
Class 14
Microprocessors

Class 14
Microprocessors

June 18, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Simplified Microcomputer System
• Control bus

– A set of control lines going from the CPU to various components.
– Direct the flow of data among modules of the microcomputer (MCU)

by enabling and disabling the various data paths.

• Address bus
– Specify which part of memory or

peripheral should receive data
from or send data to the CPU.

• Data bus
– Send or receive

the actual data.
– Bus contention

should be avoided.

Address signals are always
sent from the CPU to the
memory and peripherals.

June 18, 2010 3

Copyright © All Rights Reserved by Yuan-Hao Chang

Asynchronous Tristate Data Bus

Load their data to the
bus when their control
lines are HIGH.

Load
data to
the bus

Write
data to
DEST2

Load
data to
the bus

Write
data to
DEST1

Write data from bus to the destination
when their control lines are HIGH at
the positive clock edge.

June 18, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Synchronous Tristate Data Bus
Flip-flops to make the
source output synchronous
to the system clock.

Write
data to
DEST2

Load
data to
the bus

Write
data to
DEST1Load

data to
the bus

June 18, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Load
data to
the bus

Write
data to
DEST2

Load
data to
the bus

Write
data to
DEST1

Asynchronous Synchronous

Comparison Between Asynchronous and
Synchronous Tristate Data Buses

Write
data to
DEST2

Load
data to
the bus

Write
data to
DEST1Load

data to
the bus

June 18, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

A Simple Microprocessor

A CPU register that holds the
accumulated result of
arithmetic and logic
operations performed in ALU.

A combinational circuit within
the CPU that performs
arithmetic and logical
operations, such as ADD, OR,
and XOR.

A CPU register that holds data
transferred from memory as a
second operand in an
arithmetic or logical operation.

A state machine within the
CPU that generates control
signals required to transfer
data among the various CPU
registers.

A combinational circuit within
the CPU that interprets the
binary value of the op code in
the instruction register, then
direct the controller to execute
the instruction.

A CPU register that holds the
current instruction op code being
executed by the CPU.

A counter within a CPU that keeps
track of the address of the next
program instruction to be fetched
from memory.

A CPU register that holds
the memory address
required for the current
instruction or data.

A peripheral register to which
data is transferred from the
accumulator.
(called a parallel output port).

Op Code: An instruction
for a CPU to execute.

8-bit data bus
4-bit address bus

June 18, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

A Simplified Op Codes and Program
• Every instruction is fetched and then executed

Instructions Op Codes
(Hex Values)

Add 1
Load 8

Output 9
Halt F

Simplified Op Codes

Address Data Comment
0 8C

1D
90

F0
4-B Blank(00)
C 55 Data for Load instruction
D 64 Data for Add instruction

Load contents of C
1 Add contents of D
2 Send accumulator

contents to output register
3 Halt

A Simplified Program:
Load, add, output, and halt
(Stored in a 16-byte ROM)

June 18, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Fetch Cycles
• Fetch 1:

– Transfer the contents of the program counter (PC) to the 4-bit address bus.
– Active control line: pc_oe.

• Fetch 2:
– Transfer the PC address from the address bus to the memory address register

(MAR).
– Increment the program counter so that it is ready to point to the next instruction.
– Active control line: mar_ld, pc_inc.

• Fetch 3:
– The value in MAR points to a ROM address containing an instruction to be executed.

(4-bit op code and 4-bit operand address in this example)
– The data at the pointed ROM address is transferred to the 8-bit data bus.
– Active control line: rom_oe.

• Fetch 4:
– The op code/address pair is transferred to the instruction register (IR) from the 8-bit

data bus.
• Fetch 5:

– This is a “do nothing” state to wait for the data to stabilize.
– Instruction decoder (ID) decodes the IR contents and direct the CPU to begin

executing the selected instruction.

June 18, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Fetch Cycles (Cont.)
Fetch 1: PC content to address bus (PC_OE)

Fetch 2:
1) MAR loads PC value from address bus

(MAR_LD)
2) PC increments (PC_INC)

Fetch 2:

Fetch 3: Data from ROM to data bus (ROM_OE)

Fetch 4: IR loads instruction/address
pair from data bus (IR_LD)

2

1

3

4

4Fetch 5: wait state,
and ID decodes the
IR content.

June 18, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Fetch Cycles (Cont.)

Wait
state

June 18, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Execute Cycle (Load Instruction)
• Load 1:

– The instruction/operand address pair in instruction register (IR) is split into the op
code (4MSBs) and operand address (4LSBs).

– The op code goes by a direct connection to the instruction decoder (ID) in the
controller state machine that determines the op code value and generate the correct
control signals.

– The operand address is transferred to the address bus.
– Active control line: ir_oe.

• Load 2:
– The MAR loads the contents of the address bus, thus latching the ROM address of

the operand for the Load instruction.
– Active control line: rom_oe.

• Load 3:
– Data transfers from the ROM to data bus.
– Active control line: rom_oe.

• Load 4:
– Data transfers from the data bus to the accumulator.
– Active control line: acc_oe.

June 18, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Execute Cycle (Load Instruction) (Cont.)

Load 2:
Operand address latched into MAR
(MAR_LD)

Load 3: Data from ROM to data bus (ROM_OE)

Load 1: operand address transfers
from IR to address bus (IR_OE)

2
4

3

1

1Load 1:ID decodes
the op code from
IR to let the
controller state
machine generate
the correct control
signals.

Load 4: Operand
latched into
accumulator
(ACC_LD)

June 18, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

Execute Cycle
(Load Instruction) (Cont.)

June 18, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Execute Cycle (Add Instruction)
• Add 1:

– The instruction/operand address pair in instruction register (IR) is split into the op code (4MSBs) and operand
address (4LSBs).

– The op code goes by a direct connection to the instruction decoder (ID) in the controller state machine that
determines the op code value and generate the correct control signals.

– The operand address is transferred to the address bus.
– Active control line: ir_oe , s[2..0]=001.

• Add 2:
– The MAR loads the contents of the address bus, thus latching the ROM address of the operand for the Load

instruction.
– Active control line: rom_oe , s[2..0]=001.

• Add 3:
– Data transfers from the ROM to data bus.
– Active control line: rom_oe , s[2..0]=001.

• Add 4:
– Transfer data from data bus to the memory data register (MDR)
– Active control line: acc_oe, s[2..0]=001.

• Add 5:
– The ALU adds the accumulator contents to the MDR contents.
– The results transfers to the data bus.
– Active control line: alu_oe, s[2..0]=001.

• Add 6:
– The accumulator transfers the final result

om the data bus to accumulator..
– Active control line: acc_ld, s[2..0]=001.

S[2..0] Function Operation
000 Increment

Add
Subtract

Decrement
100 Complement NOT Acc MDR
101 AND Acc AND
110 OR Acc OR MDR
111 XOR Acc XOR MDR

Acc + 1
001 Acc + MDR
010 Acc - MDR
011 Acc - 1

ALU

June 18, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Execute Cycle (Add Instruction) (Cont.)

Add 2:
Operand address latched into MAR
(MAR_LD)

Add 3: Data from ROM to data bus (ROM_OE)

Add 1: operand address transfers
from IR to address bus (IR_OE)

2

4

3

1

1
Load 1:ID decodes
the op code from IR to
let the controller state
machine generate the
correct control signals.

Add 4: Data
transferred from data
bus to MDR
(MDR_LD)

Add 5: Add Acc
contents to the MDR
contents, and send
result to data bus
(ALU_OE, S[2..0]=001)

5

6

Add 6: Final result
transferred from data
bus to Acc (ACC_LD)

June 18, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Execute Cycle
(Add Instruction) (Cont.)

Wait
state

June 18, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_signed.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY alu IS
PORT(

operand_a : IN STD_LOGIC_VECTOR(7 downto 0);
s : IN STD_LOGIC_VECTOR(2 downto 0);
memory_data: IN STD_LOGIC_VECTOR(7 downto 0);
alu_data : OUT STD_LOGIC_VECTOR(7 downto 0));

END alu;

ARCHITECTURE a OF alu IS
BEGIN

PROCESS (operand_a, memory_data, s)
BEGIN

CASE s IS
WHEN "000" =>alu_data <= operand_a + 1; -- Increment A
WHEN "001" =>alu_data <= operand_a + memory_data; -- Add
WHEN "010" =>alu_data <= operand_a - memory_data; -- Subtract
WHEN "011" =>alu_data <= operand_a - 1; -- Decrement A
WHEN "100" =>alu_data <= not operand_a; -- Complement A
WHEN "101" =>alu_data <= operand_a and memory_data; -- AND
WHEN "110" =>alu_data <= operand_a or memory_data; -- OR
WHEN "111" =>alu_data <= operand_a xor memory_data; -- XOR
WHEN others =>alu_data <= (others => '0');

END CASE;
END PROCESS;

END a;

ALU

-- Arithmetic Logic Unit
-- Capable of implementing 4
arithmetic and 4 logic functions
-- Input: from accumulator and
memory data register
-- Output: tristate data bus via
Data_MUX

June 18, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY address_mux IS

PORT(
clock, reset, ir_oe, pc_oe : IN STD_LOGIC;
ir_addr, pc_addr : IN STD_LOGIC_VECTOR(3 downto 0);
addr_bus : OUT STD_LOGIC_VECTOR(3 downto 0));

END address_mux;
ARCHITECTURE mux OF address_mux IS

SIGNAL controls : STD_LOGIC_VECTOR(1 downto 0);
BEGIN

-- Concatenate output enable lines to use in
-- selected signal assignment statement
controls <= pc_oe & ir_oe;
PROCESS(clock, reset)
BEGIN

IF(reset = '0')THEN
addr_bus <= (others => 'Z');

ELSIF(clock'EVENT and clock = '1')THEN
CASE controls IS

WHEN "01" => addr_bus <= ir_addr;
WHEN "10" => addr_bus <= pc_addr;
WHEN others => addr_bus <= (others => 'Z');

END CASE;
END IF;

END PROCESS;
END mux;

Address Bus

-- Address multiplexer with
synchronous tristate outputs
-- Places instruction register or
program counter contents
-- on address bus when selected.
Otherwise output is high-
impedance.

June 18, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY program_counter IS
PORT(

clock, reset, pc_inc : IN STD_LOGIC;
pc_addr : BUFFER STD_LOGIC_VECTOR(3 downto 0));

END program_counter;

ARCHITECTURE pc OF program_counter IS
BEGIN

PROCESS(clock, reset)
BEGIN

IF(reset = '0')THEN
pc_addr <= (others => '0');

ELSIF(clock'EVENT and clock = '1')THEN
IF(pc_inc = '1')THEN

pc_addr <= pc_addr + 1;
END IF;

END IF;
END PROCESS;

END pc;

Program Counter

-- Program Counter
-- 4-bit counter with active-LOW
asynchronous reset
-- Holds address of next
instruction to be fetched
-- Increments when PC_INC is
HIGH
-- Output is multiplexed onto
tristate address bus by
Address_MUX

June 18, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY memory_address_register IS
PORT(

clock, reset, mar_ld : IN STD_LOGIC;
addr_bus : IN STD_LOGIC_VECTOR(3 downto 0);
rom_addr : OUT STD_LOGIC_VECTOR(3 downto 0));

END memory_address_register;

ARCHITECTURE mar OF memory_address_register IS
BEGIN

PROCESS(reset, clock)
BEGIN

IF(reset = '0')THEN
rom_addr <= (others => '0');

ELSIF(clock'EVENT and clock = '1')THEN
IF(mar_ld = '1')THEN

rom_addr <= addr_bus;
END IF;

END IF;
END PROCESS;

END mar;

Memory Address Register

-- Memory address register
-- 4-bit flip-flop
-- Output is always applied to
address inputs of ROM
-- Input; 4-bit address bus
-- Register has active-LOW
asynchronous reset

June 18, 2010 21

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY instruction_register IS
PORT(

data_bus : IN STD_LOGIC_VECTOR(7 downto 0);
clock, reset, ir_ld : IN STD_LOGIC;
ir_addr: OUT STD_LOGIC_VECTOR(3 downto 0);
instruction: OUT STD_LOGIC_VECTOR(3 downto 0));

END instruction_register;
ARCHITECTURE instr OF instruction_register IS

-- Internal flip-flop values
SIGNAL q_int : STD_LOGIC_VECTOR(7 downto 0);

BEGIN
PROCESS(clock, reset)
BEGIN

IF (reset = '0') THEN
q_int <= (others => '0'); -- Clear all register bits

ELSIF (clock'EVENT and clock = '1') THEN
-- Load register on positive clock edge, if input is enabled
IF (ir_ld = '1') THEN

q_int <= data_bus;
END IF;

END IF;
END PROCESS;
-- Split data into opcode and operand address
instruction <= q_int(7 downto 4);
ir_addr <= q_int(3 downto 0);

END instr ;

Instruction Register

-- Instruction register
-- 8-bit flip-flop with input and
output enables
-- Input:op code (4-bit) and
address of operand (4-bit) from
system ROM
-- Output: opcode to Instruction
Decoder module in controller,
address to tristate address bus
-- Register has active-LOW
asynchronous reset

June 18, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY rom16b IS
PORT(

rom_addr : IN STD_LOGIC_VECTOR(3 downto 0);
rom_data : OUT STD_LOGIC_VECTOR(7 downto 0));

END rom16b;

ARCHITECTURE r OF rom16b IS
BEGIN

WITH rom_addr SELECT
rom_data <=

x"8C" WHEN x"0",
x"1D" WHEN x"1",
x"90" WHEN x"2",
x"F0" WHEN x"3",
x"55" WHEN x"C",
x"64" WHEN x"D",
x"00" WHEN others;

END r ;

Read Only Memory (ROM)

Address Data Comment
0 8C

1D
90

F0
4-B Blank(00)
C 55 Data for Load instruction
D 64 Data for Add instruction

E-F Blank(00)

Load contents of C
1 Add contents of D
2 Send accumulator contents to

output register
3 Halt

A Simplified Program:
Load, add, output, and halt
(Stored in a 16-byte ROM)

June 18, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY accumulator IS
PORT(

clock, reset, acc_ld : IN STD_LOGIC;
data_bus: IN STD_LOGIC_VECTOR(7 downto 0);
acc_data, operand_a : OUT STD_LOGIC_VECTOR(7 downto 0));

END accumulator;

ARCHITECTURE acc OF accumulator IS
BEGIN

PROCESS(clock, reset)
BEGIN

IF(reset = '0')THEN
acc_data <= (others => '0');
operand_a <= (others => '0');

ELSIF(clock'EVENT and clock = '1')THEN
IF(acc_ld = '1')THEN

acc_data <= data_bus;
operand_a <= data_bus;

END IF;
END IF;

END PROCESS;
END acc;

Accumulator

-- Accumulator
-- 8-bit flip-flop with input and
output enables
-- Input: 8-bit operand from data
bus
-- Output: 8-bit operand to aLU
(direct connection) and 8-bit
output to data bus
-- Register has active-LOW
asynchronous reset

Data on Acc is
directly applied to the

ALU’s operand.

June 18, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY memory_data_register IS
PORT(

data_bus : IN STD_LOGIC_VECTOR(7 downto 0);
clock, reset, mdr_ld : IN STD_LOGIC;
memory_data : OUT STD_LOGIC_VECTOR(7 downto 0));

END memory_data_register;

ARCHITECTURE mdr OF memory_data_register IS
BEGIN

PROCESS(clock, reset)
BEGIN

IF(reset = '0')THEN
-- Clear all register bits
memory_data <= (others => '0');

ELSIF (clock'EVENT and clock = '1') THEN
-- Load register on positive clock edge, if input is enabled
IF(mdr_ld = '1')THEN

memory_data <= data_bus;
END IF;

END IF;
END PROCESS;

END mdr ;

Memory Data Register

-- 8-bit flip-flop with input
-- Output is always applied to "B"
inputs of ALU
-- Input: 8-bit data bus
-- Register has active-LOW
asynchronous reset

June 18, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY data_mux IS
PORT(

clock, reset : IN STD_LOGIC;
rom_data : IN STD_LOGIC_VECTOR(7 downto 0); -- ROM instruction/data
acc_data : IN STD_LOGIC_VECTOR(7 downto 0); -- Accumulator contents
alu_data : IN STD_LOGIC_VECTOR(7 downto 0); -- ALU contents
rom_oe, acc_oe, alu_oe : IN STD_LOGIC;
data_bus : OUT STD_LOGIC_VECTOR(7 downto 0));

END data_mux;
ARCHITECTURE a OF data_mux IS

SIGNAL controls : STD_LOGIC_VECTOR(2 downto 0);
BEGIN

controls <= rom_oe & acc_oe & alu_oe;
PROCESS(clock, reset)
BEGIN

IF(reset = '0')THEN
data_bus <= (others => 'Z');

ELSIF(clock'EVENT and clock = '1')THEN
CASE controls IS

WHEN "100" =>data_bus <= rom_data;
WHEN "010" =>data_bus <= acc_data;
WHEN "001" =>data_bus <= alu_data;
WHEN others =>data_bus <= (others => 'Z');

END CASE;
END IF;

END PROCESS;
END a;

Data Bus

-- Multiplexes data from ROM,
Accumulator, or ALU onto tristate
data bus
-- Each data input is separately
enabled; only one enable
permitted at a time.

High impedance

High impedance

June 18, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY output_register IS
PORT(

data_bus : IN STD_LOGIC_VECTOR(7 downto 0);
clock, reset, or_ld : IN STD_LOGIC;
output : OUT STD_LOGIC_VECTOR(7 downto 0));

END output_register;

ARCHITECTURE output OF output_register IS
BEGIN

PROCESS(clock, reset)
BEGIN

IF(reset = '0')THEN
-- Clear all register bits
output <= (others => '0');

ELSIF (clock'EVENT and clock = '1') THEN
-- Load register on positive clock edge, if input is enabled
IF(or_ld = '1')THEN

output <= data_bus;
END IF;

END IF;
END PROCESS;

END output ;

Output Register

-- Output register
-- 8-bit flip-flop with input
-- Input: 8-bit data bus
-- Register has active-LOW
asynchronous reset

June 18, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

ENTITY controller_v1 IS
PORT(

clock, reset : IN BIT;
instruction : IN BIT_VECTOR(3 dowoto 0);
fetch, pc_inc, pc_oe : OUT BIT;
ir_ld, ir_oe, mar_ld, rom_oe : OUT BIT;
acc_ld, acc_oe, alu_oe, mdr_ld : OUT BIT;
or_ld : OUT BIT;
s : OUT BIT_VECTOR(2 downto 0));

END controller_v1;
ARCHITECTURE ctrl OF controller_v1 IS

TYPE state_type IS (
start, fetch1, fetch2, fetch3, fetch4, fetch5,
load1, load2, load3, load4,
add1, add2, add3, add4, add5, add6,
output1, output2, halt);

SIGNAL state : state_type;
SIGNAL control_word : BIT_VECTOR(15 downto 0);

BEGIN
PROCESS(clock, reset)
BEGIN

IF(reset = '0')THEN
state <= start;

ELSIF(clock'EVENT and clock = '1')THEN

Controller

Initial state

-- Controller for 8-bit RISC CPU
-- Generates signals to transfer data between CPU
modules
-- and controls arithmetic/logic functions.
-- Version 1 has four instructions, indicated in
hexadecimal:
--1 ADD --8 LOAD --9 OUTPUT --F HALT
--Opcodes 0 to 7 are reserved for ALU functions,
as follows:
--0 INC (Increments Accumulator (ACC))
--1 ADD (Adds contents of ACC and MDR)
--2 SUB (Subtracts contents of MDR from ACC)
--3 DEC (Decrements ACC)
--4 NOT (Complements ACC)
--5 AND (ACC AND MDR)
--6 OR (ACC OR MDR)
--7 XOR (ACC XOR MDR)

June 18, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

-- Create state machine for instruction sequences.
CASE state IS

WHEN start =>state <= fetch1; -- Fetch cycle
WHEN fetch1 =>state <= fetch2;
WHEN fetch2 =>state <= fetch3;
WHEN fetch3 =>state <= fetch4;
WHEN fetch4 =>state <= fetch5;
WHEN fetch5 =>

CASE instruction IS-- Decode instruction
WHEN x"1" =>state <= add1;
WHEN x"8" =>state <= load1;
WHEN x"9" =>state <= output1;
WHEN x"F" =>state <= halt;
WHEN others =>state <= halt;

END CASE;

Controller (Cont.)

WHEN add1 =>state <= add2; -- ADD
WHEN add2 =>state <= add3;
WHEN add3 =>state <= add4;
WHEN add4 =>state <= add5;
WHEN add5 =>state <= add6;
WHEN add6 =>state <= fetch1;
WHEN load1 =>state <= load2; -- LOAD
WHEN load2 =>state <= load3;
WHEN load3 =>state <= load4;
WHEN load4 =>state <= fetch1;
WHEN output1 =>state <= output2; -- OUTPUT
WHEN output2 =>state <= fetch1;
WHEN halt =>state <= halt; -- HALT
WHEN others =>state <= halt;

END CASE;
END IF;

END PROCESS;

June 18, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

-- Output decoder
-- Assign output control lines for each control state
-- "Fetch" output goes LOW to turn on LED during fetch cycle
WITH state SELECT

control_word <=
x"4000" WHEN start, -- Fetch LED OFF

x"1000" WHEN fetch1, -- pc_oe
x"2200" WHEN fetch2, -- pc_inc, mar_ld
x"0100" WHEN fetch3, -- rom_oe
x"0800" WHEN fetch4, -- ir_ld
x"0000" WHEN fetch5, -- wait state

x"4400" WHEN load1, -- ir_oe
x"4200" WHEN load2, -- mar_ld
x"4100" WHEN load3, -- rom_oe
x"4080" WHEN load4, -- acc_ld

x"4401" WHEN add1, -- ir_oe, s=001
x"4201" WHEN add2, -- mar_ld, s=001
x"4101" WHEN add3, -- rom_oe, s=001
x"4011" WHEN add4, -- mdr_ld, s=001
x"4021" WHEN add5, -- alu_oe, s=001
x"4081" WHEN add6, -- acc_ld, s=001

x"4040" WHEN output1, -- acc_oe
x"4008" WHEN output2, -- or_ld

x"4000" WHEN others; -- Fetch LED stays OFF
END ctrl;

-- Assign control bus outputs.
fetch <=control_word(14);
pc_inc <=control_word(13);
pc_oe <=control_word(12);

ir_ld <=control_word(11);
ir_oe <=control_word(10);
mar_ld <=control_word(9);
rom_oe <=control_word(8);

acc_ld <=control_word(7);
acc_oe <=control_word(6);
alu_oe <=control_word(5);
mdr_ld <=control_word(4);

or_ld <=control_word(3);
s <=control_word(2 downto 0);

Controller (Cont.)

June 18, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Integration with Block Diagram File (.BDF)
Conduit: connect outputs and inputs

with the same name together.

	Simplified Microcomputer System
	Asynchronous Tristate Data Bus
	Synchronous Tristate Data Bus
	Comparison Between Asynchronous and Synchronous Tristate Data Buses
	A Simple Microprocessor
	A Simplified Op Codes and Program
	Fetch Cycles
	Fetch Cycles (Cont.)
	Fetch Cycles (Cont.)
	Execute Cycle (Load Instruction)
	Execute Cycle (Load Instruction) (Cont.)
	Execute Cycle �(Load Instruction) (Cont.)
	Execute Cycle (Add Instruction)
	Execute Cycle (Add Instruction) (Cont.)
	Execute Cycle �(Add Instruction) (Cont.)
	ALU
	Address Bus
	Program Counter
	Memory Address Register
	Instruction Register
	Read Only Memory (ROM)
	Accumulator
	Memory Data Register
	Data Bus
	Output Register
	Controller
	Controller (Cont.)
	Controller (Cont.)
	Integration with Block Diagram File (.BDF)

