
Class 6
VHDL Introduction

Class 6
VHDL Introduction

April 14, 2011 2

Copyright © All Rights Reserved by Yuan-Hao Chang

VHDL ENTITY and ARCHITECTURE
-- majority vote
ENTITY majority_vote IS

PORT(
a, b, c: IN BIT;
y : OUT BIT);

END majority_vote;

ARCHITECTURE maj_vote OF majority_vote IS
BEGIN

y <= (a and b) or (b and c) or (a and c);
END maj_vote;

entity declaration

entity name

port definition

architecture bodyArchitecture
name

VHDL is case-insensitive

April 14, 2011 3

Copyright © All Rights Reserved by Yuan-Hao Chang

AOI
• Solve DCAABY 

-- This is comment
ENTITY logic_circuit IS

PORT(
a, b, c, d: IN BIT;
y: OUT BIT);

END logic_circuit;

ARCHITECTURE cct OF logic_circuit IS
BEGIN

y <= not ((a and b) or ((not a) and (not c)) or d);
END cct;

Mode
Type

Comment

assign

Logic operations:
and, or, not, xor,

nand, nor

April 14, 2011 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Modes and Types
• Modes:

– IN, OUT, INOUT, BUFFER

• Types
– BIT:

- BIT, BIT_VECTOR
– STD_LOGIC:

- STD_LOGIC, STD_LOGIC_VECTOR
– INTEGER

- INTEGER, NATURAL, POSITIVE

BUFFER is the same as OUT, but
allows to be fed back to the CPLD
logic to be reused by another function.

Equal or larger than 0 Equal or larger than 1

One bit Multiple bits

April 14, 2011 5

Copyright © All Rights Reserved by Yuan-Hao Chang

-- 4-bit bitwise and function
-- y = a and b;
ENTITY bitwise_and_vec_4 IS

PORT(
a, b: IN BIT_VECTOR(3 downto 0);
y: OUT BIT_VECTOR(3 downto 0));

END bitwise_and_vec_4;

ARCHITECTURE and_gate OF bitwise_and_vec_4 IS
BEGIN

y <= a and b;
END and_gate;

4-Bit AND Array -- 4-bit bitwise and function
-- y0 = a0 and b0; y1 = a1 and b1; etc.
ENTITY bitwise_and_4 IS

PORT(
a0, a1, a2, a3 : IN BIT;
b0, b1, b2, b3 : IN BIT;
y0, y1, y2, y3 : OUT BIT);

END bitwise_and_4;

ARCHITECTURE and_gate OF bitwise_and_4 IS
BEGIN

y0 <= a0 and b0;
y1 <= a1 and b1;
y2 <= a2 and b2;
y3 <= a3 and b3;

END and_gate;

Ports
defined
individually

Outputs
assigned
individually

Ports defined as vectors

Outputs assigned as a vector

d(3) <= '0'; d(2) <= '1';
d(1) <= '0'; d(0) <= '1';

IN BIT_VECTOR (3 downto 0)
d <= "0101";

IN BIT_VECTOR (0 to 3)
d <= "1010";

April 14, 2011 6

Copyright © All Rights Reserved by Yuan-Hao Chang

WITH … SELECT
ENTITY select_example IS
PORT(
d: IN BIT_VECTOR(3 downto 0);
y: OUT BIT);

END select_example;

ARCHITECTURE cct OF select_example IS
BEGIN
WITH d SELECT
y <= '1' WHEN "0011",

'1' WHEN "0110",
'1' WHEN "1001",
'1' WHEN "1100",
'0' WHEN others;

END cct;

d(3) d(0)

Default is
requiredValue of y

Select y based on d

D3 D2 D1 D0 Y
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

April 14, 2011 7

Copyright © All Rights Reserved by Yuan-Hao Chang

STD_LOGIC and STD_LOGIC_VECTOR

' U ' Uninitialized
' X ' Forcing Unknown
' 0 ' Forcing 0
' 1 ' Forcing 1
' Z ' High Impedance
' W ' Weak Unknown
' L ' Weak 0 (pull-down resistor)
' H ' Weak 1 (pull-up resistor)
' - ' Don't Care

• STD_LOGIC is also called
IEEE Std.1164 Multi-
Valued Logic

• To use STD_LOGIC, we
must include the package:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

April 14, 2011 8

Copyright © All Rights Reserved by Yuan-Hao Chang

STD_LOGIC and STD_LOGIC_VECTOR (Cont.)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY bitwise_and_std_4 IS
PORT(
a, b: IN STD_LOGIC_VECTOR(3 downto 0);
y: OUT STD_LOGIC_VECTOR(3 downto 0));

END bitwise_and_std_4;

ARCHITECTURE and_gate OF bitwise_and_std_4 IS
BEGIN

y <= a and b;
END and_gate;

April 14, 2011 9

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY quad_tri IS
PORT(
a: IN STD_LOGIC_VECTOR(3 downto 0);
g: IN STD_LOGIC;
y: OUT STD_LOGIC_VECTOR(3 downto 0));

END quad_tri;

ARCHITECTURE quad_buff OF quad_tri IS
BEGIN
WITH g SELECT
y <= a WHEN '0',

"ZZZZ“ WHEN others;
END quad_buff;

Tristate

Y1 Y2 Y3 Y4 G
A1 A2 A3 A4 0
‘Z’ ‘Z’ ‘Z’ ‘Z’ 1

April 14, 2011 10

Copyright © All Rights Reserved by Yuan-Hao Chang

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY truth_table IS
PORT(

d: IN INTEGER RANGE 0 to 7;
y: OUT STD_LOGIC);

END truth_table;

ARCHITECTURE a OF truth_table IS
BEGIN

WITH d SELECT
y <= ‘1' WHEN 1,

‘1' WHEN 5,
‘1' WHEN 6,
‘0' WHEN others;

END a;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY truth_table IS
PORT(

d: IN STD_LOGIC_VECTOR(2 downto 0);
y: OUT STD_LOGIC);

END truth_table;

ARCHITECTURE a OF truth_table IS
BEGIN

WITH d SELECT
y <= ‘1' WHEN “001”,

‘1' WHEN “101”,
‘1' WHEN “110”,
‘0' WHEN others;

END a;

INTEGER

D2 D1 D0 Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0integer

STD_LOGIC

April 14, 2011 11

Copyright © All Rights Reserved by Yuan-Hao Chang

SIGNAL
• SIGNAL can bundle inputs or outputs into a single group.

WITH inputs SELECT
outputs <=

"1000" WHEN "000",
"0100" WHEN "001",
"0110" WHEN "010",
"1001" WHEN "011",
"0110" WHEN "100",
"0001" WHEN "101",
"1001" WHEN "110",
"0010" WHEN "111",
"0000" WHEN others;

-- Separate signal
w <= outputs(3);
x <= outputs(2);
y <= outputs(1);
z <= outputs(0);

END sig;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY signal_ex IS
PORT(
a, b, c : IN STD_LOGIC;
w, x, y, z :OUT STD_LOGIC);

END signal_ex;

ARCHITECTURE sig OF signal_ex IS
-- Declaration area
-- Define signals here
SIGNAL inputs : STD_LOGIC_VECTOR(2 downto 0);
SIGNAL outputs: STD_LOGIC_VECTOR(3 downto 0);

BEGIN
-- Concatenate input ports into 3-bit signal
inputs <= a & b & c;

A B C W X Y Z
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 0 1 1 0
0 1 1 1 0 0 1
1 0 0 0 1 1 0
1 0 1 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 1 0

April 14, 2011 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Single-Bit SIGNAL

DCBABAY 
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY signal_ex2 IS
PORT(

a, b, c, d : IN STD_LOGIC;
y : OUT STD_LOGIC);

END signal_ex2;

ARCHITECTURE cct of signal_ex2 IS
-- Declare signal
SIGNAL a_xor_b : STD_LOGIC;

BEGIN
-- Define signal in terms of ports a and b
a_xor_b <= ((not a) and b) or (a and (not b));
-- Combine signal with ports c and d
y <= a_xor_b or ((not c) and d);

END cct;

--Combine single-bit and multiple-bit signals:

d:IN STD_LOGIC_VECTOR(2 downto 0);
enable: IN STD_LOGIC;
…
SIGNAL inputs: STD_LOGIC_VECTOR (3 downto 0);
…
inputs <= enable & d; -- combine

a_xor_b

April 14, 2011 13

Copyright © All Rights Reserved by Yuan-Hao Chang

7-Segment Control
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY SevenSegment Is
PORT (

sw: IN STD_LOGIC_VECTOR(2 downto 0);
pb: IN STD_LOGIC;
hex0: OUT STD_LOGIC_VECTOR(0 to 7));

END Lab6;

ARCHITECTURE a OF SevenSegment IS
BEGIN

WITH pb & sw SELECT
hex0 <= "00000011" WHEN "0000",

"10011111" WHEN "0001",
"00100101" WHEN "0010",
"00001101" WHEN "0011",
"10011001" WHEN "0100",
"01001001" WHEN "0101",
"01000001" WHEN "0110",
"00011111" WHEN "0111",
"11111111" WHEN others;

END a;

pb sw(2)
sw(1)

sw(0)

April 14, 2011 14

Copyright © All Rights Reserved by Yuan-Hao Chang

VHDL Design with Quartus II
• Example: When the BUTTON0 is pressed,

– LEDG0 shows the ANDed result of SW0 and SW1.
– LEDG1 shows the ORed result of SW0 and SW1.

• Step 1: Start a new project
– Select File  New Project Wizard

- Working directory: Class6
- Project name: Class6
- Top-level design entry: Class6

– Family & Device Settings
- Device family: Cyclone III
- Available device: EP3C16F484C6

– EDA Tool Settings
- Leave it alone at the moment

April 14, 2011 15

Copyright © All Rights Reserved by Yuan-Hao Chang

VHDL Design with Quartus II (Cont.)
• Step 2: Design entry using the text editor

– Select File  New  VHDL File (.vhd)
– Save as “Class6.vhd” (check “Add file to current project”)
– Edit “Class6.vhd”

– Select “Start Compilation” to compile the circuit

ENTITY Class6 IS
PORT(

A: IN BIT_VECTOR(1 downto 0);
C: IN BIT;
X: OUT BIT;
Y: OUT BIT);

END Class6;

ARCHITECTURE and_or OF Class6 IS
BEGIN

X <= A(1) and A(0) and (not C);
Y <= (A(1) or A(0)) and (not C);

END and_or;

April 14, 2011 16

Copyright © All Rights Reserved by Yuan-Hao Chang

VHDL Design with Quartus II (Cont.)
• Step 3: Simulation with Vector Waveform File (.vwf)

– Select File  New  Vector Waveform File (.vwf)
– Save as “Class6.vwf” (check “Add file to current project”)
– Select “Edit  Insert  Insert Node or Bus  Node Finder” to add

input/output pins into the simulation.
– Select “Edit  End Time” and select “Edit  Grid Size” to config the

simulation period and count period. (e.g., 4us, grid size: 50ns)
- A(0): count value, binary, count every 50ns, multiplied by 1.
- A(1): count value, binary, count every 50ns, start time: 20ns, multiplied by 2.
- C: forcing high or forcing low.

– Select “Start Simulation” to simulate the circuit.
– Functional simulation

- Select “Assignments  Settings 

Simulator Settings” to set
“Simulation mode” as Functional.

- Select “Processing  Generate
Functional Simulation Netlist”

- Select “Start Simulation” to simulate the circuit.

April 14, 2011 17

Copyright © All Rights Reserved by Yuan-Hao Chang

VHDL Design with Quartus II (Cont.)
• Step 3: Simulation with Vector Waveform File (.vwf)

– Select “Assignments  Device” to configure the board settings.
- Set Family as Cyclone III and Device as EP316F484C6
- Select “Device and Pin Options”

· Select and set “Unsigned Pings” as “As input tri-stated” and
· Select “Configuration” to set configuration scheme as “Active Serial” and configuration device as

“EPCS4”

– Select “Assignments  Pins” to activate the “Pin Planner”.
– Select “Start Compilation” to compile the circuit with circuit assignment.
– Select “Tools  Programmer” to download the .soft file to the FPGA board for

testing.

April 14, 2011 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Lab 6
• Part 1 - Simulation

– Use VHDL to design a NAND gate
with one output pin f and two input
pins a and b. Then use Vector
Waveform File (.vwf) to simulate the results.

- A: count value, binary, simulation period=4us, advanced by 1 every 100ns
- B: count value, binary, simulation period=4us, advanced by 1 every 200ns

• Part 2: When the BUTTON0 is pressed,
– LEDG0 shows the ANDed result of SW0 and SW1.
– LEDG1 shows the ORed result of SW0 and SW1.

• Part 3 - Transferring a Design to a Target FPGA
– Use three slides (SW2-SW0) as the binary input value. Solve the following

problems with VHDL.
- The corresponding LED (LEDG0-7) is on when selected by the binary input. Other

LEDs are off. E.g., 100 (SW2-SW0) lights LEDG4.
- The first 7-segment LED (HEX0) shows the decimal value of the binary input when

the first pushbutton (BUTTON0) is pressed. Otherwise, HEX0 is off. E.g., When
BUTTON0 is pressed and the binary input is 101 (SW2-SW0), HEX0 shows 5.

April 14, 2011 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Pushbutton and Slide Switches

3 Pushbutton switches:
Not pressed  Logic High
Pressed  Logic Low

10 Slide switches (Sliders):
Up  Logic High
Down  Logic

Pin
number

Pin number

April 14, 2011 20

Copyright © All Rights Reserved by Yuan-Hao Chang

LEDs 10 LEDs
Opuput high  LED on
Output low  LED offPin number

April 14, 2011 21

Copyright © All Rights Reserved by Yuan-Hao Chang

7-Segment Displays Pin number
(active-low)

	投影片編號 1
	VHDL ENTITY and ARCHITECTURE
	AOI
	Modes and Types
	4-Bit AND Array
	WITH … SELECT
	STD_LOGIC and STD_LOGIC_VECTOR
	STD_LOGIC and STD_LOGIC_VECTOR (Cont.)
	Tristate
	INTEGER
	SIGNAL
	Single-Bit SIGNAL
	7-Segment Control
	VHDL Design with Quartus II
	VHDL Design with Quartus II (Cont.)
	VHDL Design with Quartus II (Cont.)
	VHDL Design with Quartus II (Cont.)
	Lab 6
	Pushbutton and Slide Switches
	LEDs
	7-Segment Displays

