
Part II
05. The Singleton Pattern:

One of a Kind Objects

The Little Singleton

May 21, 2013 2

The Little Singleton (Cont.)

May 21, 2013 3

The Little Singleton (Cont.)

May 21, 2013 4

Dissecting the Classic Singleton

May 21, 2013 5

Dissecting the Classic Singleton (Cont.)

May 21, 2013 6

The Chocolate Factory

May 21, 2013 7

Everyone knows that all
modern chocolate
factories have computer
controlled chocolate
boilers. The job of the
boiler is to take in
chocolate and milk,
bring them to a boil, and
then pass them on to
the next phase of
making chocolate bars.
Here’s the controller
class for Choc-O-Holic,
Inc.’s industrial strength
Chocolate Boiler. Check
out the code; you’ll
notice they’ve tried to be
very careful to ensure
that bad things don’t
happen, like draining
500 gallons of unboiled
mixture, or filling the
boiler when it’s already
full, or boiling an empty
boiler!

Turning It into Singleton

• How might things go wrong if more than one instance of ChocolateBoiler is created in an application?

May 21, 2013 8

Singleton Pattern Defined

• What’s really going on here?
– We’re taking a class and letting it manage a

single instance of itself. We’re also
preventing any other class from creating a
new instance on its own. To get an instance,
you’ve got to go through the class itself.

• We’re also providing a global access point
to the instance:

– Whenever you need an instance, just query
the class and it will hand you back the single
instance. As you’ve seen, we can implement
this so that the Singleton is created in a lazy
manner, which is especially important for
resource intensive objects.

May 21, 2013 9

Singleton:
1. One instance
2. Providing global access

Singleton Pattern Defined (Cont.)

May 21, 2013 10

Problems in Multi-Threading

May 21, 2013 11

Dealing with Multithreading

May 21, 2013 12

Good point, and it’s actually a little worse than you make out: the only time
synchronization is relevant is the first time through this method. In other words,
once we’ve set the uniqueInstance variable to an instance of Singleton, we
have no further need to synchronize this method. After the first time through,
synchronization is totally unneeded overhead!

Improving Multithreading

May 21, 2013 13

Improving Multithreading (Cont.)

May 21, 2013 14

Describing the Applicability

May 21, 2013 15

Issues about Singleton
• Can’t I just create a class in which all methods and

variables are defined as static?
– Yes, if your class is self-contained and doesn’t depend on complex

initialization. However, because of the way static initializations are
handled in Java, this can get very messy

• I wanted to subclass my Singleton code, but I ran into
problems. Is it okay to subclass a Singleton?

– One problem with subclassing Singleton is that the constructor is
private. You can’t extend a class with a private constructor. So, the
first thing you’ll have to do is change your constructor so that it’s
public or protected. But then, it’s not really a Singleton anymore,
because other classes can instantiate it.

May 21, 2013 16

Conclusion

May 21, 2013 17

	投影片編號 1
	The Little Singleton�
	The Little Singleton (Cont.)�
	The Little Singleton (Cont.)�
	Dissecting the Classic Singleton�
	Dissecting the Classic Singleton (Cont.)
	The Chocolate Factory�
	Turning It into Singleton�
	Singleton Pattern Defined�
	Singleton Pattern Defined (Cont.)�
	Problems in Multi-Threading�
	Dealing with Multithreading�
	Improving Multithreading�
	Improving Multithreading (Cont.)�
	Describing the Applicability�
	Issues about Singleton
	Conclusion

