Class 4 Combinational Logic

Three-Input AND and OR

DeMorgan's Theorems

- Break the line and change the sign

$\overline{A \cdot B}=\bar{A}+\bar{B}$$\overline{A+B}=\bar{A} \cdot \bar{B}$	A $\overline{A \cdot B} \bar{A}+\bar{B} \overline{A+B} \bar{A} \cdot \bar{B}$						
	0	0	1	1	1		1
$\overline{A+B}=\bar{A} \cdot \bar{B}$	0	1	1	1	0		0
$\square^{Y} \longmapsto_{B}^{A}-\square^{Y}$	1	0	1	0	0		
$\bar{A} \cdot \bar{B}$							

Boolean Expression from Logic Gate

Sum of Products (SOP) and Product of Sums (POS)

A	B	C	$\bar{A} \bar{B} \bar{C}$	$\bar{A} B C$	$A \bar{B} \bar{C}$	Y	\bar{Y}	Minterms	\bar{Y}	Maxterms
0	0	0	1	0	0	1	0	$\bar{A} \bar{B} \bar{C}$		
0	0	1	0	0	0	0	1		$\bar{A} \bar{B} C$	$A+B+\bar{C}$
0	1	0	0	0	0	0	1		$\bar{A} B \bar{C}$	$A+\bar{B}+C$
0	1	1	0	1	0	1	0	$A \bar{B} \bar{C}$		
1	0	0	0	0	1	1	0	$\bar{A} B C$		
1	0	1	0	0	0	0	1		$A \bar{B} C$	$\bar{A}+B+\bar{C}$
1	1	0	0	0	0	0	1		$A B \bar{C}$	$\bar{A}+\bar{B}+C$
1	1	1	0	0	0	0	1		$A B C$	$\bar{A}+\bar{B}+\bar{C}$

Sum of Products (SOP) and Product of Sums (POS) (Cont.)

$(\mathrm{SOP}) \rightarrow$ AND then OR $Y=\overline{A B} \bar{C}+\bar{A} B C+A \bar{B} \bar{C}$ $Y=\bar{B} \bar{C}+\bar{A} B C$ (reduction)
$\bar{Y}=\bar{A} \bar{B} C+\bar{A} B \bar{C}+A \bar{B} C+A B \bar{C}+A B C$ $\overline{\bar{Y}}=\overline{\bar{A} \bar{B} C+\bar{A} B \bar{C}+A \bar{B} C+A B \bar{C}+A B C}$ $Y=\overline{\overline{A B} C} \cdot \overline{\bar{A} B \bar{C}} \cdot \overline{A \bar{B} C} \cdot \overline{A B \bar{C}} \cdot \overline{A B C}$
 $Y=(A+B+\bar{C}) \cdot(A+\bar{B}+C) \cdot(\bar{A}+B+\bar{C}) \cdot(\bar{A}+\bar{B}+C) \cdot(\bar{A}+\bar{B}+\bar{C})$ $(\mathrm{POS}) \rightarrow$ OR then AND

Karnaugh Map (K-Map) $\overline{\overline{B C}}$

A	B	C	$\overrightarrow{A B C} \bar{A} B C$	$A \bar{B} \bar{C}$	Y	
0	0	0	1	0	0	1
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	1
1	0	0	0	0	1	1
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	0	0

AND－OR Circuit

－Transform the Boolean expression into a simplified SOP（積之和）form．

$$
F=\bar{Z}+\bar{X} \bar{Y}
$$

OR－AND Circuit

－Transform the Boolean function into a simplified POS（和之積）form．

$$
\bar{F}=X Z+Y Z
$$

$$
F=\overline{X Z+Y Z}=\overline{X Z} \cdot \overline{Y Z}=(\bar{X}+\bar{Z})(\bar{Y}+\bar{Z})
$$

AOI (AND-OR-NOT) Circuit

- How to design an AOI circuit:
- Derive an SOP form for complement F
- Negate the complement F to derive F
$\bar{F}=X Z+Y Z$
$F=\overline{X Z+Y Z}$

Four-Input NAND and NOR

ALL NAND

An Example of All NAND

Design an ANDOR circuit in the SOP form so as to derive a simplified circuit.

OR

All NOR

OR

AND

An Example of All NOR

Design an ORAND circuit in the POS form so as to derive a simplified circuit.

Lab 4 - Part 1

- Design a combinational circuit to solve the following question:
- There are three switches (A, B, and C), one green LED, and one red LED.
-When the power is on,
- The red LED is off and the green LED is on when none or one of the switches is on.
- The red LED is on and the green LED is off when two or three switches are on.

Lab 4 - Part 2

- Design a combinational circuit to solve the following question:
- There are three switches (A, B, and C) and one LED.
- When the power is on,
- The LED is on when any two or more adjacent switches are on at the same time (i.e., A B on, B C on, A B C on).
- Otherwise, the LED is off.
\square

\square

Chip Logic Circuit

Chip Logic Circuit (Cont.)

74LS00

74LS02

Report 4 －Part 1

- 班級：姓名：學號：
- 使用AND－OR（SOP），OR－AND（POS）或AOI電路解決 Part 1 的問題並完成下圖中電路（並標出所使用的IC編號，及導出邏輯線路的過程）。
－說明所採用的電路及採用的原因。

Report 4 －Part 2

－使用ALL－NAND 或 ALL－NOR電路解決 Part 2 的問題並完成下圖中電路（並標出所使用的IC編號，及導出邏輯線路的過程）。
－說明所採用的電路及採用的原因。

Combinational Logic Circuit： ALL－NAND or ALL－NOR circuit

