
Class 7 
Combinational Logic 

Functions 

Class 7 
Combinational Logic 

Functions



December 14, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Selected Signal Assignment Statement vs. 
Conditional Signal Assignment Statement

WITH __expression SELECT
__signal <= __expression WHEN __constant_value,

__expression WHEN __constant_value,
__expression WHEN others;

Selected Signal Assignment Statement Default 
case

__signal <= __expression WHEN __boolean_expression ELSE
__expression WHEN __boolean_expression ELSE
__expression;

Conditional Signal Assignment Statement
Default 
case

comma

Usually a port or signal

Can’t be used in PROCESS statement



December 14, 2010 3

Copyright © All Rights Reserved by Yuan-Hao Chang

2-Line-to-4-Line Decoder with an Enable 
Input

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY decode IS
PORT(
d: IN STD_LOGIC_VECTOR (1 downto 0);
g: IN STD_LOGIC;
y: OUT STD_LOGIC_VECTOR (3 downto 0));

END decode;

ARCHITECTURE decoder OF decode IS
SIGNAL inputs : STD_LOGIC_VECTOR (2 downto 0);

BEGIN
inputs(2) <= g;
inputs (1 downto 0) <= d;
WITH inputs SELECT
y <=  "0001" WHEN "000",

"0010" WHEN "001",
"0100" WHEN "010",
"1000" WHEN "011",
"0000" WHEN others;

END decoder;

Concatenate g (1 
bit) and d (2 bits) to 
get 3-bit vector

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY decode IS
PORT(
d: IN INTEGER Range 0 to 3;
g: IN STD_LOGIC;
y: OUT STD_LOGIC_VECTOR (0 to 3));

END decode;

ARCHITECTURE decoder OF decode IS
BEGIN

y <=  "1000" WHEN (d=0 and g='0') ELSE
"0100" WHEN (d=1 and g='0') ELSE
"0010" WHEN (d=2 and g='0') ELSE
"0001" WHEN (d=3 and g='0') ELSE
"0000";

END decoder ;

g: enable

d(1)

d(0)



December 14, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

IF Statement

IF __boolean_expression THEN
__statement;
__statement;

ELSIF __boolean_expression THEN
__statement;
__statement;

ELSE
__statement;
__statement;

END IF;

IF(nRBI = '0' and input = "0000") THEN
output <= "1111111"; -- 0 suppressed
nRBO <= '0'; -- Next 0 suppressed

ELSE
nRBO <= '1'; -- Next 0 displayed

END IF;

Boolean value

IF Statement

Can be used in PROCESS statement



December 14, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

CASE Statement

CASE __expression IS
WHEN __constant_value =>

__statement;
__statement;

WHEN __constant_value =>
__statement;
__statement;

WHEN others =>
__statement;
__statement;

END CASE;

CASE input IS
WHEN "0000" =>

output <=  "0000001"; -- 0 displayed
WHEN "0001" =>

output <= "1001111"; -- 1
WHEN "0010" =>

output <= "0010010"; -- 2
WHEN "0011" =>

output <= "0000110"; -- 3
WHEN "0100" =>

output <= "1001100"; -- 4
WHEN "0101" =>

output <= "0100100"; -- 5
WHEN "0110" =>

output <= "1100000"; -- 6
WHEN "0111" =>

output <= "0001111"; -- 7
WHEN "1000" =>

output <= "0000000"; -- 8
WHEN "1001" =>

output <= "0001100"; -- 9
WHEN others =>

output <= "1111111"; -- blank
END CASE;

CASE Statement

Usually a port or signal

Can be used in PROCESS statement



December 14, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

PROCESS
• VHDL syntax requires an IF statement or a CASE statement to be contained 

within a PROCESS.

• IF statement and CASE statement can only be used in PROCESS statement

• A PROCESS is a construct containing statements that are executed if a signal 
in the sensitivity list of the PROCESS changes.

• A PROCESS statement is concurrent, but the statements inside the PROCESS 
are sequential.

[label:] PROCESS (sensitivity list)
BEGIN

statements;
END PROCESS;

PROCESS (nRBI, input)
BEGIN

IF(nRBI = '0' and input = "0000") THEN
output <= "1111111"; -- 0 suppressed
nRBO <= '0'; -- Next 0 suppressed

ELSE
nRBO <= '1'; -- Next 0 displayed

END IF;
END PROCESS;PROCESS

optional



December 14, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

• Only one instance of the EVENT express (e.g., clk’EVENT and clk=‘1’) 
is allowed in a PROCESS statement.

Possible Design Errors in PROCESS (Cont.)

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’) THEN
IF (load=‘1’) THEN

q <= p;
END IF;

END IF;
IF (clk’EVENT and clk=‘1’) THEN

IF (count_enable=‘1’) THEN
q <= q+1;

END IF;
END IF;

END PROCESS;

Illegal syntax: more than 
one clock per process

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’) THEN
IF (load=‘1’) THEN

q <= p;
ELSIF (count_enable=‘1’) THEN

q <= q+1;
END IF;

END IF;
END PROCESS;

Legal syntax



December 14, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Possible Design Errors in PROCESS (Cont.)
• No other port, signal, or variable is allowed to be included with the 

expression that evaluates the clock.

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’ and load=‘1’) THEN
q <= p;

ELSE
q <= q+1;

END IF;
END PROCESS;

Illegal syntax: load evaluated in 
same statement as clk

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’) THEN
IF (load=‘1’) THEN

q <= p;
ELSE

q <= q+1;
END IF;

END IF;
END PROCESS;

Legal syntax



December 14, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Possible Design Errors in PROCESS (Cont.)
• The statements in a process should be such that it is only possible to 

assign one value to a port, variable, or signal for each time the process 
executes.

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’) THEN
IF (count_enable = ‘1’) THEN

q <= q+1;
END IF;
IF (load = ‘1’) THEN

q<= p;
END IF;
IF (clear = ‘0’) THEN

q <= (others =>’0’);
END IF;

END IF;
END PROCESS;

Ambigous (but not illegal) syntax: q 
assigned more than once in a process. May 

have an unexpected result.

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’) THEN
IF (count_enable = ‘1’) THEN

q <= q+1;
ELSIF (load = ‘1’) THEN

q<= p;
ELSIF (clear = ‘0’) THEN

q <= (others =>’0’);
END IF;

END IF;
END PROCESS;

Legal syntax



December 14, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Ripple Blanking
• A technique used in a multiple- 

digit numerical display that 
suppresses leading or trailing 
zeros in the display, but allows 
internal zeros to be displayed.

• nRBI=0 and D=0 
 7-segment blank 
 nRBO=0 

otherwise 
 show digit 
 nRBO=1

• Suppress leading zeros
– Ground nRBI of the MSB digit

• Suppress trailing zeros
– Groud nRBI of the LSB digit



December 14, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

BCD-to-7Segment with Ripple Blanking
ENTITY sevsegrb IS
PORT(

-- Use separate I/Os, not bus
d3, d2, d1, d0: IN BIT;  
nRBI: IN BIT :=‘0’; -- set up the initial value
a, b, c, d, e, f, g, nRBO: OUT BIT);

END sevsegrb;

ARCHITECTURE seven_segment OF sevsegrb IS
-- Bit vectors for internal use
SIGNAL input: BIT_VECTOR (3 DOWNTO 0);  
-- in decoder CASE statement
SIGNAL output: BIT_VECTOR (6 DOWNTO 0); 

BEGIN
-- Concatenate inputs to make bit vector
input <= d3 & d2 & d1 & d0; 

-- Process Statement
assign_out: PROCESS (input, nRBI)
BEGIN
IF(nRBI = '0' and input = "0000") THEN

output <= "1111111";  -- 0 suppressed
nRBO <= '0';  -- Next 0 suppressed

ELSE
nRBO <= '1';  -- Next 0 displayed

CASE input IS
WHEN "0000" =>
output <= "0000001"; -- 0

WHEN "0001" =>
output <= "1001111"; -- 1

WHEN "0010" =>
output <= "0010010"; -- 2

WHEN "0011" =>
output <= "0000110"; -- 3

WHEN "0100" =>
output <= "1001100"; -- 4

WHEN "0101" =>
output <= "0100100"; -- 5

WHEN "0110" =>
output <= "1100000"; -- 6

WHEN "0111" =>
output <= "0001111"; -- 7

WHEN "1000" =>
output <= "0000000"; -- 8

WHEN "1001" =>
output <= "0001100"; -- 9

WHEN others =>
output <= "1111111"; -- blank

END CASE;
END IF;

END PROCESS assign_out;

-- pin outputs.
a <= output(6);
b <= output(5);
c <= output(4);
d <= output(3);
e <= output(2);
f <= output(1);
g <= output(0);

END seven_segment;

Set up the initial value



December 14, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Encoders
• 3-bit binary encoder

D7 D6 D5 D4 D3 D2 D1 D0 Q2 Q1 Q0

0 0 0 0 0 0 0 X 0 0 0
0 0 0 0 0 0 1 X 0 0 1
0 0 0 0 0 1 0 X 0 1 0
0 0 0 0 1 0 0 X 0 1 1
0 0 0 1 0 0 0 X 1 0 0
0 0 1 0 0 0 0 X 1 0 1
0 1 0 0 0 0 0 X 1 1 0
1 0 0 0 0 0 0 X 1 1 1

13570

23671

45672

DDDDQ
DDDDQ
DDDDQ





Equation

Truth Table
Circuit

Encoders might generate wrong codes:
E.g., both D5 and D3 are on, the output of 
Q2Q1Q0 is 111.



December 14, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

Priority Encoder
• An encoder makes the output corresponding to the highest- 

priority input.
– Step 1: A bit goes HIGH if it is part of the code for an active input.
– Step 2: A bit goes LOW if it is a LOW of an input with a higher priority

• Development steps: D7 D6 D5 D4 D3 D2 D1 D0 Q2 Q1 Q0

0 0 0 0 0 0 0 X 0 0 0
0 0 0 0 0 0 1 X 0 0 1
0 0 0 0 0 1 X X 0 1 0
0 0 0 0 1 X X X 0 1 1
0 0 0 1 X X X X 1 0 0
0 0 1 X X X X X 1 0 1
0 1 X X X X X X 1 1 0
1 X X X X X X X 1 1 1

Truth Table

13570

23671

45672

DDDDQ
DDDDQ
DDDDQ





12463465670

245345671

45672

DDDDDDDDDDQ

DDDDDDDDQ

DDDDQ







Step 1

Step 2



December 14, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Priority Encoder (Cont.)

-- hi_pri8a.vhd
ENTITY hi_pri8a IS

PORT(
d: IN BIT_VECTOR(7 downto 0);
q: OUT BIT_VECTOR (2 downto 0));

END hi_pri8a;

ARCHITECTURE a OF hi_pri8a IS
BEGIN
-- Concurrent Signal Assignments
q(2) <= d(7) or d(6) or d(5) or d(4);

q(1) <= d(7) or d(6) 
or ((not d(5)) and (not d(4)) and d(3))
or ((not d(5)) and (not d(4)) and d(2));

q(0) <= d(7) or ((not d(6)) and d(5))
or ((not d(6)) and (not d(4)) and d(3))
or ((not d(6)) and (not d(4)) and (not d(2)) and d(1));

END a;

-- hi_pri8b.vhd
ENTITY hi_pri8b IS

PORT(
d: IN BIT_VECTOR(7 downto 0);
q: OUT INTEGER RANGE 0 to 7);

END hi_pri8b;

ARCHITECTURE a OF hi_pri8b IS
BEGIN
-- Conditional Signal Assignment
q <= 7 WHEN d(7)='1' ELSE

6 WHEN d(6)='1' ELSE
5 WHEN d(5)='1' ELSE
4 WHEN d(4)='1' ELSE
3 WHEN d(3)='1' ELSE
2 WHEN d(2)='1' ELSE
1 WHEN d(1)='1' ELSE
0;

END a;



December 14, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Lab 7
• Part 1: Design a BCD priority Encoder. (7-segment shows 0~9)

– The 7-segment shows the number corresponding to the switch that is ON and has the 
highest priority, where a switch with the larger numeric value has higher priority.

– If all of the switches are OFF, turn off the 7-segment LED.

• Part 2: Design a 3-digit octal-to-7segment decoder with the leading zeros 
suppressed, as follow:

• Report:
– Write down what 

you have learned 
from this lab. 
(實驗心得)

3-digit octal-to-7segment decoder

BCD priority 
decoder



December 14, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Pushbutton and Slide Switches

3 Pushbutton switches:
Not pressed  Logic High 
Pressed  Logic Low

10 Slide switches (Sliders):
Up  Logic High
Down  Logic

Pin 
number

Pin number



December 14, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

LEDs 10 LEDs
Opuput high  LED on
Output low  LED offPin number



December 14, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

7-Segment Displays Pin number 
(active-low)


	投影片編號 1
	Selected Signal Assignment Statement vs.�Conditional Signal Assignment Statement
	2-Line-to-4-Line Decoder with an Enable Input
	IF Statement
	CASE Statement
	PROCESS
	Possible Design Errors in PROCESS (Cont.)
	Possible Design Errors in PROCESS (Cont.)
	Possible Design Errors in PROCESS (Cont.)
	Ripple Blanking
	BCD-to-7Segment with Ripple Blanking�
	Encoders
	Priority Encoder
	Priority Encoder (Cont.)
	Lab 7
	Pushbutton and Slide Switches
	LEDs
	7-Segment Displays

