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Course Information
• Lecturer: 

– Yuan-Hao Chang
– Office: Room 207-2
– Phone: +886-2-2771-2171 ext. 2288 

• Lecturing hours: 
– 2:10 pm ~ 5:00 pm, Friday

• Classroom:
– Room 309, Third Education Building (三教 309) 

• Textbook:
– System Software - An Introduction to Systems Programming, 3rd Edition, 1997
– Author: Leland L. Beck

Publisher: Addison Wesley (台北圖書代理), ISBN: 0-321-21177-4 
• Course webpage: 

– http://www.ntut.edu.tw/~johnsonchang/courses/Algorithm201008/
• Grading：(subject to changes)

– Homework: (30%), Midterm exam (30%), Final exam (30%), In-class 
performance (10%)

http://www.lookbook.com.tw/Stores_App/Browse_Item_Details.asp?Shopper_id=4883826151454883&Store_id=142&page_id=23&Item_ID=1345
http://www.ntut.edu.tw/~johnsonchang/courses/Algorithm201008/
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Outline of the Course
• Background

• Assemblers

• Loaders and linkers

• Macro processors

• Compilers

• Operating systems

• Other system software

• Software engineering issues



Chapter 1
Background

Chapter 1
Background
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Outline
• Introduction

• The Simplified Instructional Computer (SIC)

• CISC Machines

• RISC Machines

• References to Addressing Modes and Instruction Set



IntroductionIntroduction
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Objectives of This Course
• This course is an introduction to the design and 
implementation of system software.
– System software consists of a variety of programs that 

support the operation of a computer.
– System software makes it possible for users to focus on 

an application or a problem to be solved, without 
knowing how the machine works internally.

• By understanding the system software, you will
– Gain a deeper understanding of how computers really 

work.
– Learn the relationship between system software and 

machine architecture.
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Examples of System Software
• Assembler

– Translate assembler-language programs into machine language, 
and may include macro processor.

• Loader or Linker
– Load the resulting machine-language program into memory and 

prepared for execution.

• Compiler
– Translate programs in a high-level language (that are edited by text 

editor) into machine language.

• Operating system
– Control all of the processes running on the machine and take care of 

all the machine-level details.

• Debugger
– Help detect errors in programs.
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System Software and Machine Architecture
• Machine dependency is the main difference between 

system software and application software.
– Application programs are concerned with the solution of some 

problem, using the computer as a tool. 
– System programs are intended to support the operation and use of 

the computer itself. For example:
- Assemblers translate mnemonic instructions into machine code.
- Compilers generate machine language code, taking hardware 

characteristics into account.
- Operating systems are directly concerned with the management of 

nearly all of the resources of a computing system.

• There are some aspects of system software that do not 
directly depend upon the computing system. For example:

– The general design and logic of an assembler.
– Some code optimization techniques used by compilers.



The Simplified 
Instructional Computer 

(SIC) 

The Simplified 
Instructional Computer 

(SIC) 
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Simplified Instructional Computer (SIC)
• It is difficult to distinguish whether the features of software 

are truly fundamental or solely depend on a particular 
machine.

– To avoid this problem, the fundamental functions of system software 
are discussed through a Simplified Instructional Computer (SIC).

– SIC is a hypothetical (假定的) computer that is carefully designed
- To include the hardware features most often found on real computers.
- To avoid unusual or irrelevant complexities.

– SIC provides the reader with a starting point to begin the design of 
system software for a new computer.

• SIC comes in two versions:
– The standard model: SIC
– The extra equipment version: SIC/XE
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SIC Machine Architecture
• Memory

– 8 bits forms a byte.
– 3 consecutive bytes form a word (24 bits).
– All addresses on SIC are byte addresses.
– Words are addressed by the location of their lowest 

numbered byte.
– There are 32,768 (215) bytes in the computer memory.
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SIC Machine Architecture (Cont.)
• Registers

– Five registers, all of each have special uses.
– 24 bits long in each register.

Mnemonic
(助記符號) Number Special use

A 0 AAccumulator; used for arithmetic operations
X 1 IndeXX Register; used for (indexed) addressing

L 2 LLinkage register; the Jump to Subroutine (JSUB) 
instruction stores the return address in this register

PC 8 PProgram CCounter; contains the address of the next 
instruction to be fetched for execution

SW 9 SStatus WWord; contains a variety of information, 
including a Condition Code (CC)
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SIC Machine Architecture (Cont.)
• Data formats

– Integers are stored as 24-bit binary numbers.
– Negative values are represented by 2’s complement.
– Characters are stored using 8-bit ASCII codes.
– Floating-point hardware is not supported.

• Instruction formats

opcode x address
8 1 15

Indicate indexed-
addressing mode

Address of the 
operandOpcode of the 

instruction
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SIC Machine Architecture (Cont.)
• Addressing Modes

– Indicated by the setting of the x bit in the instruction.
– The target address is calculated from the address given in the 

instruction.
- Target address of an instruction is the address (of the operand) that will 

be accessed by the instruction.
– Parentheses are used to indicate the contents of a register or a 

memory location.
· E.g., (X) represents the contents of register X.

Mode Indication Target address (TA) calculation
Direct x = 0 TA = address

Indexed x = 1 TA = address + (X)
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SIC Machine Architecture (Cont.)
• Instruction Set

– Instructions that load and store registers
- E.g., LDA, LDX, STA, STX, etc.

– Integer arithmetic operations
- All arithmetic operations involve register A and a word in memory with 

the result left in register A.
- E.g., ADD, SUB, MUL, DIV

– Comparison instructions (COMP)
- COMP compares the value in register A with a word in memory, and sets 

a condition code (CC) to indicate the result (<, =, or >).
– Conditional jump instructions (JLT, JEQ, JGT) 

- Test the setting of CC, and jump accordingly.
– Subroutine linkage

- JSUB jumps to the subroutine, placing the return address in register L.
- RSUB returns by jumping to the address contained in register L.

A complete list of 
instructions are listed in 
the appendix / references.
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SIC Machine Architecture (Cont.)
• Input and Output

– Input and output are performed by transferring 1 byte at a time to or 
from the rightmost 8 bits of register A.

– Each device is assigned a unique 8-bit code.
– There are three I/O instructions, each of which specifies the device 

code as an operand:
- Test Device (TD) :

· Test whether the addressed device is ready to send or received a byte of data.
· The condition code is set to indicate the result of this test.

» < means the device is ready.
» = means the device is not ready.

· A program cannot transfer data until the device is ready.
- Read Data (RD): Read a byte from the device
- Write Data (WD): Write a byte to the device
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SIC/XE Machine Architecture
• Memory

– The memory structure for SIC/XE is the same as SIC.
– The maximum memory  available on a SIC/XE system is 1 

megabytes (220 bytes).
– This increase leads to a change in instruction formats and 

addressing modes.

• Registers
– Four additional registers (compared to SIC) are provided by SIC/XE:
Mne-
monic Number Special use

B 3 BBase register; used for (base-register relative) addressing
S 4 General working register; no special use
T 5 General working register; no special use
F 6 FFloating-point accumulator (48 bits)
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SIC/XE Machine Architecture (Cont.)
• Data formats

– SIC/XE provides the same data formats as the standard version.
– SIC/XE provides a 48-bit floating-point data type:

- The fraction (f) is interpreted as a value between 0 and 1.
· The assumed binary point is immediately before the high-order bit.
· For normalized floating-point, the high-order bit of the fraction must be 1.

- The exponent (e) is interpreted as an unsigned binary number between 
0 and 2047.

- The sign of the float-point number is indicated by the value of s
· 0 = positive, 1 = negative.

- A value of zero is represented by setting all bits to 0.

exponent (e) fraction (f)
11 36

s
1

The floating-point value = f * 2(e-1024)
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SIC/XE Machine Architecture (Cont.)
• Instruction formats

– The 15-bit address field in SIC is no longer suitable due 
to the larger memory in SIC/XE.

– Two possible options:
- Use some form of relative addressing or
- Extend the address field to 20 bits.

– Four instructions formats:
- Formats 1 and 2 do not reference memory at all.

op
8

Format 1 (1 byte):

op
8

Format 2 (2 bytes):

r2
4

r1
4

register

opcode
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SIC/XE Machine Architecture (Cont.)
• Instruction formats (Cont.)

op
6

Format 3 (3 bytes):

n
1

i
1

x
1

b
11 1

p e disp
12

op
6

Format 4 (4 bytes):

n
1

i
1

x
1

b
11 1

p e addr
20

Indexxed 
addressing

BBase relative
addressing

PProgram-counter 
relative addressing

EExtension format
Format 3: e = 0 
Format 4: e = 1

Inndirect
addressing

IImmediate addressing

Displacement

Address
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SIC/XE Machine Architecture (Cont.)
• Addressing Modes – Target Address Calculation

– For a Format 4 (e=1) instruction, bits b and p are normally set to 0.

TA Calculation Mode Indication Target address calculation
x=0, b=0, p=1 TA = (PC) + disp (-2048 ≤ disp ≤ 2047)
x=1, b=0, p=1 TA = (PC) + disp + (X) (-2048 ≤ disp ≤ 2047)
x=0, b=1, p=0 TA = (B) + disp (0 ≤ disp ≤ 4095)

x=1, b=0, p=0 TA = disp + (X)

Base relative 
addressing x=1, b=1, p=0 TA = (B) + disp + (X) (0 ≤ disp ≤ 4095)

x=0, b=0, p=0 TA = disp
Direct addressing

Program-counter 
relative addressing

Format 3 (e=0)
Signed integer

Unsigned integer

TA = addr + (X) x=1, b=0, p=0
TA = addrx=0, b=0, p=0

Direct addressing

Target address calculationIndicationTA Calculation Mode

(PC), (B), and (X) represent the contents of register PC, B, and X, respectively.
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SIC/XE Machine Architecture (Cont.)
• Addressing Types – How The Target Address Is Used

– Simple addressing: The target address is taken as the address of the 
operand value.

– Immediate addressing: The target address is used as the operand value.
– Indirect addressing: The value of the word at the location given by the 

target address is the address of the operand value.

TA Addressing Type Indication Operand value

n=0, i=0
(TA) for SIC machine, because the 8-bit binary 
opcodes of SIC instructions end in 00.
b/p/e/disp = 15-bit addressaddress field of SIC instruction

n=1, i=1 (TA) for SIC/XE machine
Immediate addressing n=0, i=1, x=0 TA
Indirect addressing n=1, i=0, x=0 ((TA))

Simple addressing

Indexed addressing cannot be used with immediate or indirect addressing modes. (x=0)
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SIC/XE Machine 
Architecture (Cont.)

• Addressing modes for Format 3 and 
Format 4 instructions.

• Combinations of addressing bits not in 
this table are errors.

• Assembler language notation:
– c indicates a constant  between 0 and 

4095.
– m indicates a memory address or a 

constant value larger than 4095.
– + indicates extended format (i.e., 

Format 4Format 4)
– @ indicates a indirect addressing
– # indicates an immediate addressing
– X indicates register X (using indexed 

addressing)
• Letters in Notes

– 4 Format 4 instruction
– D Direct-addressing instruction
– A Program-counter relative or base 

relative mode
– S Compatible with standard SIC 

instructions. Operand value can be 
between 0 and 32,767.

Addressing 
type

Addressing 
mode

Exten
sion

Compatible 
with SIC 

instructions
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SIC/XE Machine Architecture (Cont.)

Indexed addressing PC-relative addressing

Base-relative addressing Format 4

LDA

Indirect 
addressing

Immediate 
addressing

TA = (PC)+disp

SIC

Simple addressing

TA = (B)+disp+(X)
TA = (PC)+disp
TA = disp
TA = (PC)+disp

TA = addr

(TA)=
(TA)=

((TA))=
TA=

(TA)=
(TA)=

Addressing mode

Addressing type
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SIC/XE Machine Architecture (Cont.)
• Instruction Set

– SIC/XE provides all of the instructions that are available 
on SIC.

– Some extended instructions are supported.
- Load and store new registers

· E.g., LDB, STB, etc.
- Floating-point arithmetic operations

· E.g., ADDF, SUBF, MULF, DIVF
- Register-to-register arithmetic operations

· E.g., RMO (register move operation), ADDR, SUBR, MULR, DIVR
- Special supervisor call instruction (SVC)

· This instruction generates an interrupt that can be used for 
communication with the operating system.
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SIC/XE Machine Architecture (Cont.)
• Input and Output

– The I/O instructions supported by SIC are also available 
on SIC/XE.

– I/O channels that can be used to perform input and 
output while the CPU is executing other instructions.
- This allows overlap of computing and I/O.

· SIO, TIO, and HIO are used to start, test, and halt the operation of I/O 
channels.
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Expression Convention
• Parentheses are used to denote the contents of 
a register or memory location.
– A (m..m+2) specifies that the contents of the memory 

locations m through m+2 are loaded into register A.
– m..m+2 (A) specifies that the contents of register A are 

stored in the word that begins at address m.
– (A) : (m..m+2) specifies that the contents of register A

and memory location m through m+2 are compared.
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Sample Data Movement
SIC A (FIVE)

ALPHA (A)

Load a word
A (CHARZ)

Load a 
character

C1 (A)

SIC/XE

Reserve one byte of storage/variable for use by the program

Reserve one byte of 
storage/constant

initialized to ‘Z’

Reserve one word of storage/variable for use by the program

Reserve one word of storage/variable for use by the program

Immediate 
addressing

A 5
ALPHA (A)

A 90
C1 (A)



October 8, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Sample Arithmetic Operations
SIC A (ALPHA)

A (A) + (INCR)
A (A) - (ONE)

BETA (A)

comment

constant

variable

BETA = (ALPHA) + (INCR) - 1

DELTA = (GAMMA) + (INCR) - 1

A (GAMMA)
A (A) + (INCR)

A (A) – (ONE)
DELTA (A)

• This program is to store the value (ALPHA + 
INCR – 1) in BETA, and the value (GAMMA 
+ INCR – 1) in DELTA.
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Sample Arithmetic Operations (Cont.)
SIC/XE S (INCR)

A (ALPHA)
A (A) + (S)

A (A) - 1
BETA (A)

A (GAMMA)
A (A) + (S)

A (A) - 1
DELTA (A)

• This avoids having to fetch INCR from memory 
each time it is used in a calculation.

• Immediate addressing is used for the constant 
1 in the subtraction operations.
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Sample Looping and Indexing
SIC

X (ZERO)
A (STR1 + (X))

• The loop copies one 11-byte character string to another.

• The index register X is initialized to zero.

• TIX performs two functions:
– First it adds 1 to the value in register X.
– Then it compares the new value of register X to the value of the operand. 

The condition code is set according to the compared result (<, =, >)

Indexed addressing

STR2 + (X) (A)
X (X) + 1
(X) : (ELEVEN)

PC MOVECH if CC set to <
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Sample Looping and Indexing (Cont.)
SIC/XE

X (X) + 1
(X) : (T)

T 11
X 0

• TIXR allows to compare index register X with another register.
– This is efficient because the value does not have to be fetched 

from memory each time the loop is executed.

Immediate addressing
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Another Sample Indexing and Looping

100-word arrays/variables

A 0
INDEX (A); // initialize the index value

X (INDEX)
A (ALPHA + (X))

one-word constants

A (A) + (BETA+(X))
GAMMA+(X) (A)

A (INDEX)
A (A) + (THREE); // increase 3
INDEX (A);

(A) : (K300)
PC ADDLP if CC set to <

Move to 
next word

GAMMA 
(ALPHA) 
+ (BETA)

• This loop adds elements of ALPHA
and BETA, and stores the results in 
the elements of GAMMA.

• TIX instruction always adds 1 to 
register X, so it is not suitable to 
this program.

SIC

• This SIC program is cumbersome because register A must be 
used for adding ALPHA and BETA, and incrementing INDEX.
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Another Sample Indexing and Looping 
(Cont.)

SIC/XE S 3
T 300

X 0

GAMMA 
(ALPHA) 
+ (BETA)

X (X) + (S); // move to next word

• Register S: Store 3 for the one-word increment.
Register T: Store 300 for the number of words in an array.
Register X: Indicate the offset (index value) to the 
starting of an array.

(X) : (T)
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Simple Input and Output

• This program reads 1 byte of data from device F1 and copies it to device 05.
• TD instruction is to test whether the device is ready.

– If the device is ready to transmit data, the condition code is set to “less than.”
– If the device is not ready, the condition is set to “equal.”

Test device specified by (m)

hexadecimal

SIC

Check if the 
device is 

ready

A [rightmost byte] data
DATA (A) [rightmost byte]

Read one byte from device INDEV and store it at DATA

Load one byte from DATA and write it to device OUTDEV
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Sample Subroutine Call
SIC

• This subroutine is called from the main program by the JSUB 
(Jump to Subroutine) instruction.

• At the end of the subroutine, an RSUB (Return from Subroutine)
instruction returns to the instruction following the JSUB.

L (PC); PC READ

PC (L)

Before value of PC is stored in L, PC is advanced by 3 (pointing
to the next instruction)

Read 100 bytes 
from device F1 and 
store them in a 100-
bye buffer area 
labeled RECORD.

X (X) + 1
(X) : (K100)
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Sample Subroutine Call (Cont.)
SIC/XE L (PC); PC READ

PC (L)

X 0

X (X) + 1; (X) : (T)

T 100
Test device specified by (INDEV)

PC RLOOP if CC set to =
A data

RECORD + (X) (A)

PC RLOOP if CC set to <

• Register T: Store 100 for the number of bytes to read.
• Register X: Indicate the offset (index value) to the starting of an array.



CISC MachinesCISC Machines
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CISC Machines
• Complex instruction set computers (CISC) usually 
include
– A relatively large and complicated instruction set.
– Several different instruction formats and lengths.
– Many different addressing modes.

• The implementation of CISC architecture in 
hardware tends to be complex.

• Sample CISC machines
– VAX architecture
– Pentium architecture
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VAX Architecture
• Memory

– Bytes and words
- 8 bits form a byte.
- 2 bytes form a word.
- 4 bytes form a longword.
- 8 bytes form a quadward.
- 16 bytes form a octaword.

– Some operations are more efficient when operands are aligned in a 
particular way.

- E.g., a longword operand that begins at a byte address that is a multiple of 4.
– Virtual address space: 232 bytes

- This virtual memory allows program to operate as though they have a large 
memory.

- One half of virtual address space is system space that contains the operating 
system and is shared by all programs.

- The other half of the address space is process space that is defined separately 
for each program.

· A part of the process space contains stacks that are available to the program.
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VAX Architecture (Cont.)
• Registers

– 16 general-purpose registers denoted by R0 through R15.
- R15 is the program counter (PC).

· It is updated during instruction execution to point to the next instruction.
- R14 is the stack pointer (SP).

· It points to the current top of the stack in the program’s process space.
- R13 is the frame pointer (FP).

· VAX procedure call conventions build a data structure called a stack frame, 
and place its address in FP.

- R12 is the argument pointer (AP).
· The procedure call convention uses AP to pass a list of arguments associated 

with the call.
- R6 through R11 have no special functions.
- R0 through R5 are likewise available for general use, but are also used 

by some machine instructions.
– A processor status longword (PSL) that contains state variables 

and flags associated with a process.
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VAX Architecture (Cont.)
• Data Formats

– Integers are stored as binary numbers in a byte, word, longword, 
quadword, or octaword.

– 2’s complement representation is used for negative values.
– Characters are stored using their 8-bit ASCII codes.
– Four different floating-point data formats, ranging in length from 4 to 

16 bytes.
– VAX processors provide a packed decimal data format.

- Each byte represents two decimal digits, with each digit encoded using 4 
bits of the byte. (4 bits form a nibble.)

- The sign is encoded in the last 4 bits.
– VAX also provides hardware to support queues and variable-length 

bit strings.
- There are single machine instructions that 

· Insert and remove entries in queues. (support atomic operations)
· Perform a variety of operations on bit strings.

21544

hexadecimal F for positive numbers and 
hexadecimal D for negative numbers 
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VAX Architecture (Cont.)
• Instruction formats

– VAX machine instructions use a variable-length instruction format.
– Each instruction consists of

- An operation code (1 or 2 bytes)
- Up to six operand specifiers, depending on the type of instruction.

· Each operand specifier designates one of the VAX addressing modes and gives any additional 
information to locate the operand.

• Addressing modes
– Register mode: The operand itself is in a register.
– Register deferred mode: The address of an operand is specified by a 

register.
- The register contents may be automatically incremented or decremented by the 

operand length (autoincrement and autodecrement modes).
– There are several base relative addressing modes, with displacement fields 

of different lengths.
- E.g., PC-relative mode by using register PC for the displacement.

– Immediate addressing is to include operands in the instruction itself.
– All of the addressing modes could include an index register, and many of 

them are available in a form that specifies indirect addressing.
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VAX Architecture (Cont.)
• Instruction set

– Instruction mnemonics are formed by combining the following 
elements:
- 1. a prefix that specifies the type of operations,
- 2. a suffix that specifies the data type of the operands,
- 3. a modifier (on some instructions) that gives the number of operands 

involved.
– E.g.,

- ADDW2: an add operation with two operands, and each a word in length.
- MULL3: a multiply operation with three longword operands.
- CVTWL: a conversion from word to longword, with two operands.

– Operands may be located in registers, memory, or instruction itself 
(immediate addressing).

– VAX provides all of the usual types of instructions for computation, 
data movement and conversion, comparison, branching, etc.
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VAX Architecture (Cont.)
• Instruction set (Cont.)

– There are a number of operations that are much more 
complex than the machine instructions found on most 
computers.
- These operations are hardware realizations of frequently 

occurring sequences of codes. E.g., 
· Instructions to load and store multiple registers, and manipulate 
queues and variable-length bit fields.

· Powerful instruction to call and return from procedures.
· Single instruction to 

» Save a designated set of registers, 
» Pass a list of arguments to the procedure, 
» Maintain the stack, frame, and argument pointers, and
» Set a mask to enable error traps for arithmetic operations.
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VAX Architecture (Cont.)
• Input and output

– Input and output are accomplished by I/O device 
controllers.

– Each controller has a set of control/status and data 
registers, which are assigned locations in the physical 
address space.

– The address space mapped by the device controller 
registers are called I/O space.
- No special instructions are required to access registers in I/O 

space.
- An I/O device driver issues commands to the device controller by

storing values into the appropriate registers, exactly as if there 
were physical memory locations.

- The association of an address in I/O space with a physical 
register in a device controller is handled by the memory 
management routines.
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Pentium Architecture
• Memory

– At the physical level, memory consists of 8-bit bytes. All 
addresses used are byte addresses.

– Programmers view the x86 memory as a collection of 
segments.
- An address consists of two parts: A segment number and an 

offset.
· Segments can be of different sizes, and are often used for different 
purposes. E.g., a segment for executable instructions or data storage.

· A segment can be divided into pages. Some of the pages of a 
segment may be in physical memory, while others may be stored on
disk.

- The segment/offset address specified by the programmer is 
automatically translated into a physical byte address by the x86
Memory Management Unit (MMU).
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Pentium Architecture (Cont.)
• Registers

– Eight general-purpose registers (32 bits):
- EAX, EBX, ECX, and EDX are generally used for data manipulation. It is possible to 

access individual words or bytes from these registers.
- ESI, EDI, EBP, and ESP are usually used to hold addresses.

– EIP is a 32-bit register that contains a pointer to the next instruction to be 
executed. (like program counter (PC))

– FLAGS is a 32-bit register that contains many different bit flags.
- Some indicates the status of the processor.
- Others are used to record the results of comparisons and arithmetic operations.

– Six 16-bit segment registers to locate segments in memory.
- Segment register CS contains the address of the currently executing code 

segment.
- Segment register SS contains the address of the current stack segment.
- DS, ES, FS, and GS are used to indicate the addresses of data segment. 

– Floating-point computations are performed by a special floating-point unit 
(FPU).
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Pentium Architecture (Cont.)
• Data formats

– Integers are normally stored as 8-, 16-, or 32-bit binary numbers. 
Negative values are represented in 2’s complement.

– Little-endian byte ordering:
- The least significant part of a numeric value is stored at the lowest-

numbered address.
– Two binary coded decimal (BCD) formats:

- Unpacked BCD format: Each byte represents one decimal digit.
- Packed BCD format: Each byte represents two decimal digits.

– Three different floating-point data formats:
- Single-precision format: 32 bits long (24 significant bits and 7-bit 

exponent).
- Double-precision format: 64 bits long (53 significant bits and 10-bit 

exponent).
- Extended-precision format: 80 bits long (64 significant bits and 15-bit 

exponent).
– Characters are stored one per byte.
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Pentium Architecture (Cont.)
• Instruction formats

– Basic format:
- Begin with optional prefixes to contain flags that modify the 

operation of the instruction. E.g., 
· Repetition count for an instruction.
· Specification to a segment register that is used for addressing an 
operand (to override the normal default assumptions).

- Following the prefix (if any) is an opcode (1 or 2 bytes).
· The opcode is the only element that is always present in every instruction.

- Following the opcode are a number of bytes that specify the 
operands and addressing modes to be used.

– There are a large number of different potential instruction 
formats, varying in length from 1 byte to 10 bytes or more.
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Pentium Architecture (Cont.)
• Addressing modes

– An operand value may be specified as part of the instruction itself 
(immediate mode), or it may be in a register (register mode).

– Operands stored in memory are often specified by the target 
address calculation:

- Any general-purpose register may be used as a base register.
- Any general-purpose register except ESP can be used as an index 

register.
- The scale factor may have the value 1, 2, 4, or 8.
- The displacement may be an 8-, 16-, or 32-bit value.

– Various combinations of these items may be omitted, resulting in
eight different addressing modes.

– The address of an operand in memory may be specified as an 
absolute location (direct mode), or as a location relative to the EIO 
register (relative mode).

TA = (base register) + (index register) * (scale factor) + displacement
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Pentium Architecture (Cont.)
• Instruction set

– The x86 architecture has a large and complex instruction set (more than 
400 different machine instructions).

– An instruction may have zero, one, two, or three operands.
– There are register-to-register instruction, register-to-memory instructions, 

and a few memory-to-memory instructions.
– Most data movement and integer arithmetic instructions can use operands 

that are 1, 2, or 4 bytes long.
– String manipulation instructions can deal with variable-length strings of 

bytes, words, or doublewords.
– Many instructions that 

- Perform logical and bit manipulations, and 
- Support control of the processor and memory-management systems.

– The x86 architecture includes special-purpose instructions to perform 
operations frequently required in high-level programming languages.

- E.g., entering and leaving procedures, and checking subscript values against the 
bounds of an array.
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Pentium Architecture (Cont.)
• Input and output

– Input is performed by instructions that transfer one byte, 
word, or doubleword at a time from an I/O port into 
register EAX.

– Output instructions transfer one byte, word, or 
doubleword from EAX to an I/O port.

– Repetition prefixes allow to transfer an entire string in a 
single operation.

– Special I/O instructions are needed.



RISC MachinesRISC Machines



October 8, 2010 56

Copyright © All Rights Reserved by Yuan-Hao Chang

RISC Machines
• Reduced Instruction Set Computers (RISC) have a simplified design 

that results in 
– Faster and less expensive processor development
– Greater reliability and 
– Faster instruction execution times.

• A RISC system is characterized by 
– A fixed instruction length, and 
– Single-cycle execution of most instructions.

• Memory access is usually done by load and store instructions only.
• All instructions except for load and store are register-to-register 

operations.
• There are typically a large number of general-purpose registers.
• The number of machine instructions, instruction formats, and 

addressing modes is relatively small.
• Sample CISC machines are UltraSPARC, PowerPC, and Cray T3E.
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UltraSPARC Architecture
• The UltraSPARC processor was announced by Sun.

– SPARC stands for Scalable Processor Architecture.

• Memory
– Bytes and words

- 8-bit forms a byte.
- 2 consecutive bytes form a halfword.
- 4 bytes form a word.
- 8 bytes form a doubleword.

– Virtual address space is 264 bytes.
- This address space is divided into pages.
- Multiple page sizes are supported.
- Pages used by a program could be in physical memory or on disk.
- The virtual address specified by instruction is translated into a physical 

address by MMU.
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UltraSPARC Architecture (Cont.)
• Registers

– SPARC includes a large register file that usually contains more than 
100 general-purpose registers.
- Procedures could only access 32 registers designated to r0 through r31. 

· r0 through r7 are global: They can be accessed by all procedures.
· The other 24 registers available to a procedure can be visualized as a window

through which part of the register file can be seen, so some registers in the 
register file are shared between procedures. 

» E.g., Registers r8 through r15 of a calling procedure are physically the same 
registers as r24 through r31 of the called procedure (for parameter passing).

- If a set of concurrently running procedures need more windows than 
available, a “window overflow” interrupt occurs to trigger saving the 
contents of some registers in the file (and restore them later).

– Floating-point computations are performed through FPU.
– In addition, there are a program counter, condition code registers,  

and a number of other control registers.
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UltraSPARC Architecture (Cont.)
• Data formats

– It provides integers, floating-point values, and characters.
– Integers are 8-,16-, 32-, or 64-bit binary numbers. (2’s complement 

for negative values).
– Big-endian byte ordering is supported: The most significant part of a 

numeric value is stored at the lowest-numbered address.
– Three different floating-point data formats:

- Single-precision format: 32 bits long (23 significant bits and 8-bit 
exponent)

- Double-precision format: 64 bits long (52 significant bits and 11-bit 
exponent)

- Quad-precision format: 80 bits long (63 significant bits and 15-bit 
exponent)

– Characters are stored one per byte, using 8-bit ASCII codes.
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UltraSPARC Architecture (Cont.)
• Instruction formats

– Every instruction is 32 bits long.
- The first 2 bits identify which format is used.

· Format 1 is used for the call instruction.
· Format 2 is used for branch instructions.
· Format 3 provides register loads and stores, and three-operand arithmetic operations.

• Addressing modes
– An operand value is specified as part of the instruction itself (immediate 

mode) or is in a register (register direct mode).
– Operands in memory are addressed using one of the following mode:

Mode Target address (TA) calculation
PC-relative TA = (PC) + displacement{30 bits, signed}

Register indirect with 
displacement TA = (register) + displacement{13 bits, signed}

Register indirect indexed TA = (register-1) + (register-2)

PC-relative mode 
is only for branch 

instruction
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UltraSPARC Architecture (Cont.)
• Instruction set

– Fewer than 100 machine instructions (reflecting RISC philosophy).
– Load and store architecture: only load and store instructions access 

memory.
– Instruction execution is pipelined.

- Pipeline means that while one instruction is being executed, the next one is being 
fetched from memory and decoded.

- An branch instruction might cause the process to “stall.”
· The instruction following the branch would have to be discarded even if it is fetched and 

decoded.
- To make pipeline more efficient, SPARC branch instructions are delayed 

branches.
· A delayed branch means that the instruction immediately following the branch instruction is 

actually executed before the branch is taken.

SUB %L0, 11, %L1  // %L1 (%L0) - 11
BA NEXT  // PC NEXT
MOV %L1, %O3 // %O3 (%L1) In the delay slot: MOV is executed

before the branch BA.
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UltraSPARC Architecture (Cont.)
• Instruction set (Cont.)

– High-bandwidth block load and store operations.
– Communication in a multi-processor system is facilitated by “atomic”

instructions that can execute without allowing other memory 
accesses to intervene.

– Conditional move instructions may allow a compiler to eliminate 
many branch instruction.

• Input and output
– Communication with I/O devices is accomplished through memory.
– A range of memory locations is logically replaced by device 

registers.
- Each I/O device has a unique set of addresses assigned to it.
- When a load or store instruction refers to this device register area of 

memory, the corresponding device is activated. (No special I/O 
instructions are needed.)
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PowerPC Architecture
• POWER is an acronym for Performance Optimization With Enhanced 

RISC.
• Memory

– Bytes and words
- 8 bits form a byte.
- 2 consecutive bytes form a halfword.
- 4 bytes form a word.
- 8 bytes form a doubleword.
- 16 bytes form a quadword.

– All addresses are byte addresses.
– If operands are aligned at a starting address that is a multiple of their length.
– Virtual address space is of 264 bytes.

- This space is divided into fixed-length segments, which are 256 MBs long.
- Each segment is divided into pages, which are 4096 bytes long.
- A page could be in memory or on disk. 
- When an instruction is executed, the hardware and OS make sure the needed page 

is loaded to physical memory.
- The virtual address specified by the instruction is automatically translated into a 

physical address by MMU.
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PowerPC Architecture (Cont.)
• Registers

– 32 general-purpose registers, designated GPR0 through 
GPR31. Each is 64 bits long.

– Floating-point computations are performed using a 
special floating-point unit (FPU).

– A 32-bit condition register (CR) reflects the result of 
certain operations such as testing, branching, and 
arithmetic.
- This register is divided into eight 4-bit subfields, named CR0 

through CR7.
– Other registers:

- A link register (LR) and a count register (CR) for branch 
instructions.

- A machine status register (MSR) and other control and status 
registers.
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PowerPC Architecture (Cont.)
• Data formats

– Integers are stored as 8-, 16-, 32-, or 64-bit binary numbers.
– 2’s complement is used to store negative values.
– Big-endian byte ordering: The most significant part of a numeric 

value is stored at the lowest-numbered address. (Little-endian is 
also supported).

– There are two float-point data formats:
- Single-precision format: 32-bit long (23 significant bits and 8-bit 

exponent)
- Double-precision format: 64-bit long (52 significant bits and 11-bit 

exponent)
– Characters are stored one per byte, using 8-bit ASCI codes.
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PowerPC Architecture (Cont.)
• Instruction formats

– There are seven basic instruction formats (32 bits long).
– Instructions must be aligned at a word boundary.

- The first 6 bits specify the opcode, and some have an additional 
“extended opcode” field.

– The variety and complexity of instruction formats is 
greater than that on SPARC.

– The fixed length makes instruction decoding faster and 
simpler than CISC.
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PowerPC Architecture (Cont.)
• Addressing modes

– An operand value is specified as part of the instruction itself 
(Immediate mode) or is in a register (register direct mode).

– Only load/store operations and branch operations would access 
memory.

– Load and store operations use one of the following addressing 
modes (where the register numbers and displacement are encoded in 
the instruction):

Mode Target address (TA) calculation
Register indirect TA = (register)

Register indirect with index TA = (register-1) + (register-2)
Register indirect with 

immediate index TA = (register)  + displacement {16 bits, signed}
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PowerPC Architecture (Cont.)
• Addressing modes

– Branch instructions use one of the following addressing modes:

– The absolute address or displacement is encoded as part of the 
instruction.

Mode Target address (TA) calculation
Absolute TA = actual address

Relative TA = current instruction address + 
displacement{25 bits, signed}

Link Register TA = (LR)
Count Register TA = (CR)
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PowerPC Architecture (Cont.)
• Instruction set

– PowerPC has approximately 200 machine instructions.
- Some are more complex than those in most RISC systems. 
- E.g., 

· Load and store instructions may automatically update the index registers.
· Instructions could perform multiplication and addition in one instruction.

– Instruction execution on PowerPC is pipeline.
– Branch prediction is used to speed execution.

• Input and output
– Two different methods for performing I/O operations.

- Segments in the virtual address space are mapped onto an external 
address space. (called direct-store segments)

- A reference to an address represents a normal virtual memory access. 
I/O is performed using the regular virtual memory management hardware 
and software.
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Cray T3E Architecture (Alpha)
• Cray T3E is an architecture of supercomputers and is a massively 

parallel processing (MPP) system.
• A T3E system contains a large number of processing elements (PE), 

arranged in a three-dimensional network.
– The network provides a path for transferring data between processors.
– Control functions are provided to synchronize the operation of the PEs

used by a program.
– The interconnect network is circular in each dimension.

• Each PE consists of
– A DEC Alpha EV5 RISC microprocessor, 
– Local memory, and 
– Performance-accelerating control logic.

• A T3E system may contain 
from 16 to 2048 PEs.
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Cray T3E Architecture (Cont.)
• Memory

– Each PE has its own local memory with a capacity of from 64 MB to 
2 GB.
- The local memory within each PE is part of a physically distributed, 

logically shared memory system.
- One PE could access the memory of another PE.

– Bytes and words
- 8 bits form a byte.
- 2 consecutive bytes form a word.
- 4 bytes form a longword.
- 8 bytes form a quadword.

– All addresses are byte-addressable.
– Instruction execution could be more efficient if operands are aligned

at a starting address that is a multiple of their length.
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Cray T3E Architecture (Cont.)
• Registers

– There are 32 64-bit general-purpose registers (R0 through R31). R31
always contains the value zero.

– There are 32 64-bit floating-point registers (F0 through F31). F31 always 
contains the value zero.

– Other registers: a 64-bit program counter PC, and several status and 
control registers.

• Data formats
– Integers are stored as lognwords or quadwords.
– 2’s complement is used to store negative values.
– There are two types float-point data formats:

- One group of three formats is included for compatibility with the VAX architecture.
- The other group consists of four IEEE standard formats.

– Characters are stored one per byte, using 8-bit ASCII codes.
- There are no byte load or store operations in Alpha. Only longwords and 

quadwords can be transferred between a register and memory.
Characters are usually stored one per longword. (Trade-off between 

performance and space)
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Cray T3E Architecture (Cont.)
• Instruction formats

– There are five basic instruction formats in the Alpha architecture. 
– Each instruction is 32 bits long.

- The first 6 bits specify the opcode.
- Some instruction have an additional “function” field.

• Addressing modes
– An operand value is specified as part of the instruction itself (Immediate 

mode) or is in a register (register direct mode).
– Only load/store operations and branch operations would access memory.

Mode Target address (TA) calculation
PC-relative TA = (PC) + displacement {23 bits, signed}

Register indirect with 
displacement TA = (register) + displacement {16 bits, signed}

For load and store operations and subroutine calls.

For conditional and unconditional branches
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Cray T3E Architecture (Cont.)
• Instruction set

– There are approximately 130 machine instruction, reflecting its RISC 
orientation.

– There are no byte or word load and store instructions.
- This means that the memory access interface does not need to include 

shift-and-mask operations.

• Input and output
– The T3E system performs I/O through multiple ports into one or 

more I/O channels.
– Channels are integrated into the network that interconnects the 

processing nodes.
– A system may be configured with up to one I/O channel for every 

eight PEs.
– All channels are accessible and controllable from all PEs.



References to Addressing 
Modes and Instruction Set
References to Addressing 
Modes and Instruction Set
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Addressing Modes
• Flag bits

– Addressing types
- n indicates indirect addressing (Addressing types)
- i indicates immediate addressing

– Addressing modes
- b indicates base-relative addressing mode (Addressing modes)
- p indicates PC-relative addressing mode
- x indicates indexed addressing mode

– Extension
- e indicates extended format (i.e., Format 4) (Extension)

• Assembler language notation:
– c indicates a constant  between 0 and 4095.
– m indicates a memory address or a constant value larger than 4095.
– + indicates extended format (i.e., Format 4Format 4)
– @ indicates a indirect addressing
– # indicates a immediate addressing
– X indicates register X (using indexed addressing)

• Letters in Notes
– 4 Format 4 instruction
– D Direct-addressing instruction (b=0, p=0)
– A Program-counter relative or base relative mode (b=1 or p=1)
– S Compatible with standard SIC instructions. Operand value is between 0 and 32,767.



October 8, 2010 77

Copyright © All Rights Reserved by Yuan-Hao Chang



October 8, 2010 78

Copyright © All Rights Reserved by Yuan-Hao Chang

Instruct Set of SIC/XE

op
8

Format 1 (1 byte):

op
8

Format 2 (2 bytes):

r2
4

r1
4

op
6

Format 3 (3 bytes):

n
1

i
1

x
1

b
11 1

p e disp
12

op
6

Format 4 (4 bytes):

n
1

i
1

x
1

b
11 1

p e addr
20

Indexxed
addressing

BBase relative
addressing PProgram-counter 

relative addressing

EExtension format
Format 3: e = 0 
Format 4: e = 1

Inndirect
addressing

IImmediate addressing

Displacement

Address

register

opcode
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Instruction Set Table of SIC/XE
• Mnemonic

– m indicates a memory address.
– n indicates an integer between 1 and 16.
– r1, r2 represent register identifiers.

• Format : 
– Format indicates which SIC/XE instruction format is to be used in assembling each 

instruction. (3/4 : means that either Format 3 or Format 4 can be used.)
– All instructions for the standard SIC are compatible with Format 3 of SIC/XE.
– Instruction subfields that are not required are set to zero.

• Effect
– Parentheses are used to denote the contents of a register or memory location.

- A (m..m+2) specifies that the contents of the memory locations m through m+2 are loaded 
into register A.

- m..m+2 (A) specifies that the contents of register A are stored in the word that begins at 
address m.

• Notes
– P : PPrivileged instruction
– X : Instruction available only on SIC/XXE version
– F : FFloating-point instruction
– C : CCondition code CC set to indicate result of operation (<, =, or >)
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ASCII Character Codes
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