

Class 12 State Machine

State Machine

\qquad

State Machine (Cont.)

```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY sngl_pls IS
    PORT(
        clk, sync: IN STD_LOGIC;
        pulse: OUT STD_LOGIC);
END sngl_pls;
```

ARCHITECTURE pulser OF sngl_pls IS TYPE PULSE_STATE IS (seek, find); SIGNAL status: PULSE_STATE;

BEGIN

PROCESS (clk)
BEGIN

Type enumeration
IF (clk'EVENT and clk = '1') THEN
CASE status IS
WHEN seek =>
IF (sync = '1') THEN
status <= seek;
pulse <= '0';
ELSE
status <= find;
pulse <= '1';
END IF;
WHEN find =>
IF (sync = '1') THEN
status <= seek;
pulse <= '0';
ELSE
status <= find;
pulse<= '0';
END IF;
END CASE;
END IF;
END PROCESS;
END pulser;

IF (clk'EVENT and clk = '1') THEN CASE status IS
WHEN seek =>
IF (sync = '1') THEN
status <= seek;
pulse <= '0';
ELSE
status <= find;
pulse <= '1';
END IF;
WHEN find =>
IF (sync = '1') THEN
status <= seek
pulse <= '0';
LSE
pulse<= '0';
END IF;
END CASE;
END IF;
END PROCESS;
END pulser;

Push Button Debouncer


```
-- Display the counter
CASE cnt IS
    WHEN 0 => Hex0 <= x"03"; -- 0
    WHEN 1 => Hex0 <= x"9F"; -- 1
    WHEN 2 => Hex0 <= x"25"; -- 2
    WHEN 3 => Hex0 <= x"OD"; -- 3
    WHEN 4 => Hex0 <= x"99"; -- 4
    WHEN 5 => Hex0 <= x"49"; -- 5
    WHEN 6 => Hex0 <= x"C1"; -- 6
    WHEN 7 => Hex0 <= x"1F"; -- 7
    WHEN 8 => Hex0 <= x"01"; -- 8
    WHEN 9 => Hex0 <= x"19"; -- 9
    WHEN others => Hex0 <= x"FF"; -- blank
    END CASE;
END PROCESS;
END a;
```


Traffic Light

Stay in s0 or less than 4 seconds.

Lab 12

- Design a counter with a push button debouncer
- Implement a two-digit counter that counts from 0 to 99.
- Hex1 shows the digit of 10 s , and hex0 shows the digit of 1 s .
- When PushButton2 is pressed the 2-digit counter is advanced by 1.
- Design a traffic light
- Red light time is 5 s , green light time is 4 s , and yellow light time is 1 s .
- Hex3(/Hex2) is on to show the remaining time of the red light of the north-south (/west-east) direction; otherwise, Hex3 (/Hex2) is off.
- Initial state: s0

Stay in s0 or less

7-Segment Displays \& DEO - External Clock

3 Pushbutton switches:
Not pressed \rightarrow Logic High Pressed \rightarrow Logic Low

Signal Name	FPGA Pin No.
BUTTON [0]	PIN_H2
BUTTON [1]	PIN_G3
BUTTON [2]	PIN_F1

10 Slide switches (Sliders):
Up \rightarrow Logic High
Down \rightarrow Logic

SW[0]	PIN_J6	SW[5]	PIN_J7
SW[1]	PIN_H5	SW[6]	PIN_H7
SW[2]	PIN_H6	SW[7]	PIN_E3
SW[3]	PIN_G4	SW[8]	PIN_E4
SW[4]	PIN_G5	SW[9]	PIN_D2

LEDs

Pin number

Cyclone PII

10 LEDs
Opuput high \rightarrow LED on Output low \rightarrow LED off

Signal Name	FPGA Pin No.
LEDG[0]	PIN_J1
LEDG[1]	PIN_J2
LEDG[2]	PIN_J3
LEDG[3]	PIN_H1
LEDG[4]	PIN_F2
LEDG[5]	PIN_E1
LEDG[6]	PIN_C1
LEDG[7]	PIN_C2
LEDG[8]	PIN_B2
LEDG[9]	PIN_B1
Copyright © All Rights Reserved by Yuan-Hao Chang	

