116

Copyright © All Rights Reserved by Yuan-Hao ChangMerged set of items

Reduce/Reduce Conflict
• A merger to merge states of LR parsers

– Do not produce shift/reduce conflicts.
- E.g., Suppose in the union, there is a conflict due to the item [A．,

a] for reduce and [B．a, b] for shift.
· Some set of items from which the union was formed has item [A．, a]
· The cores of all states for the same union are the same, it must have an
item [B．a, c] for some c.
 the shift/reduce conflict exists before the union/merging.

– Might produce a reduce/reduce conflict.
- E.g., This grammar generates acd, ace, bcd, and bce.

S’ S
S aAd | bBd aBe | bAe
A c
B c

A c．, d/e
B c．, d/e

A c．, d
B c．, e

Valid for viable prefix ac

A c．, e
B c．, d

Valid for viable prefix bc

Reduce/reduce conflict
on inputs d and e.

June 15, 2011 117

Copyright © All Rights Reserved by Yuan-Hao Chang

LALR(1) Table Construction
• Algorithm: An easy, but space-consuming LALR table construction.

• INPUT: An augmented grammar G’.

• OUTPUT: The LALR parsing-table functions ACTION and GOTO for G’

• METHOD:
– 1. Construct C= {I0 , I1 , …, In }, the collection of sets of LR(1) items.
– 2. For each core present along the set of LR(1) items, find all sets having

that core, and replace these sets by their union.
– 3. Let C’= {J0 , J1 , …, Jm } be the resulting sets of LR(1) items.

The parsing actions for state i are constructed from Ji in the same manner
as in Algorithm 4.56. If there is a parsing action conflict, the algorithm fails to
produce an LALR(1) parser for the grammar.

– 4. If J is the union of one or more sets of LR(1) items, J= I1∩I2 ∩… ∩Ik ,
then the cores of GOTO(I1 , X), GOTO(I2 , X), …, GOTO(Ik , X) are the same.
Let K be the union of all sets of items. Then GOTO(J,X) = K.

June 15, 2011 118

Copyright © All Rights Reserved by Yuan-Hao Chang

LALR(1) Table
Construction (Cont.)

STATE
ACTION GOTO

c d $ S C
0 s36 s47 1 2
1 acc
2 s36 s47 5
36 s36 s47 89
47 r3 r3 r3
5 r1
89 r2 r2 r2

I0
S ．CC, $
C ．cC, c/d
C ．d, c/d

S’．S, $ I1S’S．, $S

I2
C ．cC, $
C ．d, $

SC．C, $

C

I5SCC．, $

C

I36

C ．cC, c/d/$
C ．d, c/d/$

Cc．C, c/d/$
c

I47Cd．, c/d/$
d

c

d

I89CcC．, c/d/$C

accept
$

LR(1) automation

LALR(1) automation

Regular language: c*dc*d

S’ S
(1) S CC
(2) C cC
(3) C d

c

d

June 15, 2011 119

Copyright © All Rights Reserved by Yuan-Hao Chang

Erroneous Input
• The LALR parser may proceed to do some

reductions after the LR parser has declared
an error, but it never shifts another symbol
after the LR parser declares an error.

• E.g., on input ccd followed by $,
– The LR parser puts 0 3 3 4 to the stack, and

discover an error on $.
– The LALR parser make the corresponding

moves:
- Put 0 36 36 47 on the stack. (prefix: ccd)
- State 47 on input $ has action reduce Cd.

The stack is changed to 0 36 36 89. (prefix: ccC)
- State 89 on input $ has reduce CcC. The

stack becomes 0 36 89. (prefix: cC)
- State 89 on input $ has reduce CcC. The

stack becomes 0 2. (prefix: C)
- Finally, state 2 has action error on input $.

LR(1) parser

LALR(1) parser

June 15, 2011 120

Copyright © All Rights Reserved by Yuan-Hao Chang

Efficient Construction of LALR Parsing
Tables
• Ways to avoid constructing the full collection of
sets of LR(1) items during LALR(1) table
construction:
– 1. Represent any set of LR(0) or LR(1) items by its

kernel items.
– 2. Construct the LALR(1) kernel items (or “kernels” for

short) from the LR(0) kernel items by a process of
propagation and spontaneous generation of
lookaheads.

– 3. If we have the LALR(1) kernel items, we can generate
the LALR(1) parsing table by closing each kernel item.

June 15, 2011 121

Copyright © All Rights Reserved by Yuan-Hao Chang

LALR(1) Kernels from LR(0) Kernels
S L=R | R
L *R | id
R L

I0S’‧S

I1S’S ‧

I2R L ‧
S L ‧ =R

I3SR ‧

I4L*‧R

I5L id ‧

I6SL= ‧R

I7L*R‧

I8RL‧

I9SL= R ‧
Kernels of the sets of LR(0) items

• Attach proper lookaheds to the LR(0) kernels to
create the kernels of the sets of LALR(1) items.

– There are two ways a lookahead b can get attached
to an LR(0) item B．

in some set of LALR(1)

items J.
- With set of items I with a kernel item [A．, a], If J =

GOTO(I, X) = GOTO(CLOSURE([A．, a]), X)
contains [B．, b

regardless of a
· Lookahead b is generated spontaneously for B．

- With set of items I with a kernel item [A．, b], If J =
GOTO(I, X) = GOTO(CLOSURE([A．, b]), X)
contains [B．, b.

· Lookahead b is propagated from A．

in the kernel of I to
B．in the kernel of J.

· Either all lookaheads propagate from one item to another,
or none do.

- Lookhead $ is generated spontaneously for the item
S’．S in the initial set of items.

– The only kernel items in J must have X
immediately to the left of the dot. That is, they
must be of the form BX．

June 15, 2011 122

Copyright © All Rights Reserved by Yuan-Hao Chang

Lookahead Determination
• Algorithm: Determining lookaheads. (Algorithm 4.62)

• INPUT: The kernel K of a set of LR(0) items I and a grammar symbol X.

• OUTPUT:
– The lookaheads spontaneously generated by items in I for kernel items in

GOTO(I, X).
– The lookaheads propagated to kernel items in GOTO(I,X) from the items in I.

• METHOD:

for (each item A．

in K) {
J := CLOSURE({[A．, #]});
if ([B．X, a] is in J, and a is not #)

conclude that lookahead a is generated spontaneously from item BX．

in GOTO(I, X);
if ([B．X, #] is in J)

conclude that lookahead propagate from from A．

in I to BX．

in GOTO(I, X);
}

represnets any symbol

June 15, 2011 123

Copyright © All Rights Reserved by Yuan-Hao Chang

LALR(1) Collection of Sets of Items.
• Algorithm: Efficient computation of the kernels of the LALR(1) collection of sets

of items. (Algorithm 4.63)
• INPUT: An augmented grammar G’.
• OUTPUT: The kernels of the LALR(1) collections of sets of items for G’.
• METHOD:

– 1. Construct the kernels of the sets of LR(0) items for G.
– 2. Apply Algorithm 4.62 to the kernel of each set of LR(0) items and grammar symbol

X to determine
- Which lookaheads are spontaneously generated for kernel items in GOTO(I, X).
- From which items in I, lookaheads are propagated to kernel items in GOTO(I, X).

– 3. Initialize a table that gives the associated lookaheads. Initially, each item has
associated with those lookaheads that we determined in step (2) and generated
spontaneously.

– 4. Make repeated passes over the kernel items in all sets.
- When we visit an item i, we look up the kernel items for which i propagates its lookheads by

using information tabulated in step (2).
- The current set of lookaheads for i is added.
- We continue making passes over the kernel items until no more new lookaheads are

propagrated.

June 15, 2011 124

Copyright © All Rights Reserved by Yuan-Hao Chang

Kernels of the LALR(1) Items
• E.g., Initially, compute CLOSURE({[S’．S, #]}) S L=R | R

L *R | id
R L

S ‧L=R, #
S ‧R, #
L ‧*R, #/=
L ‧ id, #/=
R ‧L, #

S’‧S, #
FIRST(#) = #

FIRST(=R#) is =

FIRST(#) = #

FIRST(#) = #

Generated
spontaneously

[L．*R] with * to the right of
the dot gives rise to [L*．R, =]
That is, = is a spontaneously
generated lookahead for [L*．

 R, =]

= is a
spontaneously
generated
lookahead for
[Lid．, =]

As # is a lookahead for all
six items in the closure, we
determine that the item
S’．S in I0 propagates
lookaheads to the following
six items:

I2 : S L ‧ =R, #
I2 : S R ‧, #
I3 : L *‧R, #
I4 : L id ‧, #
I5 : R L ‧, #

I1 : S’S ‧, #

June 15, 2011 125

Copyright © All Rights Reserved by Yuan-Hao Chang

Kernels of the LALR(1) Items (Cont.)
S L=R | R
L *R | id
R L

I0S’‧S

I1S’S ‧

I2R L ‧
S L ‧ =R

I3SR ‧

I4L*‧R

I5L id ‧

I6SL= ‧R

I7L*R‧

I8RL‧

I9SL= R ‧
Kernels of the sets of LR(0) items

FROM TO

I0 : S’．S (, #) I1 : S’S．(, #)
I2 : SL．=R (, #)

I2 : RL．(, #)

I3 : SR．(, #)

I4 : L*．R (, #/=)

I5 : Lid．(, #/=)
I2 : SL．=R (, #) I6 : SL=．R (, #)
I4 : L*．R (, #) I4 : L*．R (, #)

I5 : Lid． (, #)

I7 : L*R． (, #)
I8 : RL． (, #)

I6 : SL=．R (, #) I4 : L*．R (, #)

I5 : Lid． (, #)

I8 : RL． (, #)

I9 : SL=R． (, #)
Propagation of lookaheads

Dot reaches the end
of the production: no
further moves or
propagations.

S ‧L=R, #
S ‧R, #
L ‧*R, #/=
L ‧ id, #/=
R ‧L, #

S’‧S, #

CLOSURE({[S’．S, #]})

June 15, 2011 126

Copyright © All Rights Reserved by Yuan-Hao Chang

Kernels of the LALR(1) Items (Cont.)
FROM TO

I0 : S’．S (, $) I1 : S’S．(, $)
I2 : SL．=R (, $)

I2 : RL．(, $)

I3 : SR．(, $)

I4 : L*．R (, $/=)

I5 : Lid．(, $/=)
I2 : SL．=R (, $) I6 : SL=．R (, $)
I4 : L*．R (, $/=) I4 : L*．R (, $/=)

I5 : Lid． (, $/=)

I7 : L*R． (, $/=)
I8 : RL． (, $/=)

I6 : SL=．R (, $) I4 : L*．R (, $)

I5 : Lid． (, $)

I8 : RL． (, $)

I9 : SL=R． (, $)
Propagation of lookaheads

SET ITEM
LOOKAHEADS

INIT PASS 1 PASS 2 PASS 3

I0 : S’．S $ $ $ $
I1 : S’S． $ $ $

I2 :
SL．=R
RL $ $ $

I3 : SR． $ $ $
I4 : L*．R = =/$ =/$ =/$
I5 : Lid． = =/$ =/$ =/$
I6 : SL=．R $ $
I7 : L*R． = =/$ =/$
I8 : RL． = =/$ =/$
I9 : SL=R． $

Computation of lookaheads

June 15, 2011 127

Copyright © All Rights Reserved by Yuan-Hao Chang

Compaction of LR Parsing Tables
• A typical programming language grammar with 50 to 100 terminals and

100 productions may have an LALR parsing table with
– Several hundred states
– 20,000 entries in action functions

• Compaction
– Compaction to the ACTION field:

- Eliminate identical action entries in different states.
· E.g., Create a pointer for each state into a one-dimensional array. Pointers for states with

the same actions point to the same location.
- Further space efficiency can be achieved by creating a list of actions with

(terminal-symbol, action) pairs.
– Compaction to the GOTO field

- Few states have transitions on nonterminals.
- For each nonterminal A, each pair on the list for A is of the form:

GOTO[currentState, A] = nextState
- For more space reduction, replace each error entry by the most common non-

error entry in its column because the error entries in the goto table are never
consulted.

June 15, 2011 128

Copyright © All Rights Reserved by Yuan-Hao Chang

ACTION Table Compaction

STA
TE

ACTION GOTO

id + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

SYMBOL
id
(
any

ACTION
s5
s4
error

States 0, 4, 6, 7

SYMBOL
+
$
any

ACTION
s6
acc
error

State 1

SYMBOL
*
any

ACTION
s7
r2

State 2

SYMBOL
any

ACTION
r4

State 3

SYMBOL
+
)
any

ACTION
s6
s11
error

State 8

• Frequent actions for a state is places at the end of the list.

• “Any” means that if the current symbol has not been found so far on the
list, we should do that action no matter what input is.

• The error will be detected later before a shift.

SYMBOL
any

ACTION
r6

State 5

SYMBOL
any

ACTION
r3

State 10
SYMBOL
any

ACTION
r5

State 11

SYMBOL
*
any

ACTION
s7
r1

State 9

June 15, 2011 129

Copyright © All Rights Reserved by Yuan-Hao Chang

GOTO Table Compaction
• The error entries in the goto table are never consulted.

STA
TE

ACTION GOTO

id + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

currentState
7
any

nextState
10
3

Colum F

currentState
6
any

nextState
9
2

Colum T

currentState
4
any

nextState
8
1

Colum E

Parser GeneratorsParser Generators

June 15, 2011 131

Copyright © All Rights Reserved by Yuan-Hao Chang

Yacc
• Yacc stands for “yet another compiler-compiler.”

– Created by S.C. Johnson in the early 1970s.
– Using the LALR method outlined in Algorithm 4.63.
– Compacting its LALR parsing table.

Yacc Compiler
(e.g., yacc)

Yacc specificatoin
(translate.y) y.tab.c

C compiler
(e.g., gcc)y.tab.c a.out (parser)

a.outInput stream output

declarations section
%%
translation rules
%%
Supporting C routines

The symbol
to separate
two sections

A Yacc source program has three parts.

e.g., yacc translate.y

e.g., gcc y.tab.c -ly LR parsing program

June 15, 2011 132

Copyright © All Rights Reserved by Yuan-Hao Chang

Simple Desk Calculator
• Construct a simple desk

calculator that reads an
arithmetic expression,
evaluates it, and then prints
its numeric value with the
following grammar:

• If Lex is used to create the
lexical analyzer that passes
token to the Yacc parser,
then these token
declarations are also made
available to the lexical
analyzer generated by Lex.

E E + T | T
T T * F | F
F (E) | digit A single digit

between 0 and 9

%{
#include <stdio.h>
#include <ctype.h>
%}
%token DIGIT
%%
line : expr '\n' { printf("%d\n", $1); }

;
expr : expr '+' term { $$ = $1 + $3; }

| term
;

term : term '*' factor { $$ = $1 * $3; }
| factor
;

factor : '(' expr ')' { $$ = $2; }
| DIGIT
;

%%
yylex(){

int c;
c = getchar();
if (isdigit(c)) {

yylval = c-'0';
return DIGIT;

}
return c;

}

Declarations
section

Translation
rules

Supporting C
functions

Ordinary C
declarations

Grammar tokens

Start
symbol

Get a symbol or a
token name with its
attribute value.

If the character is a
digit, the value of
the digit is stored in
yylval, and the token
name DIGIT is
returned. Otherwise,
the character itself is
returned as the
token name.

June 15, 2011 133

Copyright © All Rights Reserved by Yuan-Hao Chang

Translation Rules
• Each rule consists of a grammar production and the associated

semantic action. In Yacc,
– Unquoted strings of letters and digits not declared to be tokens are taken to

be nonterminals.
– A quoted single character ‘c’ is

- Taken to be the terminal symbol ‘c’, or
- Taken to be the integer code for the token represented by that character.

<head> <body>1 | <body>2 | … | <body>n

<head> : <body>1 { <semantic action>1 }
| <body>2 { <semantic action>2 }
…
| <body>n { <semantic action>n }
;

Grammar productions:

Yacc productions:

June 15, 2011 134

Copyright © All Rights Reserved by Yuan-Hao Chang

Semantic Actions
• A Yacc semantic action is a sequence of C statements.

– $$: refer to the attribute value associated with the nonterminal of the
head.

– $i: refer to the value associated with the ith grammar symbol of the
body.

E E + T | TE-productions:

expr : expr ‘+’ term { $$ = $1 + $3 }
| term
;

Semantic actions:

E expr term

The default semantic action is
{ $$ = $1; }

End of the head

Separate body of
each production

June 15, 2011 135

Copyright © All Rights Reserved by Yuan-Hao Chang

Semantic Actions (Cont.)
•

– An input to the desk calculator is to be an expression
followed by a newline character.

– The semantic action associated with this production
prints the decimal value of the expression followed by a
newline character.

line : expr ‘\n’ { printf(“%d\n”, $1); }Start symbol:

June 15, 2011 136

Copyright © All Rights Reserved by Yuan-Hao Chang

Supporting C-Routines
• A lexical analyzer by the name yylex() must be
provided.
– Using Lex to produce yylex() is a common choice.
– The lexical analyzer yylex() produces tokens consisting

of a token name and its associated attributed value.
- The attributed value associated with a token is communicated to

the parser through the Yacc-defined variable yylval.

– If a token name such as DIGIT is returned, the token
name must be declared in the first section of the Yacc
specification.

June 15, 2011 137

Copyright © All Rights Reserved by Yuan-Hao Chang

Using Yacc with Ambiguous Grammars
• Yacc reports the number of parsing-action conflicts that are

generated.
– Invoke Yacc with a -v option to generate an additional file y.output

that contains
- 1. The kernels of the sets of items found for the grammar.
- 2. A description of the parsing action conflicts generated by the LALR

algorithm.
- 3. A readable representation of the LR parsing table showing how the

parsing actions conflicts were resolved.

• Yacc resolves all parsing action conflicts using two rules:
– 1. A reduce/reduce conflict is resolved by choosing the conflicting

production listed first in the Yacc specification.
– 2. A shift/reduce conflict is resolved in favor of shift.

- The dangling-else ambiguity problem can be resolved.

June 15, 2011 138

Copyright © All Rights Reserved by Yuan-Hao Chang

Advanced Desk Calculator
• Advanced desk calculator

– Allow to evaluate a sequence of expressions, one to a line.
– Allow blank lines between expressions.

– Enlarge the class of expressions
- To include numbers instead of single digits and
- To include the arithmetic operators +, - (both binary and unary), *, and /.

lines : lines expr '\n' { printf("%g\n", $2); }
| lines '\n'
| /* empty */
;

E E+E | E-E | E*E | E/E | -E | (E) | number (Ambiguous grammar)
The LALR algorithm will generate parsing-action conflicts.

June 15, 2011 139

Copyright © All Rights Reserved by Yuan-Hao Chang

Advanced Desk Calculator (Cont.)
%{
#include <stdio.h>
#include <ctype.h>
#define YYSTYPE double /* double type for Yacc stack */
%}
%token NUMBER

%left '+' '-'
%left '*' '/'
%right UMINUS
%%

lines : lines expr '\n' { printf("%g\n", $2); }
| lines '\n'
| /* empty */
;

expr : expr '+' expr { $$ = $1 + $3; }
| expr '-' expr { $$ = $1 - $3; }
| expr '*' expr { $$ = $1 * $3; }
| expr '/' expr { $$ = $1 / $3; }
| '(' expr ')' { $$ = $2; }
| '-' expr %prec UMINUS {$$ = -$2; }
| NUMBER
;

%%
yylex(){

int c;
while((c = getchar()) == ' ');
if (c == '.' || isdigit(c)) {

ungetc(c, stdin);
scanf("%lf", &yylval);
return NUMBER;

}
return c;

}

Push the
character

back

Get an integer
or floating
value from

input

Skip
spaces

Make + and – the same
precedence and left
associative

Lowest priority first

Highest precedence

Force the production to be
the highest precedence

June 15, 2011 140

Copyright © All Rights Reserved by Yuan-Hao Chang

Precedence and Associativity
• Tokens have higher priority if they are listed later.

• Make + and – be of the same precedence and be left
associative

– E.g.,

• Declare an operator to be right associative:
– E.g.,

• Force an operator to be a nonassociative binary operator
(i.e., two occurrences of the operator cannot be combined
at all)

– E.g.,

%left '+' ‘-'

%left ‘^'

%nonassoc ‘<'

June 15, 2011 141

Copyright © All Rights Reserved by Yuan-Hao Chang

Precedence and Associativity (Cont.)
• Each production or terminal involved in a
shift/reduce conflict is attached with a precedence
and associativity.
– If Yacc needs to choose between shifting input symbol a

and reducing by production A, it reduces
- If the precedence of the production is greater than that of a, or
- If the precedences are the same and the associativity of the

production is left.

– Otherwise, shift is the chosen action.

June 15, 2011 142

Copyright © All Rights Reserved by Yuan-Hao Chang

Precedence and Associativity (Cont.)
• The precedence of a production is taken to be the same as

that of its rightmost terminal.
• E.g., Given production EE+E (rightmost terminal is +)

– Reduce EE+E if the lookahead is +.
– Shift if the lookahead is *.

• If the rightmost terminal of a production does not supply the
proper precedence, we can force by appending to a
production the tag “%prec <terminal>”. Then

– The precedence of this production is the same as that of this “terminal”.
– This “terminal” can be a placeholder that is not returned by the lexical

analyzer.

• Yacc does not report shift/reduce conflicts that are resolved
using this precedence and associativity mechanism.

June 15, 2011 143

Copyright © All Rights Reserved by Yuan-Hao Chang

Creating Yacc with Lex
• Lex

was designed to produce lexical analyzers that could be

used with Yacc.

• The Lex library ll provides a driver program named yylex()
that is required by Yacc for lexical analysis.

– If Lex is used to produe the lexical analyzer we replace the routine
yylex() in the third part of the Yacc specification by the statement:
#inculde “lex.yy.c”.

– By using the #include “lex.yy.c” statement, the program yylex() has
access to Yacc’s token names since the Lex output file is compiled
as part of the Yacc output file “y.tab.c”.

flex first.l
yacc second.y
gcc y.tab.c –ly

Build the parser:

June 15, 2011 144

Copyright © All Rights Reserved by Yuan-Hao Chang

Creating Yacc with Lex

…
%%
yylex(){

int c;
while((c = getchar()) == ' ');
if (c == '.' || isdigit(c)) {

ungetc(c, stdin);
scanf("%lf", &yylval);
return NUMBER;

}
return c;

}

second.y

…
%%
int yywrap(void)
{

return 1;
}
#include “lex.yy.c”

second.y

number [0-9]+\.?|[0-9]*\.[0-9]+
%%
[] { /* skip blanks */ }
{number} {sscanf(yytext, "%lf", &yylval); return NUMBER; }
\n|. {return yytext[0];}
%%

first.l
Any

character

June 15, 2011 145

Copyright © All Rights Reserved by Yuan-Hao Chang

Error Recovery in Yacc

%{
#include <stdio.h>
#include <ctype.h>
/* double type for Yacc stack */
#define YYSTYPE double
%}
%token NUMBER

%left '+' '-'
%left '*' '/'
%right UMINUS
%%

lines : lines expr '\n' { printf("%g\n", $2); }
| lines '\n‘
| error '\n' {yyerror("reenter previous line:"); yyerrok; }
| /* empty */
;

expr : expr '+' expr { $$ = $1 + $3; }
| expr '-' expr { $$ = $1 - $3; }
| expr '*' expr { $$ = $1 * $3; }
| expr '/' expr { $$ = $1 / $3; }
| '(' expr ')' { $$ = $2; }
| '-' expr %prec UMINUS {$$ = -$2; }
| NUMBER
;

%%
int yywrap(void)
{

return 1;
}
#include “lex.yy.c”

The reserved token generated when the lexical
analysis from input encounters an error.

Error
production

This function is
needed by lex.yy.c

Return
normal

operation

June 15, 2011 146

Copyright © All Rights Reserved by Yuan-Hao Chang

Error Recovery in Yacc (Cont.)
• In Yacc, error recovery uses a form of error productions.

– Add to the grammar error productions of the form:
A error

- error is a Yacc reversed word.
- A is a major nonterminal.

is a string of grammar symbols.
– The error productions are treated as ordinary productions.

• When the parser encounters an error,
– It pops symbols from its stack until it finds the topmost state on its stack

whose underlying set of items includes an item of the form A．error .
– Then shifts a fictitious token error onto the stack as though it saw the token

error on its input.
– If

is , a reduction to A occurs immediately and the semantic action

associated with the production A．error invoked.
– If

is not , Yacc skips ahead on the input looking for a substring that can

be reduced to or get . Then reduce error

to A.

June 15, 2011 147

Copyright © All Rights Reserved by Yuan-Hao Chang

Project
• Revise the program in Slides 144 and 145 to add the following functions:

– Add “tab” (i.e., “\t”) into the white space in addition to “ “.
– Add the production EE1 ̂ E2 to the grammar, where E = pow(E1 , E2).

- Note: remember to include “#include <math.h>” to declare the function pow().
– Any conflict message during complication is not allowed.

• Cygwin: http://www.cygwin.com/ (remember to select “install all” during
the installation.)

• Suppose the lex file is “first.l” and the yacc file is “second.y”. Build the
project with the following commands under Cygwin:

• Requirements:
– Send an email to me with two files:

- calculator.l
- calculator.y

– Email title: [Compiler] Student ID, Name
– Due: By noon of June 26

flex first.l
yacc second.y
gcc y.tab.c –ly

This is a bonus project with at
most five points.

http://www.cygwin.com/

	投影片編號 1
	Outline
	投影片編號 3
	Benefits of Grammars for Programming Languages
	The Role of the Parser
	Types of Parsers
	Representative Grammars
	Common Programming Errors
	Error Handling in a Parser
	Error Recovery Strategies
	投影片編號 11
	Context-Free Grammar
	A Grammar to Define Arithmetic Expressions
	Notational Conventions
	Notational Conventions (Cont.)
	Grammar with Notational Convention
	Derivations
	Derivations (Cont.)
	Derivations (Cont..)
	Leftmost Derivation and Rightmost Derivation
	Left-Sentential and Right-Sentential Form
	Parse Trees and Derivations
	Parse Trees and Derivations (Cont.)
	Relationship Induction between Derivations and Parse Trees
	Ambiguity
	Ambiguity (Cont.)
	Verifying the Language Generated by a Grammar
	Verifying the Language Generated by a Grammar (Cont.)
	Context-Free Grammars vs. Regular Expression
	Construct a Grammar from NFA
	投影片編號 31
	Lexical vs. Syntactic Analysis
	Eliminating Ambiguity
	Unambiguous Grammar for if-then-else Statements
	Elimination of Left Recursion
	Immediate Left Recursion Elimination
	Left Recursion Elimination
	Left Recursion Elimination (Cont.)
	Left Factoring
	Left Factoring (Cont.)
	Non-Context-Free Language Constructs
	Non-Context-Free Language Constructs (Cont.)
	Non-Context-Free Language Constructs (Cont.)
	投影片編號 44
	Top-Down Parsing
	Top-Down Parsing (Cont.)
	Recursive-Descent Parsing
	Recursive-Descent Parsing (Cont.)
	FIRST and FOLLOW
	FIRST
	FOLLOW
	LL(1) Grammars
	Predictive Parsers for LL(1) Grammars
	Transition Diagrams for Predictive Parsers
	Predictive Parsing Table
	Predictive Parsing Table (Cont.)
	Predictive Parsing Table (Cont.)
	Predictive Parsing Table (Cont.)
	Nonrecursive Predictive Parsing
	Table-Driven Predictive Parsing
	Table-Driven Predictive Parsing (Cont.)
	Error Recovery in Predictive Parsing
	Panic-Mode Error Recovery
	Panic-Mode Error Recovery (Cont.)
	Panic-Mode Error Recovery (Cont.)
	投影片編號 66
	Bottom-Up Parse
	Reductions
	Handle Pruning
	Handle Pruning (Cont.)
	Shift-Reduce Parsing
	Shift-Reduce Parsing (Cont.)
	Shift-Reduce Parsing (Cont.)
	Conflicts During Shift-Reduce Parsing
	Conflicts During Shift-Reduce Parsing (Cont.)
	投影片編號 76
	LR Parsers
	Why LR Parsers?
	Items and the LR(0) Automation
	Items and the LR(0) Automation (Cont.)
	The Function CLOSURE
	Computation of CLOSURE
	Computation of CLOSURE (Cont.)
	Kernel Items and Nonkernel Items
	The Function GOTO
	Canonical Collection of Sets of LR(0) Items
	Canonical Collection of Sets of LR(0) Items (Cont.)
	Use of the LR(0) Automation
	Parse id*id
	Model of an LR Parser
	Structure of the LR Parsing Table
	LR-Parser Configuration
	Behavior of the LR Parser
	LR-Parsing Algorithm
	SLR-Parsing Table – SLR(1) Table
	SLR-Parsing Table
	SLR-Parsing Table (Cont.)
	SLR(1) Grammar
	Viable Prefixes
	Viable Prefixes (Cont.)
	投影片編號 101
	More Powerful LR Parsers
	Limitations of LR(0) Items or SLR(1) Parsers
	Canonical LR(1) Items
	Canonical LR(1) Items (Cont.)
	Constructing LR(1) Sets of Items
	Constructing LR(1) Sets of Items (Cont.)
	An Example of LR(1) Sets of Items
	An Example of LR(1) Sets of Items (Cont.)
	An Example of LR(1) Sets of Items (Cont.)
	An Example of LR(1) Sets of Items (Cont.)
	Canonical LR(1) Parsing Table
	Canonical LR(1) Parsing Table (Cont.)
	Lookahead-LR (LALR) Parser
	LALR Parser (Cont.)
	Reduce/Reduce Conflict
	LALR(1) Table Construction
	LALR(1) Table �Construction (Cont.)
	Erroneous Input
	Efficient Construction of LALR Parsing Tables
	LALR(1) Kernels from LR(0) Kernels
	Lookahead Determination
	LALR(1) Collection of Sets of Items.
	Kernels of the LALR(1) Items
	Kernels of the LALR(1) Items (Cont.)
	Kernels of the LALR(1) Items (Cont.)
	Compaction of LR Parsing Tables
	ACTION Table Compaction
	GOTO Table Compaction
	投影片編號 130
	Yacc
	Simple Desk Calculator
	Translation Rules
	Semantic Actions
	Semantic Actions (Cont.)
	Supporting C-Routines
	Using Yacc with Ambiguous Grammars
	Advanced Desk Calculator
	Advanced Desk Calculator (Cont.)
	Precedence and Associativity
	Precedence and Associativity (Cont.)
	Precedence and Associativity (Cont.)
	Creating Yacc with Lex
	Creating Yacc with Lex
	Error Recovery in Yacc
	Error Recovery in Yacc (Cont.)
	Project

