
Part II
03. Requirement Change:
The Constant in Software

Development

Requirement Change
• What might change?

– Environment changes
– Market changes
– Program evolvements

• Requirements always change.
– If we’ve got good use cases, we can usually change our

software quickly to adjust to those new requirements.

April 29, 2014 2

Todd and Gina’s Dog Door

April 29, 2014 3

Can you add some hardware
to recognize Fido’s bark
when he wants go to out and
come back in and
automatically open the door?
That way we don’t need to
hear him or find that remote
that keeps getting lost.

New Scenario

April 29, 2014 4

New Use Case

April 29, 2014 5

Does this make
sense to you?
How would you
improve it?

Improved New Use Case

April 29, 2014 6

Improved New Use Case (Cont.)

April 29, 2014 7

The main path
should be what we
want to happen
most of the time.

Revisiting Alternative Path
• Alternate paths can

– 1. Be additional steps added to the main path, or
– 2. Provide steps that allow to get to the goal in a totally

different paths through parts of a use case.

April 29, 2014 8

Scenario

April 29, 2014 9

Following the
arrows gives us a
particular path
through the use
case.
A path like this is
called a scenario.
There are usually
several possible
scenarios in a
single use case.

Scenario (Cont.)
 – A complete path through a use case, from first step to the

last, is called a scenario.
– Most use cases have several different scenarios, but they

always share the same user goal.
– How many scenarios in Todd and Gina’s use case? (six)

April 29, 2014 10

A Cain of Development Artifacts

April 29, 2014 11

Requirements

Design documents
and classes

Code

Tests

Documentation

Requirement Change

April 29, 2014 12

April 29, 2014 13

Bark Recognizer

Association

Multiplicity
Review the Old Design

April 29, 2014 14

• The line between the classes is called an
association. An association represents
some relationship between the two
classes. In this case, it shows that a
Remote is related (or associated) to a
DogDoor.

• The multiplicity indicates that a Remote is
associated with exactly one DogDoor.

• The arrow on the association shows that
the code is written in such a way that from
a Remote, you can get to the DogDoor to
which it is associated.

>>: there is additional
type information
preceeding the
DogDoor

New Design

April 29, 2014 15

New Code – BarkRecognizer.java

April 29, 2014 16

 New Test Drive (DogDoorSimulator.java)

April 29, 2014 17

There’s a big problem
with our code, and it
shows up in the
simulator.
Can you figure out
what the problem is?

Problem in the New Tester
 • In the new version, the door doesn’t close automatically.

April 29, 2014 18

Update DogDoor and Simply Remote

April 29, 2014 19

Remove duplicate
code

A Final Test Drive

April 29, 2014 20

Remarks
• Sometimes a change in requirements reveals
problems with our system that we didn’t know were
there.

• Change is constant, and our system should always
improve every time we work on it.

• When our system needs to work in a new or
different way, begin by updating the use case.

• We should almost always avoid duplicate code.

• A single use case can have multiple scenarios.

April 29, 2014 21

	投影片編號 1
	Requirement Change
	Todd and Gina’s Dog Door
	New Scenario
	New Use Case�
	Improved New Use Case�
	Improved New Use Case (Cont.)�
	Revisiting Alternative Path
	Scenario�
	Scenario (Cont.)�
	A Cain of Development Artifacts
	Requirement Change
	Bark Recognizer�
	Review the Old Design�
	New Design
	New Code – BarkRecognizer.java
	 New Test Drive (DogDoorSimulator.java)�
	Problem in the New Tester�
	Update DogDoor and Simply Remote�
	A Final Test Drive
	Remarks

