
Class 13
Memory
Class 13
Memory

June 2, 2011 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Memory
• A memory is a digital device or circuit

that can store one or more bits of data.

• The simplest memory device is a D-type
latch or a D flip-flop.

D-type latch

data_in:
8-bit data

input

Output
enable
(Read)

Input gate enable
(Write)

June 2, 2011 3

Copyright © All Rights Reserved by Yuan-Hao Chang

8-Bit Latch

Input gate enable
(Write)

Output
enable
(Read)

June 2, 2011 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Address and Data Lines

8K x 8 Memory
Address: 213 = 8192 WORD
Data: 8 bits (= 1 WORD)

addr(0) = “10110101”, when A12 …A0 = 000000000000 = 0x000
addr(1) = “00011011”, when A12 …A0 = 000000000001 = 0x001

June 2, 2011 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Address, Data, and Control Signals

Chip enable
Low: Write
High: Read

Address lines
input

output

Program
enable

Output
enable

Chip
enable

June 2, 2011 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Memory Control Signals

Output
enable

Select the read or
write function

= R/Wn
Low: write enable
High: read enable

Chip
enable

June 2, 2011 7

Copyright © All Rights Reserved by Yuan-Hao Chang

64x4bit Memory - Behavioral Design
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;

ENTITY Memory IS
PORT(

SlideSwitch: IN STD_LOGIC_VECTOR(9 downto 0);
PushButton: IN STD_LOGIC_VECTOR(2 downto 0);
Output: OUT STD_LOGIC_VECTOR(7 downto 0));

END Memory;

ARCHITECTURE memory OF Memory IS
CONSTANT MAX_ADDR: INTEGER := 64;
CONSTANT BUS_WIDTH: INTEGER := 4;
SIGNAL addr: STD_LOGIC_VECTOR(5 downto 0);
SIGNAL data_in: STD_LOGIC_VECTOR(BUS_WIDTH-1 downto 0);
SIGNAL CEn, Wn, OEn: STD_LOGIC;
TYPE MEMORY_ARRAY IS array(0 to MAX_ADDR-1) OF

STD_LOGIC_VECTOR(BUS_WIDTH-1 downto 0);
SIGNAL sram: MEMORY_ARRAY;

BEGIN
-- port mapping
addr <= SlideSwitch(9 downto 4);
data_in <= SlideSwitch(3 downto 0);
CEn <= PushButton(0);
Wn <= PushButton(1);
OEn <= PushButton(2);

PROCESS(ALL)
BEGIN

-- Memory
IF(CEn = '0') THEN -- chip enabled

IF(Wn = '0') THEN – Write enable
sram(conv_integer(addr)) <= data_in;
Output <= (others =>‘1');

ELSIF(OEn='0') THEN – Read enable and output enable
Output <= sram(conv_integer(addr));

ELSE
Output <= (others =>‘1');

END IF;
ELSE

Output <= (others =>‘1');
END IF;

END PROCESS;
END memory;

Declare an
4x8bit
SRAM

Write input data
to the selected

address
During the write
operation, output

is disabled

Read data from
the selected

address to the
output port

Convert std_logic_vector to
integer

(need to include
USE ieee.std_logic_unsigned.all;

USE ieee.std_logic_arith.all;)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
…
SIGNAL a: STD_LOGIC_VECTOR(7 downto 0);
SIGNAL b: INTEGER RANGE 0 to 255;
a <= conv_std_logic_vector(b, 8);
b <= conv_integer(a);

Convert b into a 8-
bit std_logic_vector

Convert a into an
integer.

June 2, 2011 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Counter Array with Fast Increments
ARCHITECTURE memory OF Memory IS

CONSTANT TicksPerMilliSecond: INTEGER := 50000;
CONSTANT DebounceTime: INTEGER := TicksPerMilliSecond * 5;
CONSTANT FastCountDelay: INTEGER := TicksPerMilliSecond * 1000;
CONSTANT FastCountInterval: INTEGER := TicksPerMilliSecond * 100;
CONSTANT MAX_COUNTER: INTEGER := 4;
TYPE COUNTER_ARRAY IS array(0 to MAX_COUNTER-1) OF INTEGER;
SIGNAL PressedTime: NATURAL := 0;
SIGNAL cnt: COUNTER_ARRAY;
SIGNAL cnt_addr: STD_LOGIC_VECTOR(3 downto 0);

BEGIN
PROCESS(ALL)
BEGIN

-- counters
IF(clk'EVENT and clk = '1') THEN

IF(CNTn='0') THEN
IF(PressedTime < DebounceTime) THEN

PressedTime <= PressedTime + 1; -- Wait for debounce time
ELSIF(PressedTime = DebounceTime) THEN

PressedTime <= PressedTime + 1; -- Debounce time is reached
cnt(conv_integer(cnt_addr)) <= cnt(conv_integer(cnt_addr)) + 1;

ELSE -- fast and accumulated counting
PressedTime <= PressedTime + 1; -- Keep accumulating the pressed time
IF(PressedTime = FastCountDelay+FastCountInterval) THEN -- Reach the fast count point

cnt(conv_integer(cnt_addr)) <=cnt(conv_integer(cnt_addr)) + 1;
PressedTime <= FastCountDelay; -- Reset the pressed time to wait for the next delay

END IF;
END IF;

ELSE
PressedTime <= 0;

END IF;
-- reset counter
IF(cnt(conv_integer(cnt_addr)) >9) THEN

cnt(conv_integer(cnt_addr)) <= 0;
END IF;

END IF;
END PROCESS;

END memory;

Declare an array
with 16 counters

Define a data
structure with 16

integers

Wait until the fast
increment time is

reached

Wait until the
debouncing time

is reached

June 2, 2011 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Lab 13
• Design a 4x8bit memory.

– addr[1..0] is mapped to SW[9..8] (SlideSwitch);
– data_in[7..0] is mapped to SW[7..0];
– DQ[7..0] is converted into two-hexadecimal digits shown in Hex[1..0]

(7-segments).
– En (chip enable) is mapped to PushButton[0]
– R/Wn (read/write selection) is mapped to PushButton[1];
– OEn (or Gn: output enable) is mapped to PushButton[2];

• Design an array of 16 counters with fast increment support
– Each counter is a two-digit counter that counts from 0 to 99.
– Each counter is selected by the decoded value of SW[3..0].
– When a counter is selected, its content is shown in Hex[3..2].
– When PushButton[1] is pushed, the selected counter is advanced by

one.
– If PushButton[1] is pushed for more than one second, the selected

counter is advanced by one every 100ms.

June 2, 2011 10

Copyright © All Rights Reserved by Yuan-Hao Chang

7-Segment Displays &
DE0 – External Clock

Pin number
(active-low)

June 2, 2011 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Pushbutton and Slide Switches

3 Pushbutton switches:
Not pressed Logic High
Pressed Logic Low

10 Slide switches (Sliders):
Up Logic High
Down Logic

Pin
number

Pin number

June 2, 2011 12

Copyright © All Rights Reserved by Yuan-Hao Chang

LEDs 10 LEDs
Opuput high LED on
Output low LED offPin number

	投影片編號 1
	Memory
	8-Bit Latch
	Address and Data Lines
	Address, Data, and Control Signals
	Memory Control Signals
	64x4bit Memory - Behavioral Design
	Counter Array with Fast Increments
	Lab 13
	7-Segment Displays &�DE0 – External Clock
	Pushbutton and Slide Switches
	LEDs

