Part Il
03. Requirement Change:
The Constant in Software
Development

Requirement Change

* What might change?
— Environment changes
— Market changes
— Program evolvements

* Requirements always change.

—If we've got good use cases, we can usually change our
software quickly to adjust to those new requirements.

‘ Can you add some hardware
~ to recognize Fido’s bark

-~ when he wants go to out and
- come back in and

- automatically open the door?
- That way we don’t need to

- hear him or find that remote

{1) Fei0 barks to be bt out

(=1

or Gna presses
the bucn on the
remods Conirod

—
@Tm bark recognizer
@T:]:F:::gmr 1) The dog door opsna
(A senasa requsstioms 5 Fitto goss outside
Mask of the diagram door bo opan.
shayed the same.- we
::ﬁ:ﬁ&:;!—t}-m e Jusk Ll om Ehe stherrate path, we &n

whE SI‘?—'

{ &) The Sopr shuts autcmascally

Mmhﬂhmthﬂm

{7 Fudo

D& back inzide

A

7 Tie alo need a teuple of
o | abternate sheps heve, too

@Tmmrﬂrmugrimr e Figo
“hears™ a bark jagain). -
(oo R
recognizer s6nds a i
Z‘ request io the door :

3 | Todd or &ina hears

(&1) The door shuts automatcally

o

—

(8.5) The doqg door opens (3gain)

o bariks fo be ket back inzide

Fidhe bariking jagain)

—

* Todd o Gina pressss
e DsEom o the
remode Coninod

April 29, 2014

Todd and Gina's Pog Door, version 2.1
What the poores ¢
1. Fido barks to be let out. Does this make
. 2. Todd or Gina hears Fido barking. §sense fo yOU? !
a‘,::cow > 21.Thebark recognizer “hears” a bark. -— ‘How would you !
iﬂrnf& 3. Todd or Gina presses the button on the remote control. improve it? !
boin 4o > 81 Thebark recognizer sends arequest fothedoorto <=f =~ 4o L proveits :
and #3. open. steps, but they veally are
4. The dog door opens. providing 3 tompletely
. . diffevent path hrough
5. Fido goes outside. b ase.
6. Fido does his business.
6.1. The door shuts automatically. These sbsteps
6.2. Fido barks to be let back inside. ovovide an additiond
. . . . set of steps that tan
- ven the 6.2. Todd or Gina hears Fido barking (again). : Eollowed
2 + Collowed.-

ltecnate ——= 6.31. The bark recognizer “hears” a bark (again). bt these subskeps

‘t"‘”\‘au . 64. Todd or Gina presses the button on the remote ave veally a diffevent
:;I:rha‘{:c control. 1 — way to work through
steps. N 641, The bark recognizer sends a request to the door the use case.
to open.
6.9. The dog door opens (again).
7. Fido goes back inside.
8. The door shuts automatically.

April 29, 2014

Improved New Use Case izew

h ot tup ;
¢ steps o “"-"i%fjg o
over here t the Hgl:‘; path

Todd and Gina's Pog Poor; version 2.2
Now we've What the Door Does
added a label
jccohcﬁ"s;‘ that Main Path Alternate Paths
S £ps on
the lebt G 1. Fido barks to be let out.
part of the 2. Todd or Gina hears Fido barking. 2.1. The bark recognizer "hears” a
main path bark.
3. Todd or Gina presses the button on the 31. The bark recognizer sends a
remote control. \ (request to the door to open.
When there's 4. The dog door opens. .« 3 litle clearer: we can
only a single step, . . This is ter 2, and
vl shacs vee | —s= 5 Fido goes outside. wse Step ?—»QBRS stz Al
that step when ~> 6. Fido does his business. then Step 3, ORStep >
o 63::::‘:?“ 6.1. The door shuts avtomatically.
. 6.2. Fido barks to be let back inside.
T::S: z:al...?you 6.2. Todd or Gina hears Fido barking (again). 6.31. The bark recognizer “hears”
i.ay use Thew, but a bark (again).
ou goz ’i :a“f 64. Todd or Gina presses the button on the 64.1. The bark recognizer sends a
. bw c\, ¥t . L
il on the lebt, rewmote control . “\ /, request to the door to open
hey don't 6.%. The dog door opens (again).
because they These steps on the vi hi
r_c_\'ﬂiieft‘?ih"“ 7 Fido goes back inside. xeplace Steps 63 andsb 4-63"
mam path. Ko
the main ¥ 8. The door shuts automatically. ou tan only take one step 4,
“jz;k t:ro"ﬂh the use tase:
either the S“ECP 'th l
/ OR the step on Z:e ri;h:ft

No’maH:er how You work '
through Lhis use ase, You I\
always end wp at Step 8 on
the main path.

April 29, 2014

iThe main path Todd and Gina’s Dog Poor, version 2.3
iShOUld be what We What the Door Does
Ewant to happen . MainPath Alternate Paths

: . 1. Fido barks to be let out.
'most of the time. oA o Ehor

/ 3. The bark recognizer sends a request
to the door to open.
— 4. The dog door opens.

Now ‘u\ S‘t S . .
that mfolu:ihe 5. Fido goes outside.
bavk recognizer 6. Fido does his business.
are on the main)
path, imstead of an 6.1. The door shuts automatically.
a"w“aJ“ path. 6.2. Fido barks to be let back inside.

< 6.2. The bark recognizer “hears” a
bark (again).
64. The bark recognizer sends a
request to the door to open.
6.5. The dog door opens (again).

7. Fido goes back inside.
8. The door shuts automatically.

2. The bark recognizer “hears” a bark.

2.1. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button
oh the remote control.

1

Todd and Qina won't use the
remote most of the ‘[:imc, s0
the steps velated to the remote
are better as an alternate path.

Y

6.2.1. Todd or Gina hears Fido
barking (again).

64.1. Todd or Gina presses the
button on the remote control.

Revisiting Alternative Path

* Alternate paths can
— 1. Be additional steps added to the main path, or

— 2. Provide steps that allow to get to the goal in a totally
different paths through parts of a use case.

o

Scenario

Eath path
through
+his use
tase s{‘.a\‘JCS

=

" Following the

- arrows gives us a
- particular path

- through the use

. case.

- Apath like this is
- called a scenario.
~ There are usually
- several possible

~ scenarios in a

. single use case.

Todd and Gina’s Dog Poor, version 2.3

What the Door Does

Main Path

1. Fido barks to be et out.

2. The bark recognizer “hears” a bark.
3. The bark recognizer sends a request

to the door to open.
4. The dog door opens. 4—/_//

5. Fido goes outside.

6. Fido does his business.
6.1. The door shuts avtowmatically.
6.2. Fido barks fo be let back inside.

6.3. The bark recognizer “hears” a
bark (again).

64. The bark recognizer sends a

6.9. The dog door opens (again).
7 Fido goes back inside.

8. The door shuts automatically.
A

request to the door to open. /

Alternate Paths

|

2.1. Todd or Gina hears Fido barking. —

31. Todd or Gina presses the button B
on the remote control.

we'll take the optional
5.,\;...?3{:}. here, where
Fido 53{;5 stuck outside.

6.21. Todd or Gina hears Fido
barking (again).

64.1. Todd or Gina presses the
button on the remote control.

We've letting Todd and Gina
handle opening the door
a9ain, on the alternate path.

Let’s take

this alternate
Pat.h; ahd [C{:
Todd and Gina
L handle oPening
the door with
the remote.

>

You'll aiways end
up at Step 8, wit),
Fido back inside.

3= Py

R gl 2
g =
RN o
- A

-
e
A

?"..a, 3
T

Scenario (Cont.)

— A complete path through a use case, from first step to the
last, is called a scenario.

— Most use cases have several different scenarios, but they
always share the same user goal.

—How many scenarios in Todd and Gina’s use case? (Six)
o When you take 31, yoll |
| Thus}ns Jus{: the use also take Step b4,
| Case’s main path. L\“ |
| . Kl |, 21,31, 4,5, b, b1, 62, 31, b41,65,7,8 5 1,2,3,4,55bl, b2, b3],b41,55,7,8

"These twe

' don't take .2 ,2,% 4,5 b 7,8 6.1,2,3 4,56 bl 62,53 b4 b5 7,8

| the optional

Cgteste 30203145678 7. <nothing else>

i ?ath where 4 I: 2-!: 3'; q_: ;a ba L'r Ll: 53’ 54', 5‘5, 7: e 8 <h0‘ii|'|ih5 ¢|S¢>
. Fido gets

lﬂ \"ou {‘,akf. S‘l',C? ?—-l; 'fouj"
a'lwa\fﬁ also take S{‘,c? 3.

A Cain of Development Artifacts

Requirements —
Documentation

—

Design documents
and classes

\ Tests
Code /

April 29, 2014

Requirement Change

Todd and Gina’s Pog Poor, version 2.3
Requirements List

1. The dog door opening must be at least 127 fall.

2. A button on the remote control opens the dog door
if the door is closed, and closes the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isnt already closed.

4. A bark recognizer must be able to tell when a dog
is barking.

5. The bark recognizer wmust open the dog door when
it hears barkina.

April 29, 2014

Bark Recognizer

Woofl Woofl
O

g This is the method in our there’s havdware and
sofbuave that we want to } software in the dog door: the
have talled every time Doug's door itself and Your Code.
havdware hears a bark.

Just like Lhe bark recognizer,

DogDoorSimulator java -

Remember, Fido is BarkRecognizer java
outside the system,

so we dont need an
dbjecet For him. We

e b We still need to write
i d the tode for {he bark
D%D"""S"'“ula{or. recognizer. We'll do
that on the next pase
[DﬂgDOD[jaVa
; Lhing new n
dont need any :
f‘:'ns :‘assn We’v: cja{: an.o?c:] _/'
ethod Lor the vet h:r' o
:a\\ so this tode doesn T ™
thange all
Even

‘though we've still ki
se'H;ihg the so-Ffware {': Zro I:?'naih
the customer wants, this is 3

90od inditation that :
is solid. Nice work/ 1 dCSISh

Review the Old Design

April 29, 2014

The line between the classes is called an
association. An association represents
some relationship between the two
classes. In this case, it shows that a
Remote is related (or associated) to a
DogDoor.

The multiplicity indicates that a Remote isi

associated with exactly one DogDoor.
The arrow on the association shows that
the code is written in such a way that from
a Remote, you can get to the DogDoor to
which it is associated.

Multiplicit
DogDoor PHCTY
+DogDoor() Remote
+open() : void < 1 +Remote(door : »ngDnnr}
+close() : void \ +pressButton() : void
+isOpen() : boolean Association o
"> > there is additional

type information
preceedlng the

14

DogDoor
Multiplicity Option Cardinality
0..0 0 Collection must be empty
o..1 Noinstances or one instance
1.1 1 Exactly oneinstance
o.* * Zero or more instances
1.% Atleast oneinstance
5.5 5 Exactly 5instances
m..n Atleast m but no more than n instances

New Design

DogDoor
+DogDoor() 1 Remote
+open() : void = +Remote(door : :}ng[}nnr}l
+close() : void +pressButton() : void
+isOpen() : boolean

BarkRecognizer

+BarkRecognizer(door : DogDoor)
+recognize(bark : Bark)

April 29, 2014

New Code — BarkRecognizer.java

We'll stove the dog door that this

bark reCognizer is attached 4o in
this member variable.

public class BarkRecogniif{/
private DogDoor door; The Bakactoghich needs to know
v whith door it will open.

public BarkRecognizer (DogDoor door) { £ ‘
this.door = door; very time the havdwave heavs 3

bavk, it il i
| » 1T will eal] £his method with
K the sound of the bark it hca::j{

public wvoid recognize (String bark) {

System.out.println (™ BarkRecognizer: Heard a ‘" +
bark + “r.r.r}; ?

door.open() ; All we need to do is oufpuf a

} message letting L
1 \ we heard 3 b:;?k,,, ¢ System know
.and {:hcn aPCh uf‘

the dog door-

public class DogDoorSimulator {

public static veoid main(String[] args) { Crea{'.c the
DogDoor door = new DogDoor(); BarkRetognizen
BarkRecognizer recognizer = new BarkRecognizer (door); ,gnnett it
Remote remote = new Remote (door); I_/ the door, and
let it listen for

// Simulate the hardware hearing a bark
r——-—)
We don'{: have System.out.println (“Fido starts barking.”);

some bavking,

veal hardware: recognizer.recognize (“Woof”) ; <\ ,
Heve's where

so we'll J""st
simuia{'z the System.out.println (“*\nFido has gone outside...”);
havdwave
hearing 3 System.out.println(™\nFido’s all done...”);
bavk. ¥
try {
/ Thread.currentThread() .sleep(10000) ;
} catch (InterruptedException e) { }
We simulate
some time System.out.println(™...but he’s stuck outside!”);
passing heve.

// Simulate the hardware hearing a bark again

our new
BarkRee Gnizer

so-ﬁ:ware 3“*35 o
90 into af.{“,ion,

We Jccs{: ‘L\\C
protess when

Fido's outside,

- jus{: 4o make sure

Systemtout .printll.l (“"Fido starts barking.”); cvcr\j‘l’.\\ih‘b works
recognizer.recognize (“Woof”) ; like it should.
System.out.println(“\nFido’s back inside...”);
} } S Notice that Todd and
5‘ na never press a
bukton on the vemote

this time avound-

April 29, 2014

%Jjava DogDoorSimulator

Fido starts barking.
BarkRecognizer: Heard a ‘Woof’

The dog door opens.

Fido has gone outside...

Fido’s all done...

. ..but he’s stuck outside!

Fido starts barking.
BarkRecognizer: Heard a ‘Woof’

The dog door opens.

Fido’'s back inside...

N

\

' There’s a big problem
- with our code, and it

- shows up in the

- simulator.

. Can you figure out

. what the problem is? |

~ -,

\
\
N

17

April 29, 2014

Problem In the New Tester
* In the new version, the door doesn’t close automatically.

' publlc void pressButton() { o :
! System.out.println(“Pressing the remote control button...”);
if (door.isOpen()) { .
i door.close();
} else {
door.open|) ; .

E final Timer timer = new Timer () ; Remember, +his timer waits i
' When Todd / timer.schedule (new TimerTask() { % setonds, and the sends 3 !
| and Gina press public void run() { request 4o the doa door 4o :
i the button on = door.close(); tlose itse|f. 3 Goo |
| the vemote, timer.cancel () ; |
| this tode } . i
| also sets wp } b, 5000); ,
a timer to

o o o o o o

i public void recognize (String bark) {
System.out.println (® BarkRecognizer: " +
“Heard a AL + bark + wr ﬂ’);

! door.open () ; S—__ E
} We oPen the dmr i

| but never ¢lose j 'E cussﬁc
f e o e e e e e e — e ognize

April 29, 2014

public class DogDoor {
public void open () {
System.out.println (“The dog door opens.”);
open = true;

This is the same ¢
me Lod
that used to be in ‘

final Timer timer = new Timer(); <— !
Cmofc;java. i

timer.schedule (new TimerTask () {
public void run() ({

close():qs~___H_h‘ﬁ

timer.cancel() ; Now the door ¢loses

} }5000)_ itself... even if we add
} ! ! new devices that tan
open the door. Niﬂc:‘l
public void close() { e PR ey
. w ! 1i i sButton
SyStem' out .p]:‘ll'ltll’l ("The dog door | pugygzer‘;i};ut?;iintln (“Pressing the remote control button...”);
open = false; : if (door.isOpen()) {
] | door.close();
i } else {
__} ___ ! door.open () ;
! £ inert—FHmer—tiMET—=Tew—Times-{+
! £imer—schedule{new—TimerTaskb—{—
| P 3 O—t
/TTTTTTTITSTTosssssososoososooooooooo _-=2277 T deoretoset)r:
[. v ’/’,’ 1 .
'Remove duplicate T | memresnes
'code | | et %
\ 4 I Remote

S

April 29, 2014

A Final Test Drive

File Edit Window Help PestControl

zJjava DogDoorSimulator

Fido starts barking.
BarkRecognizer: Heard a ‘Woof’

The dog door opens.

Fido has gone outside...
Fido’'s all done...
:f*"*" The dog door closes.
. ..but he’s stuck outside!
yig!'ic door is
tlosing by itselk now.

Fido starts barking.
BarkRecognizer: Heard a ‘Woof’
The dog door opens.

Fido’'s back inside...
The dog door closes.

Remarks

e Sometimes a change In requirements reveals
problems with our system that we didn’t know were

there.

e Change is constant, and our system should always
Improve every time we work on it.

* When our system needs to work in a new or
different way, begin by updating the use case.

* We should almost always avoid duplicate code.

A single use case can have multiple scenarios.

	投影片編號 1
	Requirement Change
	Todd and Gina’s Dog Door
	New Scenario
	New Use Case�
	Improved New Use Case�
	Improved New Use Case (Cont.)�
	Revisiting Alternative Path
	Scenario�
	Scenario (Cont.)�
	A Cain of Development Artifacts
	Requirement Change
	Bark Recognizer�
	Review the Old Design�
	New Design
	New Code – BarkRecognizer.java
	 New Test Drive (DogDoorSimulator.java)�
	Problem in the New Tester�
	Update DogDoor and Simply Remote�
	A Final Test Drive
	Remarks

