
Class 8
MUX / DMUX

and
Full Adder

Class 8
MUX / DMUX

and
Full Adder

May 7, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Multiplexer (MUX)

S1 S0 Y3 Y2
D03 D02

D12

D22

D32

D13

D23

D33

Y1 Y0
0 0 D01

D11

D21

D31

D00

0 1 D10

1 0 D20

1 1 D30

S1 S0 Y
0 0 D0

0 1 D1

1 0 D2

1 1 D3

May 7, 2010 3

Copyright © All Rights Reserved by Yuan-Hao Chang

Multiplexer (MUX)

ENTITY mux4sel IS
PORT(
s: IN BIT_VECTOR (1 downto 0);
d: IN BIT_VECTOR (3 downto 0);
y: OUT BIT);

END mux4sel;

ARCHITECTURE a OF mux4sel IS
BEGIN
- Selected Signal Assignment
MUX4: WITH s SELECT

y<= d(0) WHEN "00",
d(1) WHEN "01",
d(2) WHEN "10",
d(3) WHEN "11";

END a;

ENTITY mux4case IS
PORT(
d0, d1, d2, d3: INBIT; -- data inputs
s: IN BIT_VECTOR (1 downto 0); -- select inputs
y: OUT BIT);

END mux4case;

ARCHITECTURE mux4to1 OF mux4case IS
BEGIN
-- Monitor select inputs and execute if they change
PROCESS(s)
BEGIN
CASE s IS

WHEN "00" =>
y<= d0;

WHEN "01" =>
y<= d1;

WHEN "10" =>
y<= d2;

WHEN "11" =>
y<= d3;

WHEN others =>
y<= '0';

END CASE;
END PROCESS;

END mux4to1;

May 7, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Demultiplexer (DMUX)

May 7, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Demultiplexer (DMUX) (Cont.)
ENTITY dmux8 IS

PORT(
s: IN STD_LOGIC_VECTOR(2 downto 0);
d: IN STD_LOGIC;
y: OUT STD_LOGIC_VECTOR(0 to 7));

END dmux8;

ARCHITECTURE a OF dmux8 IS
SIGNAL inputs : STD_LOGIC_VECTOR(3 downto 0);

BEGIN
inputs <= d & s;

WITH inputs SELECT
y <= "01111111" WHEN "0000",

"10111111" WHEN "0001",
"11011111" WHEN "0010",
"11101111" WHEN "0011",
"11110111" WHEN "0100",
"11111011" WHEN "0101",
"11111101" WHEN "0110",
"11111110" WHEN "0111",
"11111111" WHEN others;

END a;

d: signal

s: selector

May 7, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Half Adder

Half adder

A B Cout ∑

0 0
1
1
0

0
0
1

0 0
0 1
1 0
1 1

BABABA

ABCout

⊕=+=

=

∑

May 7, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

Full Adder
A B CIN Cout ∑

0
0
0
0
1
1
1

0

1

0
0
1
1

1 1 1 0
0 0 0 1
0 1 1 0
1 0 1 0

0

11

0 0
0 1
1 0

1 1

CBA
CBACBA

CBABACABBA

CBACBAABCCBA

ABCBA
CCABCBABA

ABCCABCBABCACout

⊕⊕=
⊕+⊕=

+++=

+++=

+⊕=
+++=

+++=

∑

)(
)()(

)()(

)(
)()(

May 7, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Parallel Binary Adder (Ripple Carry Binary Adder)

10010
0101
1101

1234

1234

=+
=
=

BA
BBBB
AAAA

May 7, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Full Adder

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY full_add IS
PORT(

a, b, c_in : IN STD_LOGIC;
c_out, sum : OUT STD_LOGIC);

END full_add;

ARCHITECTURE adder OF full_add IS
BEGIN

c_out <=((a xor b) and c_in) or (a and b);
sum <= (a xor b) xor c_in;

END adder;

CBA
CBACBA

CBABACABBA

CBACBAABCCBA

ABCBA
CCABCBABA

ABCCABCBABCACout

⊕⊕=
⊕+⊕=

+++=

+++=

+⊕=
+++=

+++=

∑

)((
)()(

)()(

)(
)()(

May 7, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

2-Bit Full Adder

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY add2par IS
PORT(

c0: IN STD_LOGIC;
a, b: IN STD_LOGIC_VECTOR(2 downto 1);
c2: OUT STD_LOGIC;
sum: OUT STD_LOGIC_VECTOR(2 downto 1));

END add2par;

ARCHITECTURE adder OF add2par IS
-- Component declaration
COMPONENT full_add

PORT(
a, b, c_in: IN STD_LOGIC;
c_out, sum: OUT STD_LOGIC);

END COMPONENT;
-- Define a signal for internal carry bits
SIGNAL c : STD_LOGIC_VECTOR(1 downto 1);

BEGIN
-- Two Component Instantiation Statements
adder1: full_add

PORT MAP (a => a(1),
b => b(1),
c_in => c0,
c_out => c(1),
sum => sum(1));

adder2: full_add
PORT MAP (a => a(2),

b => b(2),
c_in => c(1),
c_out => c2,
sum => sum(2));

END adder;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY full_add IS
PORT(

a, b, c_in : IN STD_LOGIC;
c_out, sum : OUT STD_LOGIC);

END full_add;

ARCHITECTURE adder OF full_add IS
BEGIN

c_out <=((a xor b) and c_in) or (a and b);
sum <= (a xor b) xor c_in;

END adder;

Connect c_out
of adder1 to

c_in of adder2

May 7, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

2-Bit Full Adder (Cont.)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY add2par IS
PORT(

c0: IN STD_LOGIC;
a, b: IN STD_LOGIC_VECTOR(2 downto 1);
c2: OUT STD_LOGIC;
sum: OUT STD_LOGIC_VECTOR(2 downto 1));

END add2par;

ARCHITECTURE adder OF add2par IS
-- Component declaration
COMPONENT full_add

PORT(
a, b, c_in: IN STD_LOGIC;
c_out, sum: OUT STD_LOGIC);

END COMPONENT;
-- Define a signal for internal carry bits
SIGNAL c : STD_LOGIC_VECTOR(1 downto 1);

BEGIN
-- Two Component Instantiation Statements
adder1: full_add

PORT MAP (a => a(1),
b => b(1),
c_in => c0,
c_out => c(1),
sum => sum(1));

adder2: full_add
PORT MAP (a => a(2),

b => b(2),
c_in => c(1),
c_out => c2,
sum => sum(2));

END adder;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY add4gen IS

PORT(
c0: IN STD_LOGIC;
a, b: IN STD_LOGIC_VECTOR(2 downto 1);
c2: OUT STD_LOGIC;
sum: OUT STD_LOGIC_VECTOR(2 downto 1));

END add4gen;

ARCHITECTURE adder OF add4gen IS
-- Component declaration
COMPONENT full_add

PORT(a, b, c_in: IN STD_LOGIC;
c_out, sum: OUT STD_LOGIC);

END COMPONENT;
-- Define a signal for internal carry bits
SIGNAL c : STD_LOGIC_VECTOR (2 downto 0);

BEGIN
c(0) <= c0;

adders:
FOR i IN 1 to 2 GENERATE

adder: full_add PORT MAP (a(i), b(i), c(i-1), c(i), sum(i));
END GENERATE;

c2 <= c(2);
END adder;

adder1: full_add PORT MAP (a(1), b(1), c0, c(1), sum(1));

adder2: full_add PORT MAP (a(2), b(2), c(1), c2, sum(2));

May 7, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Full Adder with Unspecified Width
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY addxgen IS

GENERIC (width : INTEGER := 8);
PORT(

c0: IN STD_LOGIC;
a, b: IN STD_LOGIC_VECTOR(width downto 1);
c_max: OUTSTD_LOGIC;
sum: OUT STD_LOGIC_VECTOR(width downto 1));

END addxgen;

ARCHITECTURE adder OF addxgen IS
-- Component declaration
COMPONENT full_add

PORT(
a, b, c_in : IN STD_LOGIC;
c_out, sum: OUT STD_LOGIC);

END COMPONENT;
-- Define a signal for internal carry bits
SIGNAL c : STD_LOGIC_VECTOR (width downto 0);

BEGIN
c(0) <= c0;
adders:
FOR i IN 1 to width GENERATE

adder: full_add PORT MAP (a(i), b(i), c(i-1), c(i), sum(i));
END GENERATE;

c_max <= c(width);
END adder;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY add16gen IS
PORT(

c0: IN STD_LOGIC;
a, b:IN STD_LOGIC_VECTOR(16 downto 1);
c16: OUT STD_LOGIC;
sum: OUT STD_LOGIC_VECTOR(16 downto 1));

END add16gen;

ARCHITECTURE adder of add16gen IS
COMPONENT addxgen

GENERIC (width : INTEGER);
PORT(

c0: IN STD_LOGIC;
a, b: IN STD_LOGIC_VECTOR(width downto 1);
c_max: OUT STD_LOGIC;
sum: OUT STD_LOGIC_VECTOR(width downto 1));

END COMPONENT;
BEGIN

add16 : addxgen
GENERIC MAP(width => 16)
PORT MAP(c0, a, b, c16, sum);

END adder;

Default value
required, but can

be redefined.

“width” is
specified in

GENERIC MAP

Included components
should be in the same

Quartus project as well.

May 7, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

The Procedure to Import VHDL Code to
Block Diagram/Schematic File
• The procedure to import a VHDL full-adder to a .bdf file to construct a four-bit full adder:

– 1. Create a quartus project with entity name “adder”
– 2. Create a new full_add.vhd file and save it as a full_add.bsf file. (File Create/Update Create

Symbol File…)
– 3. Create a new adder.bdf file (the file name is its entity name)
– 4. Incude full_add.bsf file as a component into adder.bdf
– 5. pin assignment to complete the design

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY full_add IS
PORT(
a, b, c_in : IN STD_LOGIC;
c_out, sum : OUT STD_LOGIC);

END full_add;

ARCHITECTURE adder OF full_add IS
BEGIN
c_out <= ((a xor b) and c_in) or (a and b);
sum <= (a xor b) xor c_in;

END adder;

full_add.vhd

f ull_add

inst

aa

bb

c_inc_in

c_outc_out

sumsum

full_add.bsf

VCC
a0 INPUT

VCC
a1 INPUT

VCC
a2 INPUT

VCC
a3 INPUT

VCC
b0 INPUT

VCC
b1 INPUT

VCC
b2 INPUT

VCC
b3 INPUT

s1OUTPUT

s2OUTPUT

s3OUTPUT

s4OUTPUT

s5OUTPUT

a

b

c_in

c_out

sum

f ull_add

inst

a

b

c_in

c_out

sum

f ull_add

inst1

a

b

c_in

c_out

sum

f ull_add

inst2

a

b

c_in

c_out

sum

f ull_add

inst3

adder.bdf

May 7, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Lab 8
• Part 1: Design a MUX/DMUX

– Use Button2-Button0 as the selectors to decide which
slide switch among SW7-SW0 is selected to show its
status on its corresponding LED. The LEDs that are not
selected should be turned off. For example:

- When Button2 is pushed, the status of SW4 is shown on
LEDG4.
When Button2 and Button0 are both pushed, the status of
SW5 is shown on LEDG5.

• Part 2: Full adder
– Implement a 4-bit full adder:

- SW7-4 is the first 4-bit operand, and SW3-0 is the second
4-bit operand.

- Please show the result on LEDs, where LEDG4 is the carry
of the MSB bit, and LEDG3-0 are ∑3-0, respectively.

· LED is on when the corresponding ∑ bit is 1.

• Report:
– Write down what you have learned from this lab. (實驗心得)

May 7, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Pushbutton and Slide Switches

3 Pushbutton switches:
Not pressed Logic High
Pressed Logic Low

10 Slide switches (Sliders):
Up Logic High
Down Logic

Pin
number

Pin number

May 7, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

LEDs 10 LEDs
Opuput high LED on
Output low LED offPin number

May 7, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

7-Segment Displays Pin number
(active-low)

	Multiplexer (MUX)
	Multiplexer (MUX)
	Demultiplexer (DMUX)
	Demultiplexer (DMUX) (Cont.)
	Half Adder
	Full Adder
	Parallel Binary Adder (Ripple Carry Binary Adder)
	Full Adder
	2-Bit Full Adder
	2-Bit Full Adder (Cont.)
	Full Adder with Unspecified Width
	The Procedure to Import VHDL Code to �Block Diagram/Schematic File
	Lab 8
	Pushbutton and Slide Switches
	LEDs
	7-Segment Displays

