Class 9
 Sequential Logic: Latch

\square

SR NAND Latch

$\mathbf{n S}$	$\mathbf{n R}$	$\mathbf{Q}_{\mathbf{t + 1}}$	$\mathbf{n Q}_{\mathbf{t + 1}}$	Function
0	0	1	1	Forbidden
0	1	1	0	Set
1	0	0	1	Reset
1	1	Q_{t}	nQ_{t}	No Change
SR NAND Latch Function Table				

May 13, 2011
\square

Reset-to-Set Transition

a) Stable in the RESET condition. Set and Reset inputs inactive.

b) Set input activates.

c) Change propagates through upper gate. (Either input LOW makes output HIGH.)

d) HIGH transfers across feedback line to lower gate, removing active input condition.

e) Change propagates through lower gate. (Both inputs HIGH, therefore output LOW.)

f) Feedback transfers LOW to upper gate, g) S input goes back to inactive state. SET state completing change to new state.

Set-to-Reset Transition

a) Stable in the SET condition. Set and Reset inputs inactive.

b) Reset input activates.

May 13, 2011

$\bar{S}=1$

c) Change propagates through lower gate. (Either input LOW makes output HIGH.)
 gate, removing active input condition.

May 13, 2011

Transition from Forbidden State

$\mathbf{n S}$	$\mathbf{n R}$	$\mathbf{Q}_{\mathrm{t}+1}$	$\mathbf{n Q _ { \mathrm { t } + 1 }}$	Function
0	0	1	1	Forbidden
0	1	1	0	Set
1	0	0	1	Reset
1	1	Q_{t}	$n \mathrm{Q}_{\mathrm{t}}$	No Change

a) Both Set and Reset inputs active. Either input LOW makes output HIGH. Therefore, both outputs HIGH.

d) New output levels cross circuit via feedback lines.

b) Set and Reset inputs deactivate simultaneously.

d) New output levels cross circuit via feedback lines.
c) Change propagate through gates simultaneously.

f) Output logic levels cross circuit via feedback lines. Cycle repeats and circuit oscillates.

Switch Bouncing

a. Pushbutton
c. Ideal waveform

nS	nR	$\mathrm{Q}_{\text {t+1 }}$	$\mathrm{nQ}_{\text {t+1 }}$	Function
0	0	1	1	Forbidden
0	1	1	0	Set
1	0	0	1	Reset
1	1	Q_{t}	$n Q_{t}$	No Change

\square

Switch Debouncing

a. Switch debouncer

May 13, 2011

Gated SR NAND Latch

EN	\mathbf{S}	\mathbf{R}	$\mathbf{Q}_{\mathbf{t + 1}}$	$\mathbf{n Q}_{\mathbf{t + 1}}$	Function
1	0	0	Q_{t}	nQ_{t}	No Change
1	0	1	0	1	Reset
1	1	0	1	0	Set
1	1	1	1	1	Forbidden
0	X	X	Q_{t}	nQ_{t}	Inhibited

Gated NAND Latch Function Table

Gated D Latch (Transparent Latch)

EN	\mathbf{D}	$\mathbf{Q}_{\mathbf{t + 1}}$	$\mathbf{n Q}_{\mathbf{t + 1}}$	Function	Comment
1	1	1	0	Set	
1	0	0	1	Reset	Transparent
0	X	Q_{t}	nQ_{t}	No Change	Store
Gated D Latch Function Table					

nS	nR	$\mathrm{Q}_{\mathrm{t}+1}$	$n Q_{t+1}$	Function
0	0	1	1	Forbidden
0	1	1	0	Set
1	0	0	1	Reset
1	1	Q_{t}	$n Q_{\text {t }}$	No Change

a. No change state

b. Set condition

EN	\mathbf{D}	$\mathbf{Q}_{\mathbf{t}+1}$	$\mathbf{n} \mathbf{Q}_{\mathrm{t}+1}$	Function	Comment
1	1	1	0	Set	
1	0	0	1	Reset	Transparent
0	X	Q_{t}	$n Q_{t}$	No Change	Store
Gated D Latch Truth Table					

\square

SR NAND Latch with VHDL

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY nand_latch IS
    PORT
    (
        nS:IN STD_LOGIC;
        nR: IN STD_LOGIC;
        Q : OUT STD_LOGIC;
        nQ : OUT STD_LOGIC
    );
END nand_latch;
ARCHITECTURE bdf_type OF nand_latch IS
    SIGNAL wireO: STD_LOGIC;
    SIGNAL wire1: STD_LOGIC;
BEGIN
```

```
Q <= wire1;
```

Q <= wire1;
nQ <= wire0;
nQ <= wire0;
wire1 <= NOT(nS AND wire0);
wire1 <= NOT(nS AND wire0);
wire0 <= NOT(wire1 AND nR);
wire0 <= NOT(wire1 AND nR);
END bdf_type;

```



\section*{Edge-Trigger Event}
```

ENTITY counter IS
PORT
(
Q: IN STD_LOGIC; -- reset counter
);
END counter;

```
ARCHITECTURE a OF counter IS
    SIGNAL cnt: INTEGER RANGE 0 to 10;
BEGIN
    PROCESS(all)
    BEGIN
    Sense everything
    port and signal
END PROCESS;
END a;

Integer can be used in addition, division, and comparison.
Q'EVENT and Q='0')

Q'EVENT and Q='0')


\section*{Q'EVENT and Q='1') \\ Q'EVENT and Q='1')}

Event triggered at the rising edge of the Q signal

\section*{Gated SR NAND Latch for Debouncing}
```

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY counter IS
PORT
(
S, R, Enable: IN STD_LOGIC ; -- Latch's in input
OnLed: OUT STD_LOGIC
);
END counter;
ARCHITECTURE a OF counter IS
SIGNAL Q,nQ : STD_LOGIC; -- debounced control signal
BEGIN
-- Gated SR NAND latch to debounce pushbotton gitter
Q <= ((not S) NAND Enable) NAND nQ;
nQ <= ((not R) NAND Enable) NAND Q;
OnLed <= Q ;
END a;

```


\section*{Two-Digit Counter}
```

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY counter IS
PORT(S : IN STD_LOGIC; -- Latch's in input);
END counter;
ARCHITECTURE a OF counter IS
-- count the number of the button pressed
SIGNAL digit0, digit1: INTEGER RANGE 0 to 16;
BEGIN
pro0: PROCESS(S)
BEGIN
IF (S'EVENT and S='1') THEN -- Handle counter
-- two-digit counter
digit0 <= digit0 + 1; -- advance the digit0 by one

```

Executed at the same time
```

 digit1 <= digit1 + 1;
 digit0 <= 0;
 IF(digit1>=9) THEN -- reset the digit1 to 0 (overflow)
 digit1 <= 0;
 END IF;
 END IF;
 END IF;
 END PROCESS pro0;
 END a;

```


\section*{Lab 9}
- Note: This lab does not allow to use any existing latch modules.
- Part 1: Gated SR NAND latch
- Design a gated SR NAND latch.
- Create a vector waveform file (.vwf) to evaluate the output of the latch.
- S: count value, binary, simulation period=4us, advanced by 1 every 100ns, start from 50ns
- R: count value, binary, simulation period=4us, advanced by 1 every 200ns, start from Ons
- EN: count value, binary, simulation period 4us, advanced by 1 every 2us, start from Ons
- Part 2: Gated SR NAND latch application: Design the on/off pushbuttons with a counter
- I/O Functions:
- PushButton2 (S) is to turn on the motor (i.e., LEDO: Q).
- PushButton1 (R) is to turn off motor (i.e., LEDO: Q).
- PushButton0 is to reset the 2-digit BCD (or decimal) counter to 00.
- Hex1 and Hex0 shows the value of the 2-digit BCD counter.
- SWO is to enable/disable the pushbuttons.

When SWO is Logic-High, enable the pushbuttons. Otherwise, the pushbuttons are disabled.
- The 2-digit BCD counter is advanced by one whenever the motor is turned ON from OFF (rising-edge trigger).

\section*{Pushbutton and Slide Switches}


3 Pushbutton switches:
Not pressed \(\rightarrow\) Logic High Pressed \(\rightarrow\) Logic Low
\begin{tabular}{l|c}
\hline Signal Name & FPGA Pin No. \\
\hline BUTTON [0] & PIN_H2 \\
\hline BUTTON [1] & PIN_G3 \\
\hline BUTTON [2] & PIN_F1 \\
\hline
\end{tabular}


10 Slide switches (Sliders):
Up \(\rightarrow\) Logic High
Down \(\rightarrow\) Logic
\begin{tabular}{l|ll|l} 
SW[0] & PIN_J6 & SW[5] & PIN_J7 \\
\hline SW[1] & PIN_H5 & SW[6] & PIN_H7 \\
\hline SW[2] & PIN_H6 & SW[7] & PIN_E3 \\
\hline SW[3] & PIN_G4 & SW[8] & PIN_E4 \\
\hline SW[4] & PIN_G5 & SW[9] & PIN_D2 \\
\hline
\end{tabular}

\section*{LEDs}

\section*{Pin number}

\section*{Cyclone III}


10 LEDs
Opuput high \(\rightarrow\) LED on Output low \(\rightarrow\) LED off
\begin{tabular}{c|c}
\hline Signal Name & FPGA Pin No. \\
\hline LEDG[0] & PIN_J1 \\
\hline LEDG[1] & PIN_J2 \\
\hline LEDG[2] & PIN_J3 \\
\hline LEDG[3] & PIN_H1 \\
\hline LEDG[4] & PIN_F2 \\
\hline LEDG[5] & PIN_E1 \\
\hline LEDG[6] & PIN_C1 \\
\hline LEDG[7] & PIN_C2 \\
\hline LEDG[8] & PIN_B2 \\
\hline LEDG[9] & PIN_B1 \\
\hline Copyright © All Rights Reserved by Yuan-Hao Chang
\end{tabular}

\section*{7-Segment Displays}

\section*{Pin number}
(active-low)

\begin{tabular}{c|c}
\hline Signal Name & FPGA Pin No. \\
\hline HEX0_D[0] & PIN_E11 \\
\hline HEX0_D[1] & PIN_F11 \\
\hline HEX0_D[2] & PIN_H12 \\
\hline HEX0_D[3] & PIN_H13 \\
\hline HEX0_D[4] & PIN_G12 \\
\hline HEX0_D[5] & PIN_F12 \\
\hline HEX0_D[6] & PIN_F13 \\
\hline HEX0_DP & PIN_D13
\end{tabular}
\begin{tabular}{l|l}
\hline HEX1_D[0] & PIN_A13 \\
\hline HEX1_D[1] & PIN_B13 \\
\hline HEX1_D[2] & PIN_C13 \\
\hline HEX1_D[3] & PIN_A14 \\
\hline HEX1_D[4] & PIN_B14 \\
\hline HEX1_D[5] & PIN_E14 \\
\hline HEX1_D[6] & PIN_A15 \\
\hline HEX1_DP & PIN_B15
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline HEX2_D[0] & PIN_D15 & HEX3_D[0] & PIN_B18 \\
\hline HEX2_D[1] & PIN_A16 & HEX3_D[1] & PIN_F15 \\
\hline HEX2_D[2] & PIN_B16 & HEX3_D[2] & PIN_A19 \\
\hline HEX2_D[3] & PIN_E15 & HEX3_D[3] & PIN_B19 \\
\hline HEX2_D[4] & PIN_A17 & HEX3_D[4] & PIN_C19 \\
\hline HEX2_D[5] & PIN_B17 & HEX3_D[5] & PIN_D19 \\
\hline HEX2_D[6] & PIN_F14 & HEX3_D[6] & PIN_G15 \\
\hline HEX2_DP & PIN_A18 & HEX3_DP & PIN_G16 \\
\hline
\end{tabular}```

