Class 9
Sequential Logic: Latch

A N D ص QiCOQ

SR NAND Latch

$\mathbf{n S}$	$\mathbf{n R}$	$\mathbf{Q}_{\mathbf{t + 1}}$	$\mathbf{n Q}_{\mathbf{t + 1}}$	Function
0	0	1	1	Forbidden
0	1	1	0	Set
1	0	0	1	Reset
1	1	Q_{t}	nQ_{t}	No Change
SR NAND Latch Function Table				

Reset-to-Set Transition

a) Stable in the RESET condition. Set and Reset inputs inactive.

b) Set input activates.

c) Change propagates through upper gate (Either input LOW makes output HIGH.)
 gate, removing active input condition.

e) Change propagates through lower gate. (Both inputs HIGH, therefore output LOW.)

Feedback transfers LOW to upper gate, \mathbf{g}) S input goes back to inactive state. SET state completing change to new state.
 held by LOW at inner input of upper gate.

May 3, 2010

Set-to-Reset Transition

a) Stable in the SET condition. Set and Reset inputs inactive.

b) Reset input activates.

c) Change propagates through lower gate. (Either input LOW makes output HIGH.)

Transition from Forbidden State

$\mathbf{n S}$	$\mathbf{n R}$	$\mathbf{Q}_{\mathrm{t}+1}$	$\mathbf{n Q}_{\mathrm{t}+1}$	Function
0	0	1	1	Forbidden
0	1	1	0	Set
1	0	0	1	Reset
1	1	Q_{t}	$n \mathrm{Q}_{\mathrm{t}}$	No Change

a) Both Set and Reset inputs active. Either input LOW makes output HIGH. Therefore, both outputs HIGH.

d) New output levels cross circuit via feedback lines.

b) Set and Reset inputs deactivate simultaneously.

d) New output levels cross circuit via feedback lines.
c) Change propagate through gates simultaneously.

f) Output logic levels cross circuit via feedback lines. Cycle repeats and circuit oscillates.

Switch Bouncing

b. Toggle

d. Effect of contact bounce

Switch Debouncing

a. Switch debouncer

b. Timing diagram

May 3, 2010

Gated SR NAND Latch

EN	\mathbf{S}	\mathbf{R}	$\mathbf{Q}_{\mathbf{t}+\mathbf{1}}$	$\mathbf{n Q}_{\mathbf{t + 1}}$	Function
1	0	0	Q_{t}	nQ_{t}	No Change
1	0	1	0	1	Reset
1	1	0	1	0	Set
1	1	1	1	1	Forbidden
0	X	X	Q_{t}	nQ_{t}	Inhibited

Gated NAND Latch Function Table

Gated D Latch (Transparent Latch)

EN	\mathbf{D}	$\mathbf{Q}_{\mathbf{t}+\mathbf{1}}$	$\mathbf{n Q}_{\mathbf{t + 1}}$	Function	Comment
1	1	1	0	Set	
1	0	0	1	Reset	Transparent
0	X	Q_{t}	nQ_{t}	No Change	Store
Gated NAND Latch Function Table					

Gated D Latch (Cont.)

a. No change state

b. Set condition

EN	\mathbf{D}	$\mathbf{Q}_{\mathrm{t}+1}$	$\mathbf{n} \mathbf{Q}_{\mathrm{t}+1}$	Function	Comment
1	1	1	0	Set	
1	0	0	1	Reset	Transparent
0	X	Q_{t}	$n Q_{t}$	No Change	Store
Gated D Latch Truth Table					

SR NAND Latch with VHDL

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY nand_latch IS
    PORT
    (
        nS:IN STD_LOGIC;
        nR: IN STD_LOGIC;
        Q : OUT STD_LOGIC;
        nQ : OUT STD_LOGIC
    );
END nand_latch;
ARCHITECTURE bdf_type OF nand_latch IS
    SIGNAL wireO: STD_LOGIC;
    SIGNAL wire1: STD_LOGIC;
BEGIN
Q <= wire1;
nQ <= wire0;
wire1 <= NOT(nS AND wire0);
wire0 <= NOT(wire1 AND nR);
END bdf_type;
```


Edge-Trigger Event

```
ENTITY counter IS
    PORT
    (
        Q: IN STD_LOGIC; -- reset counter
    );
END counter;
```

ARCHITECTURE a OF counter IS
SIGNAL cnt: INTEGER RANGE 0 to 10;
BEGIN
PROCESS(all)
Sense everything
port and signal

Q'EVENT and Q='0')

Event triggered at the rising edge of the Q signal

ELSIF (Q'EVENT and Q='1') THEN -- Handle counter
division, and comparison.
Integer can be used in addition, BEGIN

IF (cnt > '9') THEN - reset digit cnt $<=0$; cnt $<=$ cnt +1 ;
END IF;
END PROCESS;
END a;

Lab 9

－Note：This lab does not allow to use any existing latch modules．
－Part 1：Gated SR NAND latch
－Design a gated SR NAND latch．
－Create a vector waveform file（．vwf）to evaluate the output of the latch．
－S：count value，binary，simulation period＝4us，advanced by 1 every 100ns，start from 50ns
－R：count value，binary，simulation period＝4us，advanced by 1 every 200ns，start from Ons
－EN：count value，binary，simulation period 4us，advanced by 1 every 2us，start from Ons
－Part 2：Gated SR NAND latch application：Design the on／off pushbuttons with a counter
－I／O Functions：
－PushButton2（S）is to turn on the motor（i．e．，LEDO：G）．
－PushButton1（R）is to turn off motor（i．e．，LEDO：G）．
－PushButton0 is to reset the 2－digit BCD（or decimal）counter to 00.
－Hex1 and Hex0 shows the value of the 2－digit BCD counter．
－SW0 is to enable／disable the pushbuttons．
When SWO is Logic－High，enable the pushbuttons．Otherwise，the pushbuttons are disabled．
－The 2－digit BCD counter is advanced by one whenever the motor is turned ON from OFF（rising－edge trigger）．
－Report：
－Write down what you have learned from this lab．（實驗心得）

3 Pushbutton switches:
Not pressed \rightarrow Logic High Pressed \rightarrow Logic Low

Signal Name	FPGA Pin No.
BUTTON [0]	PIN_H2
BUTTON [1]	PIN_G3
BUTTON [2]	PIN_F1

10 Slide switches (Sliders):
Up \rightarrow Logic High
Down \rightarrow Logic

SW[0]	PIN_J6	SW[5]	PIN_J7
SW[1]	PIN_H5	SW[6]	PIN_H7
SW[2]	PIN_H6	SW[7]	PIN_E3
SW[3]	PIN_G4	SW[8]	PIN_E4
SW[4]	PIN_G5	SW[9]	PIN_D2

LEDs

10 LEDs
Opuput high \rightarrow LED on Output low \rightarrow LED off

Signal Name	FPGA Pin No.
LEDG[0]	PIN_J1
LEDG[1]	PIN_J2
LEDG[2]	PIN_J3
LEDG[3]	PIN_H1
LEDG[4]	PIN_F2
LEDG[5]	PIN_E1
LEDG[6]	PIN_C1
LEDG[7]	PIN_C2
LEDG[8]	PIN_B2
LEDG[9]	PIN_B1

7-Segment Displays

Pin number

(active-low)

Signal Name	FPGA Pin No.
HEX0_D[0]	PIN_E11
HEX0_D[1]	PIN_F11
HEX0_D[2]	PIN_H12
HEX0_D[3]	PIN_H13
HEX0_D[4]	PIN_G12
HEX0_D[5]	PIN_F12
HEX0_D[6]	PIN_F13
HEX0_DP	PIN_D13

HEX1_D[0]	PIN_A13
HEX1_D[1]	PIN_B13
HEX1_D[2]	PIN_C13
HEX1_D[3]	PIN_A14
HEX1_D[4]	PIN_B14
HEX1_D[5]	PIN_E14
HEX1_D[6]	PIN_A15
HEX1_DP	PIN_B15

HEX2_D[0]	PIN_D15	HEX3_D[0]	PIN_B18
HEX2_D[1]	PIN_A16	HEX3_D[1]	PIN_F15
HEX2_D[2]	PIN_B16	HEX3_D[2]	PIN_A19
HEX2_D[3]	PIN_E15	HEX3_D[3]	PIN_B19
HEX2_D[4]	PIN_A17	HEX3_D[4]	PIN_C19
HEX2_D[5]	PIN_B17	HEX3_D[5]	PIN_D19
HEX2_D[6]	PIN_F14	HEX3_D[6]	PIN_G15
HEX2_DP	PIN_A18	HEX3_DP	PIN_G16

