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Selected Signal Assignment Statement vs. 
Conditional Signal Assignment Statement

WITH __expression SELECT
__signal <= __expression WHEN __constant_value,

__expression WHEN __constant_value,
__expression WHEN others;

Selected Signal Assignment Statement Default 
case

__signal <= __expression WHEN __boolean_expression ELSE
__expression WHEN __boolean_expression ELSE
__expression;

Conditional Signal Assignment Statement
Default 
case

comma

Usually a port or signal

Can’t be used in PROCESS statement
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2-Line-to-4-Line Decoder with an Enable 
Input

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY decode IS
PORT(
d: IN STD_LOGIC_VECTOR (1 downto 0);
g: IN STD_LOGIC;
y: OUT STD_LOGIC_VECTOR (3 downto 0));

END decode;

ARCHITECTURE decoder OF decode IS
SIGNAL inputs : STD_LOGIC_VECTOR (2 downto 0);

BEGIN
inputs(2) <= g;
inputs (1 downto 0) <= d;
WITH inputs SELECT
y <=  "0001" WHEN "000",

"0010" WHEN "001",
"0100" WHEN "010",
"1000" WHEN "011",
"0000" WHEN others;

END decoder;

Concatenate g (1 
bit) and d (2 bits) to 
get 3-bit vector

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY decode IS
PORT(
d: IN INTEGER Range 0 to 3;
g: IN STD_LOGIC;
y: OUT STD_LOGIC_VECTOR (0 to 3));

END decode;

ARCHITECTURE decoder OF decode IS
BEGIN

y <=  "1000" WHEN (d=0 and g='0') ELSE
"0100" WHEN (d=1 and g='0') ELSE
"0010" WHEN (d=2 and g='0') ELSE
"0001" WHEN (d=3 and g='0') ELSE
"0000";

END decoder ;

g: enable

d(1)

d(0)
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IF Statement

IF __boolean_expression THEN
__statement;
__statement;

ELSIF __boolean_expression THEN
__statement;
__statement;

ELSE
__statement;
__statement;

END IF;

IF(nRBI = '0' and input = "0000") THEN
output <= "1111111"; -- 0 suppressed
nRBO <= '0'; -- Next 0 suppressed

ELSE
nRBO <= '1'; -- Next 0 displayed

END IF;

Boolean value

IF Statement

Can be used in PROCESS statement
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CASE Statement

CASE __expression IS
WHEN __constant_value =>

__statement;
__statement;

WHEN __constant_value =>
__statement;
__statement;

WHEN others =>
__statement;
__statement;

END CASE;

CASE input IS
WHEN "0000" =>

output <=  "0000001"; -- 0 displayed
WHEN "0001" =>

output <= "1001111"; -- 1
WHEN "0010" =>

output <= "0010010"; -- 2
WHEN "0011" =>

output <= "0000110"; -- 3
WHEN "0100" =>

output <= "1001100"; -- 4
WHEN "0101" =>

output <= "0100100"; -- 5
WHEN "0110" =>

output <= "1100000"; -- 6
WHEN "0111" =>

output <= "0001111"; -- 7
WHEN "1000" =>

output <= "0000000"; -- 8
WHEN "1001" =>

output <= "0001100"; -- 9
WHEN others =>

output <= "1111111"; -- blank
END CASE;

CASE Statement

Usually a port or signal

Can be used in PROCESS statement
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PROCESS
• VHDL syntax requires an IF statement or a CASE statement to be contained 

within a PROCESS.

• IF statement and CASE statement can only be used in PROCESS statement

• A PROCESS is a construct containing statements that are executed if a signal 
in the sensitivity list of the PROCESS changes.

• A PROCESS statement is concurrent, but the statements inside the PROCESS 
are sequential.

[label:] PROCESS (sensitivity list)
BEGIN

statements;
END PROCESS;

PROCESS (nRBI, input)
BEGIN

IF(nRBI = '0' and input = "0000") THEN
output <= "1111111"; -- 0 suppressed
nRBO <= '0'; -- Next 0 suppressed

ELSE
nRBO <= '1'; -- Next 0 displayed

END IF;
END PROCESS;PROCESS

optional
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• Only one instance of the EVENT express (e.g., clk’EVENT and clk=‘1’) 
is allowed in a PROCESS statement.

Possible Design Errors in PROCESS (Cont.)

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’) THEN
IF (load=‘1’) THEN

q <= p;
END IF;

END IF;
IF (clk’EVENT and clk=‘1’) THEN

IF (count_enable=‘1’) THEN
q <= q+1;

END IF;
END IF;

END PROCESS;

Illegal syntax: more than 
one clock per process

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’) THEN
IF (load=‘1’) THEN

q <= p;
ELSIF (count_enable=‘1’) THEN

q <= q+1;
END IF;

END IF;
END PROCESS;

Legal syntax



December 14, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Possible Design Errors in PROCESS (Cont.)
• No other port, signal, or variable is allowed to be included with the 

expression that evaluates the clock.

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’ and load=‘1’) THEN
q <= p;

ELSE
q <= q+1;

END IF;
END PROCESS;

Illegal syntax: load evaluated in 
same statement as clk

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’) THEN
IF (load=‘1’) THEN

q <= p;
ELSE

q <= q+1;
END IF;

END IF;
END PROCESS;

Legal syntax
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Possible Design Errors in PROCESS (Cont.)
• The statements in a process should be such that it is only possible to 

assign one value to a port, variable, or signal for each time the process 
executes.

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’) THEN
IF (count_enable = ‘1’) THEN

q <= q+1;
END IF;
IF (load = ‘1’) THEN

q<= p;
END IF;
IF (clear = ‘0’) THEN

q <= (others =>’0’);
END IF;

END IF;
END PROCESS;

Ambigous (but not illegal) syntax: q 
assigned more than once in a process. May 

have an unexpected result.

PROCESS(clk)
BEGIN

IF (clk’EVENT and clk=‘1’) THEN
IF (count_enable = ‘1’) THEN

q <= q+1;
ELSIF (load = ‘1’) THEN

q<= p;
ELSIF (clear = ‘0’) THEN

q <= (others =>’0’);
END IF;

END IF;
END PROCESS;

Legal syntax
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Ripple Blanking
• A technique used in a multiple- 

digit numerical display that 
suppresses leading or trailing 
zeros in the display, but allows 
internal zeros to be displayed.

• nRBI=0 and D=0 
 7-segment blank 
 nRBO=0 

otherwise 
 show digit 
 nRBO=1

• Suppress leading zeros
– Ground nRBI of the MSB digit

• Suppress trailing zeros
– Groud nRBI of the LSB digit
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BCD-to-7Segment with Ripple Blanking
ENTITY sevsegrb IS
PORT(

-- Use separate I/Os, not bus
d3, d2, d1, d0: IN BIT;  
nRBI: IN BIT :=‘0’; -- set up the initial value
a, b, c, d, e, f, g, nRBO: OUT BIT);

END sevsegrb;

ARCHITECTURE seven_segment OF sevsegrb IS
-- Bit vectors for internal use
SIGNAL input: BIT_VECTOR (3 DOWNTO 0);  
-- in decoder CASE statement
SIGNAL output: BIT_VECTOR (6 DOWNTO 0); 

BEGIN
-- Concatenate inputs to make bit vector
input <= d3 & d2 & d1 & d0; 

-- Process Statement
assign_out: PROCESS (input, nRBI)
BEGIN
IF(nRBI = '0' and input = "0000") THEN

output <= "1111111";  -- 0 suppressed
nRBO <= '0';  -- Next 0 suppressed

ELSE
nRBO <= '1';  -- Next 0 displayed

CASE input IS
WHEN "0000" =>
output <= "0000001"; -- 0

WHEN "0001" =>
output <= "1001111"; -- 1

WHEN "0010" =>
output <= "0010010"; -- 2

WHEN "0011" =>
output <= "0000110"; -- 3

WHEN "0100" =>
output <= "1001100"; -- 4

WHEN "0101" =>
output <= "0100100"; -- 5

WHEN "0110" =>
output <= "1100000"; -- 6

WHEN "0111" =>
output <= "0001111"; -- 7

WHEN "1000" =>
output <= "0000000"; -- 8

WHEN "1001" =>
output <= "0001100"; -- 9

WHEN others =>
output <= "1111111"; -- blank

END CASE;
END IF;

END PROCESS assign_out;

-- pin outputs.
a <= output(6);
b <= output(5);
c <= output(4);
d <= output(3);
e <= output(2);
f <= output(1);
g <= output(0);

END seven_segment;

Set up the initial value



December 14, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Encoders
• 3-bit binary encoder

D7 D6 D5 D4 D3 D2 D1 D0 Q2 Q1 Q0

0 0 0 0 0 0 0 X 0 0 0
0 0 0 0 0 0 1 X 0 0 1
0 0 0 0 0 1 0 X 0 1 0
0 0 0 0 1 0 0 X 0 1 1
0 0 0 1 0 0 0 X 1 0 0
0 0 1 0 0 0 0 X 1 0 1
0 1 0 0 0 0 0 X 1 1 0
1 0 0 0 0 0 0 X 1 1 1

13570

23671

45672

DDDDQ
DDDDQ
DDDDQ





Equation

Truth Table
Circuit

Encoders might generate wrong codes:
E.g., both D5 and D3 are on, the output of 
Q2Q1Q0 is 111.
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Priority Encoder
• An encoder makes the output corresponding to the highest- 

priority input.
– Step 1: A bit goes HIGH if it is part of the code for an active input.
– Step 2: A bit goes LOW if it is a LOW of an input with a higher priority

• Development steps: D7 D6 D5 D4 D3 D2 D1 D0 Q2 Q1 Q0

0 0 0 0 0 0 0 X 0 0 0
0 0 0 0 0 0 1 X 0 0 1
0 0 0 0 0 1 X X 0 1 0
0 0 0 0 1 X X X 0 1 1
0 0 0 1 X X X X 1 0 0
0 0 1 X X X X X 1 0 1
0 1 X X X X X X 1 1 0
1 X X X X X X X 1 1 1

Truth Table

13570

23671

45672

DDDDQ
DDDDQ
DDDDQ





12463465670

245345671

45672

DDDDDDDDDDQ

DDDDDDDDQ

DDDDQ







Step 1

Step 2
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Priority Encoder (Cont.)

-- hi_pri8a.vhd
ENTITY hi_pri8a IS

PORT(
d: IN BIT_VECTOR(7 downto 0);
q: OUT BIT_VECTOR (2 downto 0));

END hi_pri8a;

ARCHITECTURE a OF hi_pri8a IS
BEGIN
-- Concurrent Signal Assignments
q(2) <= d(7) or d(6) or d(5) or d(4);

q(1) <= d(7) or d(6) 
or ((not d(5)) and (not d(4)) and d(3))
or ((not d(5)) and (not d(4)) and d(2));

q(0) <= d(7) or ((not d(6)) and d(5))
or ((not d(6)) and (not d(4)) and d(3))
or ((not d(6)) and (not d(4)) and (not d(2)) and d(1));

END a;

-- hi_pri8b.vhd
ENTITY hi_pri8b IS

PORT(
d: IN BIT_VECTOR(7 downto 0);
q: OUT INTEGER RANGE 0 to 7);

END hi_pri8b;

ARCHITECTURE a OF hi_pri8b IS
BEGIN
-- Conditional Signal Assignment
q <= 7 WHEN d(7)='1' ELSE

6 WHEN d(6)='1' ELSE
5 WHEN d(5)='1' ELSE
4 WHEN d(4)='1' ELSE
3 WHEN d(3)='1' ELSE
2 WHEN d(2)='1' ELSE
1 WHEN d(1)='1' ELSE
0;

END a;
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Lab 7
• Part 1: Design a BCD priority Encoder. (7-segment shows 0~9)

– The 7-segment shows the number corresponding to the switch that is ON and has the 
highest priority, where a switch with the larger numeric value has higher priority.

– If all of the switches are OFF, turn off the 7-segment LED.

• Part 2: Design a 3-digit octal-to-7segment decoder with the leading zeros 
suppressed, as follow:

• Report:
– Write down what 

you have learned 
from this lab. 
(實驗心得)

3-digit octal-to-7segment decoder

BCD priority 
decoder
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Pushbutton and Slide Switches

3 Pushbutton switches:
Not pressed  Logic High 
Pressed  Logic Low

10 Slide switches (Sliders):
Up  Logic High
Down  Logic

Pin 
number

Pin number
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LEDs 10 LEDs
Opuput high  LED on
Output low  LED offPin number



December 14, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

7-Segment Displays Pin number 
(active-low)
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