
System Programming
系統程式
System Programming
系統程式

Yuan-Hao Chang (張原豪)
johnsonchang@ntut.edu.tw
Department of Electronic Engineering
National Taipei University of Technology

mailto:johnsonchang@ntut.edu.tw
mailto:johnsonchang@ntut.edu.tw

October 8, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Course Information
• Lecturer:

– Yuan-Hao Chang
– Office: Room 207-2
– Phone: +886-2-2771-2171 ext. 2288

• Lecturing hours:
– 2:10 pm ~ 5:00 pm, Friday

• Classroom:
– Room 309, Third Education Building (三教 309)

• Textbook:
– System Software - An Introduction to Systems Programming, 3rd Edition, 1997
– Author: Leland L. Beck

Publisher: Addison Wesley (台北圖書代理), ISBN: 0-321-21177-4
• Course webpage:

– http://www.ntut.edu.tw/~johnsonchang/courses/Algorithm201008/
• Grading：(subject to changes)

– Homework: (30%), Midterm exam (30%), Final exam (30%), In-class
performance (10%)

http://www.lookbook.com.tw/Stores_App/Browse_Item_Details.asp?Shopper_id=4883826151454883&Store_id=142&page_id=23&Item_ID=1345
http://www.ntut.edu.tw/~johnsonchang/courses/Algorithm201008/

October 8, 2010 3

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline of the Course
• Background

• Assemblers

• Loaders and linkers

• Macro processors

• Compilers

• Operating systems

• Other system software

• Software engineering issues

Chapter 1
Background

Chapter 1
Background

October 8, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• Introduction

• The Simplified Instructional Computer (SIC)

• CISC Machines

• RISC Machines

• References to Addressing Modes and Instruction Set

IntroductionIntroduction

October 8, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

Objectives of This Course
• This course is an introduction to the design and
implementation of system software.
– System software consists of a variety of programs that

support the operation of a computer.
– System software makes it possible for users to focus on

an application or a problem to be solved, without
knowing how the machine works internally.

• By understanding the system software, you will
– Gain a deeper understanding of how computers really

work.
– Learn the relationship between system software and

machine architecture.

October 8, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Examples of System Software
• Assembler

– Translate assembler-language programs into machine language,
and may include macro processor.

• Loader or Linker
– Load the resulting machine-language program into memory and

prepared for execution.

• Compiler
– Translate programs in a high-level language (that are edited by text

editor) into machine language.

• Operating system
– Control all of the processes running on the machine and take care of

all the machine-level details.

• Debugger
– Help detect errors in programs.

October 8, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

System Software and Machine Architecture
• Machine dependency is the main difference between

system software and application software.
– Application programs are concerned with the solution of some

problem, using the computer as a tool.
– System programs are intended to support the operation and use of

the computer itself. For example:
- Assemblers translate mnemonic instructions into machine code.
- Compilers generate machine language code, taking hardware

characteristics into account.
- Operating systems are directly concerned with the management of

nearly all of the resources of a computing system.

• There are some aspects of system software that do not
directly depend upon the computing system. For example:

– The general design and logic of an assembler.
– Some code optimization techniques used by compilers.

The Simplified
Instructional Computer

(SIC)

The Simplified
Instructional Computer

(SIC)

October 8, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Simplified Instructional Computer (SIC)
• It is difficult to distinguish whether the features of software

are truly fundamental or solely depend on a particular
machine.

– To avoid this problem, the fundamental functions of system software
are discussed through a Simplified Instructional Computer (SIC).

– SIC is a hypothetical (假定的) computer that is carefully designed
- To include the hardware features most often found on real computers.
- To avoid unusual or irrelevant complexities.

– SIC provides the reader with a starting point to begin the design of
system software for a new computer.

• SIC comes in two versions:
– The standard model: SIC
– The extra equipment version: SIC/XE

October 8, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC Machine Architecture
• Memory

– 8 bits forms a byte.
– 3 consecutive bytes form a word (24 bits).
– All addresses on SIC are byte addresses.
– Words are addressed by the location of their lowest

numbered byte.
– There are 32,768 (215) bytes in the computer memory.

October 8, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC Machine Architecture (Cont.)
• Registers

– Five registers, all of each have special uses.
– 24 bits long in each register.

Mnemonic
(助記符號) Number Special use

A 0 AAccumulator; used for arithmetic operations
X 1 IndeXX Register; used for (indexed) addressing

L 2 LLinkage register; the Jump to Subroutine (JSUB)
instruction stores the return address in this register

PC 8 PProgram CCounter; contains the address of the next
instruction to be fetched for execution

SW 9 SStatus WWord; contains a variety of information,
including a Condition Code (CC)

October 8, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC Machine Architecture (Cont.)
• Data formats

– Integers are stored as 24-bit binary numbers.
– Negative values are represented by 2’s complement.
– Characters are stored using 8-bit ASCII codes.
– Floating-point hardware is not supported.

• Instruction formats

opcode x address
8 1 15

Indicate indexed-
addressing mode

Address of the
operandOpcode of the

instruction

October 8, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC Machine Architecture (Cont.)
• Addressing Modes

– Indicated by the setting of the x bit in the instruction.
– The target address is calculated from the address given in the

instruction.
- Target address of an instruction is the address (of the operand) that will

be accessed by the instruction.
– Parentheses are used to indicate the contents of a register or a

memory location.
· E.g., (X) represents the contents of register X.

Mode Indication Target address (TA) calculation
Direct x = 0 TA = address

Indexed x = 1 TA = address + (X)

October 8, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC Machine Architecture (Cont.)
• Instruction Set

– Instructions that load and store registers
- E.g., LDA, LDX, STA, STX, etc.

– Integer arithmetic operations
- All arithmetic operations involve register A and a word in memory with

the result left in register A.
- E.g., ADD, SUB, MUL, DIV

– Comparison instructions (COMP)
- COMP compares the value in register A with a word in memory, and sets

a condition code (CC) to indicate the result (<, =, or >).
– Conditional jump instructions (JLT, JEQ, JGT)

- Test the setting of CC, and jump accordingly.
– Subroutine linkage

- JSUB jumps to the subroutine, placing the return address in register L.
- RSUB returns by jumping to the address contained in register L.

A complete list of
instructions are listed in
the appendix / references.

October 8, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC Machine Architecture (Cont.)
• Input and Output

– Input and output are performed by transferring 1 byte at a time to or
from the rightmost 8 bits of register A.

– Each device is assigned a unique 8-bit code.
– There are three I/O instructions, each of which specifies the device

code as an operand:
- Test Device (TD) :

· Test whether the addressed device is ready to send or received a byte of data.
· The condition code is set to indicate the result of this test.

» < means the device is ready.
» = means the device is not ready.

· A program cannot transfer data until the device is ready.
- Read Data (RD): Read a byte from the device
- Write Data (WD): Write a byte to the device

October 8, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Machine Architecture
• Memory

– The memory structure for SIC/XE is the same as SIC.
– The maximum memory available on a SIC/XE system is 1

megabytes (220 bytes).
– This increase leads to a change in instruction formats and

addressing modes.

• Registers
– Four additional registers (compared to SIC) are provided by SIC/XE:
Mne-
monic Number Special use

B 3 BBase register; used for (base-register relative) addressing
S 4 General working register; no special use
T 5 General working register; no special use
F 6 FFloating-point accumulator (48 bits)

October 8, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Machine Architecture (Cont.)
• Data formats

– SIC/XE provides the same data formats as the standard version.
– SIC/XE provides a 48-bit floating-point data type:

- The fraction (f) is interpreted as a value between 0 and 1.
· The assumed binary point is immediately before the high-order bit.
· For normalized floating-point, the high-order bit of the fraction must be 1.

- The exponent (e) is interpreted as an unsigned binary number between
0 and 2047.

- The sign of the float-point number is indicated by the value of s
· 0 = positive, 1 = negative.

- A value of zero is represented by setting all bits to 0.

exponent (e) fraction (f)
11 36

s
1

The floating-point value = f * 2(e-1024)

October 8, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Machine Architecture (Cont.)
• Instruction formats

– The 15-bit address field in SIC is no longer suitable due
to the larger memory in SIC/XE.

– Two possible options:
- Use some form of relative addressing or
- Extend the address field to 20 bits.

– Four instructions formats:
- Formats 1 and 2 do not reference memory at all.

op
8

Format 1 (1 byte):

op
8

Format 2 (2 bytes):

r2
4

r1
4

register

opcode

October 8, 2010 21

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Machine Architecture (Cont.)
• Instruction formats (Cont.)

op
6

Format 3 (3 bytes):

n
1

i
1

x
1

b
11 1

p e disp
12

op
6

Format 4 (4 bytes):

n
1

i
1

x
1

b
11 1

p e addr
20

Indexxed
addressing

BBase relative
addressing

PProgram-counter
relative addressing

EExtension format
Format 3: e = 0
Format 4: e = 1

Inndirect
addressing

IImmediate addressing

Displacement

Address

October 8, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Machine Architecture (Cont.)
• Addressing Modes – Target Address Calculation

– For a Format 4 (e=1) instruction, bits b and p are normally set to 0.

TA Calculation Mode Indication Target address calculation
x=0, b=0, p=1 TA = (PC) + disp (-2048 ≤ disp ≤ 2047)
x=1, b=0, p=1 TA = (PC) + disp + (X) (-2048 ≤ disp ≤ 2047)
x=0, b=1, p=0 TA = (B) + disp (0 ≤ disp ≤ 4095)

x=1, b=0, p=0 TA = disp + (X)

Base relative
addressing x=1, b=1, p=0 TA = (B) + disp + (X) (0 ≤ disp ≤ 4095)

x=0, b=0, p=0 TA = disp
Direct addressing

Program-counter
relative addressing

Format 3 (e=0)
Signed integer

Unsigned integer

TA = addr + (X) x=1, b=0, p=0
TA = addrx=0, b=0, p=0

Direct addressing

Target address calculationIndicationTA Calculation Mode

(PC), (B), and (X) represent the contents of register PC, B, and X, respectively.

October 8, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Machine Architecture (Cont.)
• Addressing Types – How The Target Address Is Used

– Simple addressing: The target address is taken as the address of the
operand value.

– Immediate addressing: The target address is used as the operand value.
– Indirect addressing: The value of the word at the location given by the

target address is the address of the operand value.

TA Addressing Type Indication Operand value

n=0, i=0
(TA) for SIC machine, because the 8-bit binary
opcodes of SIC instructions end in 00.
b/p/e/disp = 15-bit addressaddress field of SIC instruction

n=1, i=1 (TA) for SIC/XE machine
Immediate addressing n=0, i=1, x=0 TA
Indirect addressing n=1, i=0, x=0 ((TA))

Simple addressing

Indexed addressing cannot be used with immediate or indirect addressing modes. (x=0)

October 8, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Machine
Architecture (Cont.)

• Addressing modes for Format 3 and
Format 4 instructions.

• Combinations of addressing bits not in
this table are errors.

• Assembler language notation:
– c indicates a constant between 0 and

4095.
– m indicates a memory address or a

constant value larger than 4095.
– + indicates extended format (i.e.,

Format 4Format 4)
– @ indicates a indirect addressing
– # indicates an immediate addressing
– X indicates register X (using indexed

addressing)
• Letters in Notes

– 4 Format 4 instruction
– D Direct-addressing instruction
– A Program-counter relative or base

relative mode
– S Compatible with standard SIC

instructions. Operand value can be
between 0 and 32,767.

Addressing
type

Addressing
mode

Exten
sion

Compatible
with SIC

instructions

October 8, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Machine Architecture (Cont.)

Indexed addressing PC-relative addressing

Base-relative addressing Format 4

LDA

Indirect
addressing

Immediate
addressing

TA = (PC)+disp

SIC

Simple addressing

TA = (B)+disp+(X)
TA = (PC)+disp
TA = disp
TA = (PC)+disp

TA = addr

(TA)=
(TA)=

((TA))=
TA=

(TA)=
(TA)=

Addressing mode

Addressing type

October 8, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Machine Architecture (Cont.)
• Instruction Set

– SIC/XE provides all of the instructions that are available
on SIC.

– Some extended instructions are supported.
- Load and store new registers

· E.g., LDB, STB, etc.
- Floating-point arithmetic operations

· E.g., ADDF, SUBF, MULF, DIVF
- Register-to-register arithmetic operations

· E.g., RMO (register move operation), ADDR, SUBR, MULR, DIVR
- Special supervisor call instruction (SVC)

· This instruction generates an interrupt that can be used for
communication with the operating system.

October 8, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Machine Architecture (Cont.)
• Input and Output

– The I/O instructions supported by SIC are also available
on SIC/XE.

– I/O channels that can be used to perform input and
output while the CPU is executing other instructions.
- This allows overlap of computing and I/O.

· SIO, TIO, and HIO are used to start, test, and halt the operation of I/O
channels.

October 8, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Expression Convention
• Parentheses are used to denote the contents of
a register or memory location.
– A (m..m+2) specifies that the contents of the memory

locations m through m+2 are loaded into register A.
– m..m+2 (A) specifies that the contents of register A are

stored in the word that begins at address m.
– (A) : (m..m+2) specifies that the contents of register A

and memory location m through m+2 are compared.

October 8, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Sample Data Movement
SIC A (FIVE)

ALPHA (A)

Load a word
A (CHARZ)

Load a
character

C1 (A)

SIC/XE

Reserve one byte of storage/variable for use by the program

Reserve one byte of
storage/constant

initialized to ‘Z’

Reserve one word of storage/variable for use by the program

Reserve one word of storage/variable for use by the program

Immediate
addressing

A 5
ALPHA (A)

A 90
C1 (A)

October 8, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Sample Arithmetic Operations
SIC A (ALPHA)

A (A) + (INCR)
A (A) - (ONE)

BETA (A)

comment

constant

variable

BETA = (ALPHA) + (INCR) - 1

DELTA = (GAMMA) + (INCR) - 1

A (GAMMA)
A (A) + (INCR)

A (A) – (ONE)
DELTA (A)

• This program is to store the value (ALPHA +
INCR – 1) in BETA, and the value (GAMMA
+ INCR – 1) in DELTA.

October 8, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Sample Arithmetic Operations (Cont.)
SIC/XE S (INCR)

A (ALPHA)
A (A) + (S)

A (A) - 1
BETA (A)

A (GAMMA)
A (A) + (S)

A (A) - 1
DELTA (A)

• This avoids having to fetch INCR from memory
each time it is used in a calculation.

• Immediate addressing is used for the constant
1 in the subtraction operations.

October 8, 2010 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Sample Looping and Indexing
SIC

X (ZERO)
A (STR1 + (X))

• The loop copies one 11-byte character string to another.

• The index register X is initialized to zero.

• TIX performs two functions:
– First it adds 1 to the value in register X.
– Then it compares the new value of register X to the value of the operand.

The condition code is set according to the compared result (<, =, >)

Indexed addressing

STR2 + (X) (A)
X (X) + 1
(X) : (ELEVEN)

PC MOVECH if CC set to <

October 8, 2010 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Sample Looping and Indexing (Cont.)
SIC/XE

X (X) + 1
(X) : (T)

T 11
X 0

• TIXR allows to compare index register X with another register.
– This is efficient because the value does not have to be fetched

from memory each time the loop is executed.

Immediate addressing

October 8, 2010 34

Copyright © All Rights Reserved by Yuan-Hao Chang

Another Sample Indexing and Looping

100-word arrays/variables

A 0
INDEX (A); // initialize the index value

X (INDEX)
A (ALPHA + (X))

one-word constants

A (A) + (BETA+(X))
GAMMA+(X) (A)

A (INDEX)
A (A) + (THREE); // increase 3
INDEX (A);

(A) : (K300)
PC ADDLP if CC set to <

Move to
next word

GAMMA
(ALPHA)
+ (BETA)

• This loop adds elements of ALPHA
and BETA, and stores the results in
the elements of GAMMA.

• TIX instruction always adds 1 to
register X, so it is not suitable to
this program.

SIC

• This SIC program is cumbersome because register A must be
used for adding ALPHA and BETA, and incrementing INDEX.

October 8, 2010 35

Copyright © All Rights Reserved by Yuan-Hao Chang

Another Sample Indexing and Looping
(Cont.)

SIC/XE S 3
T 300

X 0

GAMMA
(ALPHA)
+ (BETA)

X (X) + (S); // move to next word

• Register S: Store 3 for the one-word increment.
Register T: Store 300 for the number of words in an array.
Register X: Indicate the offset (index value) to the
starting of an array.

(X) : (T)

October 8, 2010 36

Copyright © All Rights Reserved by Yuan-Hao Chang

Simple Input and Output

• This program reads 1 byte of data from device F1 and copies it to device 05.
• TD instruction is to test whether the device is ready.

– If the device is ready to transmit data, the condition code is set to “less than.”
– If the device is not ready, the condition is set to “equal.”

Test device specified by (m)

hexadecimal

SIC

Check if the
device is

ready

A [rightmost byte] data
DATA (A) [rightmost byte]

Read one byte from device INDEV and store it at DATA

Load one byte from DATA and write it to device OUTDEV

October 8, 2010 37

Copyright © All Rights Reserved by Yuan-Hao Chang

Sample Subroutine Call
SIC

• This subroutine is called from the main program by the JSUB
(Jump to Subroutine) instruction.

• At the end of the subroutine, an RSUB (Return from Subroutine)
instruction returns to the instruction following the JSUB.

L (PC); PC READ

PC (L)

Before value of PC is stored in L, PC is advanced by 3 (pointing
to the next instruction)

Read 100 bytes
from device F1 and
store them in a 100-
bye buffer area
labeled RECORD.

X (X) + 1
(X) : (K100)

October 8, 2010 38

Copyright © All Rights Reserved by Yuan-Hao Chang

Sample Subroutine Call (Cont.)
SIC/XE L (PC); PC READ

PC (L)

X 0

X (X) + 1; (X) : (T)

T 100
Test device specified by (INDEV)

PC RLOOP if CC set to =
A data

RECORD + (X) (A)

PC RLOOP if CC set to <

• Register T: Store 100 for the number of bytes to read.
• Register X: Indicate the offset (index value) to the starting of an array.

CISC MachinesCISC Machines

October 8, 2010 40

Copyright © All Rights Reserved by Yuan-Hao Chang

CISC Machines
• Complex instruction set computers (CISC) usually
include
– A relatively large and complicated instruction set.
– Several different instruction formats and lengths.
– Many different addressing modes.

• The implementation of CISC architecture in
hardware tends to be complex.

• Sample CISC machines
– VAX architecture
– Pentium architecture

October 8, 2010 41

Copyright © All Rights Reserved by Yuan-Hao Chang

VAX Architecture
• Memory

– Bytes and words
- 8 bits form a byte.
- 2 bytes form a word.
- 4 bytes form a longword.
- 8 bytes form a quadward.
- 16 bytes form a octaword.

– Some operations are more efficient when operands are aligned in a
particular way.

- E.g., a longword operand that begins at a byte address that is a multiple of 4.
– Virtual address space: 232 bytes

- This virtual memory allows program to operate as though they have a large
memory.

- One half of virtual address space is system space that contains the operating
system and is shared by all programs.

- The other half of the address space is process space that is defined separately
for each program.

· A part of the process space contains stacks that are available to the program.

October 8, 2010 42

Copyright © All Rights Reserved by Yuan-Hao Chang

VAX Architecture (Cont.)
• Registers

– 16 general-purpose registers denoted by R0 through R15.
- R15 is the program counter (PC).

· It is updated during instruction execution to point to the next instruction.
- R14 is the stack pointer (SP).

· It points to the current top of the stack in the program’s process space.
- R13 is the frame pointer (FP).

· VAX procedure call conventions build a data structure called a stack frame,
and place its address in FP.

- R12 is the argument pointer (AP).
· The procedure call convention uses AP to pass a list of arguments associated

with the call.
- R6 through R11 have no special functions.
- R0 through R5 are likewise available for general use, but are also used

by some machine instructions.
– A processor status longword (PSL) that contains state variables

and flags associated with a process.

October 8, 2010 43

Copyright © All Rights Reserved by Yuan-Hao Chang

VAX Architecture (Cont.)
• Data Formats

– Integers are stored as binary numbers in a byte, word, longword,
quadword, or octaword.

– 2’s complement representation is used for negative values.
– Characters are stored using their 8-bit ASCII codes.
– Four different floating-point data formats, ranging in length from 4 to

16 bytes.
– VAX processors provide a packed decimal data format.

- Each byte represents two decimal digits, with each digit encoded using 4
bits of the byte. (4 bits form a nibble.)

- The sign is encoded in the last 4 bits.
– VAX also provides hardware to support queues and variable-length

bit strings.
- There are single machine instructions that

· Insert and remove entries in queues. (support atomic operations)
· Perform a variety of operations on bit strings.

21544

hexadecimal F for positive numbers and
hexadecimal D for negative numbers

October 8, 2010 44

Copyright © All Rights Reserved by Yuan-Hao Chang

VAX Architecture (Cont.)
• Instruction formats

– VAX machine instructions use a variable-length instruction format.
– Each instruction consists of

- An operation code (1 or 2 bytes)
- Up to six operand specifiers, depending on the type of instruction.

· Each operand specifier designates one of the VAX addressing modes and gives any additional
information to locate the operand.

• Addressing modes
– Register mode: The operand itself is in a register.
– Register deferred mode: The address of an operand is specified by a

register.
- The register contents may be automatically incremented or decremented by the

operand length (autoincrement and autodecrement modes).
– There are several base relative addressing modes, with displacement fields

of different lengths.
- E.g., PC-relative mode by using register PC for the displacement.

– Immediate addressing is to include operands in the instruction itself.
– All of the addressing modes could include an index register, and many of

them are available in a form that specifies indirect addressing.

October 8, 2010 45

Copyright © All Rights Reserved by Yuan-Hao Chang

VAX Architecture (Cont.)
• Instruction set

– Instruction mnemonics are formed by combining the following
elements:
- 1. a prefix that specifies the type of operations,
- 2. a suffix that specifies the data type of the operands,
- 3. a modifier (on some instructions) that gives the number of operands

involved.
– E.g.,

- ADDW2: an add operation with two operands, and each a word in length.
- MULL3: a multiply operation with three longword operands.
- CVTWL: a conversion from word to longword, with two operands.

– Operands may be located in registers, memory, or instruction itself
(immediate addressing).

– VAX provides all of the usual types of instructions for computation,
data movement and conversion, comparison, branching, etc.

October 8, 2010 46

Copyright © All Rights Reserved by Yuan-Hao Chang

VAX Architecture (Cont.)
• Instruction set (Cont.)

– There are a number of operations that are much more
complex than the machine instructions found on most
computers.
- These operations are hardware realizations of frequently

occurring sequences of codes. E.g.,
· Instructions to load and store multiple registers, and manipulate
queues and variable-length bit fields.

· Powerful instruction to call and return from procedures.
· Single instruction to

» Save a designated set of registers,
» Pass a list of arguments to the procedure,
» Maintain the stack, frame, and argument pointers, and
» Set a mask to enable error traps for arithmetic operations.

October 8, 2010 47

Copyright © All Rights Reserved by Yuan-Hao Chang

VAX Architecture (Cont.)
• Input and output

– Input and output are accomplished by I/O device
controllers.

– Each controller has a set of control/status and data
registers, which are assigned locations in the physical
address space.

– The address space mapped by the device controller
registers are called I/O space.
- No special instructions are required to access registers in I/O

space.
- An I/O device driver issues commands to the device controller by

storing values into the appropriate registers, exactly as if there
were physical memory locations.

- The association of an address in I/O space with a physical
register in a device controller is handled by the memory
management routines.

October 8, 2010 48

Copyright © All Rights Reserved by Yuan-Hao Chang

Pentium Architecture
• Memory

– At the physical level, memory consists of 8-bit bytes. All
addresses used are byte addresses.

– Programmers view the x86 memory as a collection of
segments.
- An address consists of two parts: A segment number and an

offset.
· Segments can be of different sizes, and are often used for different
purposes. E.g., a segment for executable instructions or data storage.

· A segment can be divided into pages. Some of the pages of a
segment may be in physical memory, while others may be stored on
disk.

- The segment/offset address specified by the programmer is
automatically translated into a physical byte address by the x86
Memory Management Unit (MMU).

October 8, 2010 49

Copyright © All Rights Reserved by Yuan-Hao Chang

Pentium Architecture (Cont.)
• Registers

– Eight general-purpose registers (32 bits):
- EAX, EBX, ECX, and EDX are generally used for data manipulation. It is possible to

access individual words or bytes from these registers.
- ESI, EDI, EBP, and ESP are usually used to hold addresses.

– EIP is a 32-bit register that contains a pointer to the next instruction to be
executed. (like program counter (PC))

– FLAGS is a 32-bit register that contains many different bit flags.
- Some indicates the status of the processor.
- Others are used to record the results of comparisons and arithmetic operations.

– Six 16-bit segment registers to locate segments in memory.
- Segment register CS contains the address of the currently executing code

segment.
- Segment register SS contains the address of the current stack segment.
- DS, ES, FS, and GS are used to indicate the addresses of data segment.

– Floating-point computations are performed by a special floating-point unit
(FPU).

October 8, 2010 50

Copyright © All Rights Reserved by Yuan-Hao Chang

Pentium Architecture (Cont.)
• Data formats

– Integers are normally stored as 8-, 16-, or 32-bit binary numbers.
Negative values are represented in 2’s complement.

– Little-endian byte ordering:
- The least significant part of a numeric value is stored at the lowest-

numbered address.
– Two binary coded decimal (BCD) formats:

- Unpacked BCD format: Each byte represents one decimal digit.
- Packed BCD format: Each byte represents two decimal digits.

– Three different floating-point data formats:
- Single-precision format: 32 bits long (24 significant bits and 7-bit

exponent).
- Double-precision format: 64 bits long (53 significant bits and 10-bit

exponent).
- Extended-precision format: 80 bits long (64 significant bits and 15-bit

exponent).
– Characters are stored one per byte.

October 8, 2010 51

Copyright © All Rights Reserved by Yuan-Hao Chang

Pentium Architecture (Cont.)
• Instruction formats

– Basic format:
- Begin with optional prefixes to contain flags that modify the

operation of the instruction. E.g.,
· Repetition count for an instruction.
· Specification to a segment register that is used for addressing an
operand (to override the normal default assumptions).

- Following the prefix (if any) is an opcode (1 or 2 bytes).
· The opcode is the only element that is always present in every instruction.

- Following the opcode are a number of bytes that specify the
operands and addressing modes to be used.

– There are a large number of different potential instruction
formats, varying in length from 1 byte to 10 bytes or more.

October 8, 2010 52

Copyright © All Rights Reserved by Yuan-Hao Chang

Pentium Architecture (Cont.)
• Addressing modes

– An operand value may be specified as part of the instruction itself
(immediate mode), or it may be in a register (register mode).

– Operands stored in memory are often specified by the target
address calculation:

- Any general-purpose register may be used as a base register.
- Any general-purpose register except ESP can be used as an index

register.
- The scale factor may have the value 1, 2, 4, or 8.
- The displacement may be an 8-, 16-, or 32-bit value.

– Various combinations of these items may be omitted, resulting in
eight different addressing modes.

– The address of an operand in memory may be specified as an
absolute location (direct mode), or as a location relative to the EIO
register (relative mode).

TA = (base register) + (index register) * (scale factor) + displacement

October 8, 2010 53

Copyright © All Rights Reserved by Yuan-Hao Chang

Pentium Architecture (Cont.)
• Instruction set

– The x86 architecture has a large and complex instruction set (more than
400 different machine instructions).

– An instruction may have zero, one, two, or three operands.
– There are register-to-register instruction, register-to-memory instructions,

and a few memory-to-memory instructions.
– Most data movement and integer arithmetic instructions can use operands

that are 1, 2, or 4 bytes long.
– String manipulation instructions can deal with variable-length strings of

bytes, words, or doublewords.
– Many instructions that

- Perform logical and bit manipulations, and
- Support control of the processor and memory-management systems.

– The x86 architecture includes special-purpose instructions to perform
operations frequently required in high-level programming languages.

- E.g., entering and leaving procedures, and checking subscript values against the
bounds of an array.

October 8, 2010 54

Copyright © All Rights Reserved by Yuan-Hao Chang

Pentium Architecture (Cont.)
• Input and output

– Input is performed by instructions that transfer one byte,
word, or doubleword at a time from an I/O port into
register EAX.

– Output instructions transfer one byte, word, or
doubleword from EAX to an I/O port.

– Repetition prefixes allow to transfer an entire string in a
single operation.

– Special I/O instructions are needed.

RISC MachinesRISC Machines

October 8, 2010 56

Copyright © All Rights Reserved by Yuan-Hao Chang

RISC Machines
• Reduced Instruction Set Computers (RISC) have a simplified design

that results in
– Faster and less expensive processor development
– Greater reliability and
– Faster instruction execution times.

• A RISC system is characterized by
– A fixed instruction length, and
– Single-cycle execution of most instructions.

• Memory access is usually done by load and store instructions only.
• All instructions except for load and store are register-to-register

operations.
• There are typically a large number of general-purpose registers.
• The number of machine instructions, instruction formats, and

addressing modes is relatively small.
• Sample CISC machines are UltraSPARC, PowerPC, and Cray T3E.

October 8, 2010 57

Copyright © All Rights Reserved by Yuan-Hao Chang

UltraSPARC Architecture
• The UltraSPARC processor was announced by Sun.

– SPARC stands for Scalable Processor Architecture.

• Memory
– Bytes and words

- 8-bit forms a byte.
- 2 consecutive bytes form a halfword.
- 4 bytes form a word.
- 8 bytes form a doubleword.

– Virtual address space is 264 bytes.
- This address space is divided into pages.
- Multiple page sizes are supported.
- Pages used by a program could be in physical memory or on disk.
- The virtual address specified by instruction is translated into a physical

address by MMU.

October 8, 2010 58

Copyright © All Rights Reserved by Yuan-Hao Chang

UltraSPARC Architecture (Cont.)
• Registers

– SPARC includes a large register file that usually contains more than
100 general-purpose registers.
- Procedures could only access 32 registers designated to r0 through r31.

· r0 through r7 are global: They can be accessed by all procedures.
· The other 24 registers available to a procedure can be visualized as a window

through which part of the register file can be seen, so some registers in the
register file are shared between procedures.

» E.g., Registers r8 through r15 of a calling procedure are physically the same
registers as r24 through r31 of the called procedure (for parameter passing).

- If a set of concurrently running procedures need more windows than
available, a “window overflow” interrupt occurs to trigger saving the
contents of some registers in the file (and restore them later).

– Floating-point computations are performed through FPU.
– In addition, there are a program counter, condition code registers,

and a number of other control registers.

October 8, 2010 59

Copyright © All Rights Reserved by Yuan-Hao Chang

UltraSPARC Architecture (Cont.)
• Data formats

– It provides integers, floating-point values, and characters.
– Integers are 8-,16-, 32-, or 64-bit binary numbers. (2’s complement

for negative values).
– Big-endian byte ordering is supported: The most significant part of a

numeric value is stored at the lowest-numbered address.
– Three different floating-point data formats:

- Single-precision format: 32 bits long (23 significant bits and 8-bit
exponent)

- Double-precision format: 64 bits long (52 significant bits and 11-bit
exponent)

- Quad-precision format: 80 bits long (63 significant bits and 15-bit
exponent)

– Characters are stored one per byte, using 8-bit ASCII codes.

October 8, 2010 60

Copyright © All Rights Reserved by Yuan-Hao Chang

UltraSPARC Architecture (Cont.)
• Instruction formats

– Every instruction is 32 bits long.
- The first 2 bits identify which format is used.

· Format 1 is used for the call instruction.
· Format 2 is used for branch instructions.
· Format 3 provides register loads and stores, and three-operand arithmetic operations.

• Addressing modes
– An operand value is specified as part of the instruction itself (immediate

mode) or is in a register (register direct mode).
– Operands in memory are addressed using one of the following mode:

Mode Target address (TA) calculation
PC-relative TA = (PC) + displacement{30 bits, signed}

Register indirect with
displacement TA = (register) + displacement{13 bits, signed}

Register indirect indexed TA = (register-1) + (register-2)

PC-relative mode
is only for branch

instruction

October 8, 2010 61

Copyright © All Rights Reserved by Yuan-Hao Chang

UltraSPARC Architecture (Cont.)
• Instruction set

– Fewer than 100 machine instructions (reflecting RISC philosophy).
– Load and store architecture: only load and store instructions access

memory.
– Instruction execution is pipelined.

- Pipeline means that while one instruction is being executed, the next one is being
fetched from memory and decoded.

- An branch instruction might cause the process to “stall.”
· The instruction following the branch would have to be discarded even if it is fetched and

decoded.
- To make pipeline more efficient, SPARC branch instructions are delayed

branches.
· A delayed branch means that the instruction immediately following the branch instruction is

actually executed before the branch is taken.

SUB %L0, 11, %L1 // %L1 (%L0) - 11
BA NEXT // PC NEXT
MOV %L1, %O3 // %O3 (%L1) In the delay slot: MOV is executed

before the branch BA.

October 8, 2010 62

Copyright © All Rights Reserved by Yuan-Hao Chang

UltraSPARC Architecture (Cont.)
• Instruction set (Cont.)

– High-bandwidth block load and store operations.
– Communication in a multi-processor system is facilitated by “atomic”

instructions that can execute without allowing other memory
accesses to intervene.

– Conditional move instructions may allow a compiler to eliminate
many branch instruction.

• Input and output
– Communication with I/O devices is accomplished through memory.
– A range of memory locations is logically replaced by device

registers.
- Each I/O device has a unique set of addresses assigned to it.
- When a load or store instruction refers to this device register area of

memory, the corresponding device is activated. (No special I/O
instructions are needed.)

October 8, 2010 63

Copyright © All Rights Reserved by Yuan-Hao Chang

PowerPC Architecture
• POWER is an acronym for Performance Optimization With Enhanced

RISC.
• Memory

– Bytes and words
- 8 bits form a byte.
- 2 consecutive bytes form a halfword.
- 4 bytes form a word.
- 8 bytes form a doubleword.
- 16 bytes form a quadword.

– All addresses are byte addresses.
– If operands are aligned at a starting address that is a multiple of their length.
– Virtual address space is of 264 bytes.

- This space is divided into fixed-length segments, which are 256 MBs long.
- Each segment is divided into pages, which are 4096 bytes long.
- A page could be in memory or on disk.
- When an instruction is executed, the hardware and OS make sure the needed page

is loaded to physical memory.
- The virtual address specified by the instruction is automatically translated into a

physical address by MMU.

October 8, 2010 64

Copyright © All Rights Reserved by Yuan-Hao Chang

PowerPC Architecture (Cont.)
• Registers

– 32 general-purpose registers, designated GPR0 through
GPR31. Each is 64 bits long.

– Floating-point computations are performed using a
special floating-point unit (FPU).

– A 32-bit condition register (CR) reflects the result of
certain operations such as testing, branching, and
arithmetic.
- This register is divided into eight 4-bit subfields, named CR0

through CR7.
– Other registers:

- A link register (LR) and a count register (CR) for branch
instructions.

- A machine status register (MSR) and other control and status
registers.

October 8, 2010 65

Copyright © All Rights Reserved by Yuan-Hao Chang

PowerPC Architecture (Cont.)
• Data formats

– Integers are stored as 8-, 16-, 32-, or 64-bit binary numbers.
– 2’s complement is used to store negative values.
– Big-endian byte ordering: The most significant part of a numeric

value is stored at the lowest-numbered address. (Little-endian is
also supported).

– There are two float-point data formats:
- Single-precision format: 32-bit long (23 significant bits and 8-bit

exponent)
- Double-precision format: 64-bit long (52 significant bits and 11-bit

exponent)
– Characters are stored one per byte, using 8-bit ASCI codes.

October 8, 2010 66

Copyright © All Rights Reserved by Yuan-Hao Chang

PowerPC Architecture (Cont.)
• Instruction formats

– There are seven basic instruction formats (32 bits long).
– Instructions must be aligned at a word boundary.

- The first 6 bits specify the opcode, and some have an additional
“extended opcode” field.

– The variety and complexity of instruction formats is
greater than that on SPARC.

– The fixed length makes instruction decoding faster and
simpler than CISC.

October 8, 2010 67

Copyright © All Rights Reserved by Yuan-Hao Chang

PowerPC Architecture (Cont.)
• Addressing modes

– An operand value is specified as part of the instruction itself
(Immediate mode) or is in a register (register direct mode).

– Only load/store operations and branch operations would access
memory.

– Load and store operations use one of the following addressing
modes (where the register numbers and displacement are encoded in
the instruction):

Mode Target address (TA) calculation
Register indirect TA = (register)

Register indirect with index TA = (register-1) + (register-2)
Register indirect with

immediate index TA = (register) + displacement {16 bits, signed}

October 8, 2010 68

Copyright © All Rights Reserved by Yuan-Hao Chang

PowerPC Architecture (Cont.)
• Addressing modes

– Branch instructions use one of the following addressing modes:

– The absolute address or displacement is encoded as part of the
instruction.

Mode Target address (TA) calculation
Absolute TA = actual address

Relative TA = current instruction address +
displacement{25 bits, signed}

Link Register TA = (LR)
Count Register TA = (CR)

October 8, 2010 69

Copyright © All Rights Reserved by Yuan-Hao Chang

PowerPC Architecture (Cont.)
• Instruction set

– PowerPC has approximately 200 machine instructions.
- Some are more complex than those in most RISC systems.
- E.g.,

· Load and store instructions may automatically update the index registers.
· Instructions could perform multiplication and addition in one instruction.

– Instruction execution on PowerPC is pipeline.
– Branch prediction is used to speed execution.

• Input and output
– Two different methods for performing I/O operations.

- Segments in the virtual address space are mapped onto an external
address space. (called direct-store segments)

- A reference to an address represents a normal virtual memory access.
I/O is performed using the regular virtual memory management hardware
and software.

October 8, 2010 70

Copyright © All Rights Reserved by Yuan-Hao Chang

Cray T3E Architecture (Alpha)
• Cray T3E is an architecture of supercomputers and is a massively

parallel processing (MPP) system.
• A T3E system contains a large number of processing elements (PE),

arranged in a three-dimensional network.
– The network provides a path for transferring data between processors.
– Control functions are provided to synchronize the operation of the PEs

used by a program.
– The interconnect network is circular in each dimension.

• Each PE consists of
– A DEC Alpha EV5 RISC microprocessor,
– Local memory, and
– Performance-accelerating control logic.

• A T3E system may contain
from 16 to 2048 PEs.

October 8, 2010 71

Copyright © All Rights Reserved by Yuan-Hao Chang

Cray T3E Architecture (Cont.)
• Memory

– Each PE has its own local memory with a capacity of from 64 MB to
2 GB.
- The local memory within each PE is part of a physically distributed,

logically shared memory system.
- One PE could access the memory of another PE.

– Bytes and words
- 8 bits form a byte.
- 2 consecutive bytes form a word.
- 4 bytes form a longword.
- 8 bytes form a quadword.

– All addresses are byte-addressable.
– Instruction execution could be more efficient if operands are aligned

at a starting address that is a multiple of their length.

October 8, 2010 72

Copyright © All Rights Reserved by Yuan-Hao Chang

Cray T3E Architecture (Cont.)
• Registers

– There are 32 64-bit general-purpose registers (R0 through R31). R31
always contains the value zero.

– There are 32 64-bit floating-point registers (F0 through F31). F31 always
contains the value zero.

– Other registers: a 64-bit program counter PC, and several status and
control registers.

• Data formats
– Integers are stored as lognwords or quadwords.
– 2’s complement is used to store negative values.
– There are two types float-point data formats:

- One group of three formats is included for compatibility with the VAX architecture.
- The other group consists of four IEEE standard formats.

– Characters are stored one per byte, using 8-bit ASCII codes.
- There are no byte load or store operations in Alpha. Only longwords and

quadwords can be transferred between a register and memory.
Characters are usually stored one per longword. (Trade-off between

performance and space)

October 8, 2010 73

Copyright © All Rights Reserved by Yuan-Hao Chang

Cray T3E Architecture (Cont.)
• Instruction formats

– There are five basic instruction formats in the Alpha architecture.
– Each instruction is 32 bits long.

- The first 6 bits specify the opcode.
- Some instruction have an additional “function” field.

• Addressing modes
– An operand value is specified as part of the instruction itself (Immediate

mode) or is in a register (register direct mode).
– Only load/store operations and branch operations would access memory.

Mode Target address (TA) calculation
PC-relative TA = (PC) + displacement {23 bits, signed}

Register indirect with
displacement TA = (register) + displacement {16 bits, signed}

For load and store operations and subroutine calls.

For conditional and unconditional branches

October 8, 2010 74

Copyright © All Rights Reserved by Yuan-Hao Chang

Cray T3E Architecture (Cont.)
• Instruction set

– There are approximately 130 machine instruction, reflecting its RISC
orientation.

– There are no byte or word load and store instructions.
- This means that the memory access interface does not need to include

shift-and-mask operations.

• Input and output
– The T3E system performs I/O through multiple ports into one or

more I/O channels.
– Channels are integrated into the network that interconnects the

processing nodes.
– A system may be configured with up to one I/O channel for every

eight PEs.
– All channels are accessible and controllable from all PEs.

References to Addressing
Modes and Instruction Set
References to Addressing
Modes and Instruction Set

October 8, 2010 76

Copyright © All Rights Reserved by Yuan-Hao Chang

Addressing Modes
• Flag bits

– Addressing types
- n indicates indirect addressing (Addressing types)
- i indicates immediate addressing

– Addressing modes
- b indicates base-relative addressing mode (Addressing modes)
- p indicates PC-relative addressing mode
- x indicates indexed addressing mode

– Extension
- e indicates extended format (i.e., Format 4) (Extension)

• Assembler language notation:
– c indicates a constant between 0 and 4095.
– m indicates a memory address or a constant value larger than 4095.
– + indicates extended format (i.e., Format 4Format 4)
– @ indicates a indirect addressing
– # indicates a immediate addressing
– X indicates register X (using indexed addressing)

• Letters in Notes
– 4 Format 4 instruction
– D Direct-addressing instruction (b=0, p=0)
– A Program-counter relative or base relative mode (b=1 or p=1)
– S Compatible with standard SIC instructions. Operand value is between 0 and 32,767.

October 8, 2010 77

Copyright © All Rights Reserved by Yuan-Hao Chang

October 8, 2010 78

Copyright © All Rights Reserved by Yuan-Hao Chang

Instruct Set of SIC/XE

op
8

Format 1 (1 byte):

op
8

Format 2 (2 bytes):

r2
4

r1
4

op
6

Format 3 (3 bytes):

n
1

i
1

x
1

b
11 1

p e disp
12

op
6

Format 4 (4 bytes):

n
1

i
1

x
1

b
11 1

p e addr
20

Indexxed
addressing

BBase relative
addressing PProgram-counter

relative addressing

EExtension format
Format 3: e = 0
Format 4: e = 1

Inndirect
addressing

IImmediate addressing

Displacement

Address

register

opcode

October 8, 2010 79

Copyright © All Rights Reserved by Yuan-Hao Chang

Instruction Set Table of SIC/XE
• Mnemonic

– m indicates a memory address.
– n indicates an integer between 1 and 16.
– r1, r2 represent register identifiers.

• Format :
– Format indicates which SIC/XE instruction format is to be used in assembling each

instruction. (3/4 : means that either Format 3 or Format 4 can be used.)
– All instructions for the standard SIC are compatible with Format 3 of SIC/XE.
– Instruction subfields that are not required are set to zero.

• Effect
– Parentheses are used to denote the contents of a register or memory location.

- A (m..m+2) specifies that the contents of the memory locations m through m+2 are loaded
into register A.

- m..m+2 (A) specifies that the contents of register A are stored in the word that begins at
address m.

• Notes
– P : PPrivileged instruction
– X : Instruction available only on SIC/XXE version
– F : FFloating-point instruction
– C : CCondition code CC set to indicate result of operation (<, =, or >)

October 8, 2010 80

Copyright © All Rights Reserved by Yuan-Hao Chang 1/5

October 8, 2010 81

Copyright © All Rights Reserved by Yuan-Hao Chang 2/5

October 8, 2010 82

Copyright © All Rights Reserved by Yuan-Hao Chang 3/5

October 8, 2010 83

Copyright © All Rights Reserved by Yuan-Hao Chang 4/5

October 8, 2010 84

Copyright © All Rights Reserved by Yuan-Hao Chang 5/5

October 8, 2010 85

Copyright © All Rights Reserved by Yuan-Hao Chang

ASCII Character Codes

	System Programming系統程式
	Course Information
	Outline of the Course
	Outline
	Objectives of This Course
	Examples of System Software
	System Software and Machine Architecture
	Simplified Instructional Computer (SIC)
	SIC Machine Architecture
	SIC Machine Architecture (Cont.)
	SIC Machine Architecture (Cont.)
	SIC Machine Architecture (Cont.)
	SIC Machine Architecture (Cont.)
	SIC Machine Architecture (Cont.)
	SIC/XE Machine Architecture
	SIC/XE Machine Architecture (Cont.)
	SIC/XE Machine Architecture (Cont.)
	SIC/XE Machine Architecture (Cont.)
	SIC/XE Machine Architecture (Cont.)
	SIC/XE Machine Architecture (Cont.)
	SIC/XE Machine �Architecture (Cont.)
	SIC/XE Machine Architecture (Cont.)
	SIC/XE Machine Architecture (Cont.)
	SIC/XE Machine Architecture (Cont.)
	Expression Convention
	Sample Data Movement
	Sample Arithmetic Operations
	Sample Arithmetic Operations (Cont.)
	Sample Looping and Indexing
	Sample Looping and Indexing (Cont.)
	Another Sample Indexing and Looping
	Another Sample Indexing and Looping (Cont.)
	Simple Input and Output
	Sample Subroutine Call
	Sample Subroutine Call (Cont.)
	CISC Machines
	VAX Architecture
	VAX Architecture (Cont.)
	VAX Architecture (Cont.)
	VAX Architecture (Cont.)
	VAX Architecture (Cont.)
	VAX Architecture (Cont.)
	VAX Architecture (Cont.)
	Pentium Architecture
	Pentium Architecture (Cont.)
	Pentium Architecture (Cont.)
	Pentium Architecture (Cont.)
	Pentium Architecture (Cont.)
	Pentium Architecture (Cont.)
	Pentium Architecture (Cont.)
	RISC Machines
	UltraSPARC Architecture
	UltraSPARC Architecture (Cont.)
	UltraSPARC Architecture (Cont.)
	UltraSPARC Architecture (Cont.)
	UltraSPARC Architecture (Cont.)
	UltraSPARC Architecture (Cont.)
	PowerPC Architecture
	PowerPC Architecture (Cont.)
	PowerPC Architecture (Cont.)
	PowerPC Architecture (Cont.)
	PowerPC Architecture (Cont.)
	PowerPC Architecture (Cont.)
	PowerPC Architecture (Cont.)
	Cray T3E Architecture (Alpha)
	Cray T3E Architecture (Cont.)
	Cray T3E Architecture (Cont.)
	Cray T3E Architecture (Cont.)
	Cray T3E Architecture (Cont.)
	Addressing Modes
	Instruct Set of SIC/XE�
	Instruction Set Table of SIC/XE
	ASCII Character Codes

