

Class 4 Combinational Logic

Three-Input AND and OR

DeMorgan's Theorems

Break the line and change the sign

Boolean Expression from Logic Gate

March 23, 2011

Sum of Products (SOP) and Product of Sums (POS)

Α	В	С	\overline{ABC}	ĀBC	$A\overline{B}\overline{C}$	Y	\overline{Y}	Minterms	\overline{Y}	Maxterms
0	0	0	1	0	0	1	0	$\overline{A}\overline{B}\overline{C}$		
0	0	1	0	0	0	0	1		\overline{ABC}	$A + \underline{B} + \overline{C}$
0	1	0	0	0	0	0	1		ABC	A+B+C
0	1	1	0	1	0	1	0	$A\overline{B}\overline{C}$		
1	0	0	0	0	1	1	0	ĀBC		
1	0	1	0	0	0	0	1		$A\overline{B}C$	$\overline{A} + B + \overline{C}$
1	1	0	0	0	0	0	1		$AB\overline{C}$	$\overline{A} + \overline{B} + C$
1	1	1	0	0	0	0	1		ABC	$\overline{A} + \overline{B} + \overline{C}$

Sum of Products (SOP) and Product of Sums (POS) (Cont.)

AND-OR Circuit

 Transform the Boolean expression into a simplified SOP(積之和) form.

$$F = \overline{Z} + \overline{X}\overline{Y}$$

OR-AND Circuit

• Transform the Boolean function into a simplified POS (和之積) form.

74LS51

AOI (AND-OR-NOT) Circuit

- How to design an AOI circuit:
 - Derive an SOP form for complement F
 - Negate the complement F to derive F

 $\overline{F} = XZ + YZ$ $F = \overline{XZ + YZ}$

Four-Input NAND and NOR

ALL NAND

An Example of All NAND

Design an AND-OR circuit in the SOP form so as to derive a simplified circuit.

All NOR

March 23, 2011

An Example of All NOR

Design an OR-AND circuit in the POS form so as to derive a simplified circuit.

Lab 4 – Part 1

- Design a combinational circuit to solve the following question:
 - There are three switches (A, B, and C), one green LED, and one red LED.
 - When the power is on,
 - The red LED is off and the green LED is on when none or one of the switches is on.
 - The red LED is on and the green LED is off when two or three switches are on.

Lab 4 – Part 2

- Design a combinational circuit to solve the following question:
 - There are three switches (A, B, and C) and one LED.
 - -When the power is on,
 - The LED is on when any two or more adjacent switches are on at the same time (i.e., A B on, B C on, A B C on).
 - Otherwise, the LED is off.

March 23, 2011

Chip Logic Circuit

74LS04

74LS32

NHIT

Chip Logic Circuit (Cont.)

Report 4 – Part 1

班級: 姓名:

- 學號:
- 使用AND-OR (SOP)、OR-AND (POS)或AOI電路解決 Part 1 的問題並完成下圖 中電路 (並標出所使用的IC編號,及導出邏輯線路的過程)。

• 說明所採用的電路及採用的原因。

Report 4 – Part 2

 使用ALL-NAND 或 ALL-NOR電路解決 Part 2 的問題並完成下圖中電路(並標出 所使用的IC編號,及導出邏輯線路的過程)。

• 說明所採用的電路及採用的原因。

