Chapter 4
Macro Processors

December 31, 2010

@

Outline

e Basic Macro Processor Functions
* Machine-Independent Macro Processor Features
* Macro Processor Design Options

e Implementation Examples

Copyright © All Rights Reserved by Yuan-Hao Chang

Basic Macro Processor
Functions

December 31, 2010

@

Macro and Macro Processor

* A macro instruction (abbreviated to macro) is simply a
notational convenience for the programmer.

* A macro represents a commonly used group of statements
In the source programming language.

* The macro processors do macro expansion by replacing
each macro instruction with the corresponding group of
source language statements.

— Macro instructions allow the programmer to write a shorthand
version of a program, and leave the mechanical details to be

handled by the macro processor.

— E.g., Use a macro SAVEREGS to save the contents of all registers
on SIC/XE machine, instead of a sequence of seven instructions
(STA, STB, etc.).

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010

@

Macro Processor

* The functions of a macro processor involves the
substitution of one group of characters or lines for
another.

— The design and capabilities of a macro processor may be influenced
by the form of the programming language statements.

— The meaning of these statements and their translation into machine
languages are of no concern during the macro expansion.

* The design of a macro processor is usually machine
iIndependent.

e Macro processors are commonly used in assemblers, high-
level programming languages, and operating system
command languages.

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE

Read records

from input device |iso
‘F1’ and then write |1so

to the output
device '05’

Line number Machine address Label Instruction Operand o Object code
S (alelele) COPY START 0]
10 (alelele) FIRST STL RETADR 17202D
1z o003 DB #FLEMGTH 69202D
13 BASE LEMNGTH
15 0006 CLOOP +JTSUUB RDEEC 4B101036
20 (el el ey LDA LEMGTH 032026
25 oooD COMEP #0 290000
30 oO1LO JEQ ENDFTIL. 332007
35 o013 +-JTS0B WRREC 4B10105Dy
40 QoOLT) CLOOP 3IF2FEC
45 O0O1LA ENDFTIL. L& BEOF 032010
=10] Q01D ST BUFFER OF2016
55 Q020 T #3 010003
el o023 STR LEMNGTH OF200D
a5 o0zZ6 +TSUB WRREC 4B10105D
T 00Za [ERETADR ZEZ003
80 002D EOF BY'TE CrBOF " 454F46
95 0030 RETADR RESW 1
1O 0033 LEMNGTH RESW 1
105 0036 BUFFER RESB 4096
110
115 - SUBROUTINE TO READ RECORD INTO BUFFER
120 =
125 1036 RDEREC CLEAR > B410
130 1038 CLEAF B B400
132 10328 CLEAR L=3 B440
133 103C + LT #4096 T5101000
135 1040 RLDDK T IMNEFTT E3Z2019
140 1043 JEC RLOOP 332FFA
145 1046 RI» IMPITT DBE2013
1049 COOMPR A,S A004
155 104B JEQ EXIT 332008
104E STCH BUFFER, X ST7C003
165 1051 TIXR T B850
170 1053 JLT RTLOOF 3B2FER
175 1056 EXTT ST LEMNGTH 134000
180 1059 BESTTE AFO000
185 l{JSC THPLIT BYTE HUFL" i
195 .
200 - SUBROUTINE TO WRILTE RECORD FROM DUFFER
205 .
210 1050 WRREC CLEAR A BA410
212 105F LT LEGTH FTFL4000
215 1062 WLOOP TD OUFTPrT E32011
220 1065 TJTEC WLLO P I3Z2FFA
225 1068 IL.IW"H BUFFER., X S3C003
230 1068 W OLUrT'PUrT DFZ008
235 106E TIXR T BESO
240 1070 JLIT WLOOP SB2ZFEF
245 1073 RSUB 4AF0000
250 1076 OLUFELrs, BYTE X005 05
255 ERDy FIRST

Line number Label Instruction Operand Comment 2010

5 copy START o] COPY FILE FROM INPUT TO OUTPUT
10 RDBUFF MACRO &INDEV, &BUFADR , &RECLTH
15
20 . MACRO TO READ RECORD INTO BUFFER
25 .
30 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A
SIC/XE 40 CLEAR s
as +LDT #4096 SET MAXTMUM RECORD LENGTH
50 D =X’ &INDEV * TEST INPUT DEVICE
I -1 JEQ *_3 LOOP UNTIL READY
pmmmmmmmm e . .- | e0 RD =X’ & INDEV * READ CHARACTER INTO REG A
f MaCI‘O R 65 COMPR A,S TEST FOR END OF RECORD
I \” 70 JTEQ *411 EXIT LOOP IF EOR
I O | 75 STCH &BUFADR, X STORE. CHARACTER IN BUFFER
L . def|n|t|0n i] 80 TIXR T LOOP UNLESS MAXIMUM LENGTH
"""""""""" 85 JLT *-19 HAS BEEN REACHED
_____________ 90 STX &RECLTH SAVE RECORD LENGTH
:/ Macro D i?i; ------ WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH
[A4 @ 4 O I O e - - R | A e e e e -
|] S~
! | 105 . o
. name | 110 . MACRO TO WRITE RECORD FROM BUFFER | parameters
S e T __ -7 115 b p
120 CLEAR x CLEAR LOOP COUNTER
125 LDT &RECL/TH
130 LDCH &BUFADR, X GET CHARACTER FROM BUFFER
135 TD =X * &OUTDEV * TEST OUTPUT DEVICE
Read records 140 JEQ *_3 LOOP UNTIL READY
. . 145 WD =X "' &0OUTDEV "’ WRITE CHARACTER
150 TIXR T LOOP UNTIL ALL CHARACTERS
from Inpl’It deVICe 155 JLT *_14 HAVE BEEN WRITTEN
‘ ’ - 160 MEND
F1' and then write =2 :
170 . MAIN PROGRAM
to the output 1oe _
d I ’05’ 180 EIRST, . ST ie o . RETADR [reeee. SAVE RETURN ADDRESS
evice 190 CHOGE...ll RBBUEE 1Rl BURFEK TENGTH. } READ RECORD INTO BUFFER
195 .77 LDA LENGTH TEST FOR END OF FILE
Use macros before 252 CoE 40
2-0JEJQ.........ENR&J‘-L-..............EXIT IF EOF FOUND
" 210 ereesess WRBUFE.... Q5. .BUFEER, LENGTH s WRITE OUTPUT RECORD
macro eXpanSLOFT 215 O o S 1) il
I > 220 ENDFIL WRBUFF 05, EOF, THREE | INSERT EOF MARKER
I M acClro E 230 EOF BYTE C’EOF’
: .) . 235 THREE WORD 3
I Invocation : 240 RETADR RESW 1
ST - 245 LENGTH RESW 1 LENGTH OF RECORD
250 BUFFER RESB 4096 4096-BYTE BUFFER AREA
255 END FIRST

Copyright © All Rights Reserved by Yuan-Hao Chang

Line number Label Instruction Operand Comment 2010

SIC/XE

Read records
from input device
‘F1’ and then write
to the output
device '05’
Use macros after
macros expansion

5 copy START 0 COPY FILE FROM INPUT TO OUTPUT
LB GEIRST L STR U BEIRDR e OB RN A DRSS, ceeeenneaes
T 190 . CLOOP RDBUFF F1,BUFFER, LENGTH READ RECORD INTO BUFFER :
: 190a CLOOP CLEAR x CLEAR LOOP COUNTER :
. 190b CLEAR A .
: 190c CLEAR s :
: 1904 +LDT #4096 SET MAXTMUM RECORD LENGTH :
: 190e <fH) =X(F1’ TEST INPUT DEVICE :
¢ 190f JEQ L3 LOOP UNTIL READY :
¢ 190g RD =X’'F1- READ CHARACTER INTO REG A :
: 190h COMPR A,S. TEST FOR END OF RECORD :
T 190i JEQ 411 EXIT LOOP IF EOR :
: 1907 STCH BUFFER, X STORE CHARACTER IN BUFFER :
: 190k TIXR LOOP UNLESS MAXIMUM LENGTH :
: 1901 JLT HAS BEEN REACHED :

195 LDA LENGTH TEST FOR END OF FILE

200 CCOMP #0
0308 ueennneennneee e T e PRI eeen s eeen s AT LB FQE. EOVND. ceveeereneenss
. 210 WRBUFF 05, BUFFER, LENGTH WRITE OUTPUT RECORD :
: 210a CLEAR X CLEAR LOOP COUNTER :
: 210b LDT LENGTH :
: 210c L.DCH BUFFER, X GET CHARACTER FROM BUFFER :

.f 2104 ™ =X’ 05" TEST OUTPUT DEVICE :
. \210e JEQ *-3 LOOP UNTIL READY .

e 210f WD =X’05" WRITE CHARACTER :
. 2309, TIXR T LOOP UNTIL ALL CHARACTERS .
RS = N SRR o ¥ o o)A o <) SN
P 220 .ENDFIL, WRBUFF 05, EOF, THREE INSERT EOF MARKER :
: 220a ENDFTL, CLEAR x CLEAR LOOP COUNTER :
: 220b LDT THREE :
: 220c¢ LDCH EOF, X GET CHARACTER FROM BUFFER :
: 2204 ™ =X’05" TEST OUTPUT DEVICE :
. 220e JEQ *— LOOP UNTIL READY .
. 220f WD =X’ 05" WRITE CHARACTER :
T 220g TIXR T LOOF UNTIL ALL CHARACTERS .

225 J @RETADR

230 EOF BYTE C’EOF”

235 THREE WORD 3

240 RETADR RESW 1

245 LENGTH RESW 1 LENGTH OF RECORD

250 BUFFER RESB 4096 4096-BYTE BUFFER AREA

255 END FIRST

December 31, 2010

@

Macro Expansion Example

 TwWo new assembler directives
— MACRO: the beginning of a macro
— MEND: the end of a macro

 The macro name and parameters define a pattern or
prototype for the macro.
— Macro name is the symbol before the directive MACRO.

— In SIC/XE, each parameter begins with the character &.
- This facilitates the substitution of parameters during macro expansion.

* A macro invocation will introduce macro expansion.

— In expanding the macro invocation, the arguments are substituted
for the parameters.
— E.g., Line 190,
- F1 is substituted for &INDEV,
- BUFFER for &BUFADR, and
- LENGTH for &RECLTH.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010

@

Macro Expansion Example (Cont.)

e The macro expansion in this example:

— The macro invocation statement is included as a comment line.
(serve as documentation)

— The label on the macro invocation statement (e.g., LOOP) is
retained as a label on the first statement generated in the macro
expansion.

 After macro processing, the expanded file can be used as
Input to the assembler.
— Each macro invocation introduces the generation of macro body.
- Statements “JEQ *-3” and “JLT *-14” are used to avoid label duplication,

— Statements in a subroutine appear only once, regardless of how
many times the subroutine is called.

Copyright © All Rights Reserved by Yuan-Hao Chang

10

December 31, 2010

@

Macro Processor Algorithm

e TWoO PaSs Mmacro processor
—Pass 1: All macro definitions are processed.
—Pass 2: All macro invocation statements are expanded.

* Features of a twO-pass macro processor
— Easy to design.

— Not allow the body of one macro instruction to contain
definitions of other macros because all macros would
have to be defined during the first pass before any
macro invocations were expanded.

- Macros inside a macro can’t be seen unless the outer macro
IS invoked and also expanded.

— Definitions of macros (nested macros) by other macros
can be useful in some areas.

Copyright © All Rights Reserved by Yuan-Hao Chang

11

S

.

@

Example of Macros in a Macro

December 31, 2010 12

* A program could run on either SIC or SIC/XE machine by calling the
corresponding macros.

* Defining MACROS or MACROX does not define RDBUFF and the
other macros instructions.

— The definitions are processed when an invocation to them is expanded.

MACROS
RDBUFF

WRBUFF

MACRO
MACRO

MACRO

{Defines SIC standard version macros.
&INDEV, &BUFADR, &RECLTH I

{SIC standard version}

{End of RDBUFF}
&QUTDEV, &BUFADR,, &RECLTH

{8IC standard version}

{End of WRBUFF}

{End of MACROS}

SIC

1
2

R

MACROX MACRO {Defines SIC/XE macros}
RDEBUFF MACRO &INDEV, &BUFADR, &RECLTH
{SIC/XE wversion}
MEND {End of RDBUFF}
WRBUFF MACRO &OUTDEV, &BUFADR,, &RECLTH
{SIC/¥E version}
MEND {End of WRBUFF}
MEND {End of MACROX}

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010 13

One-Pass Macro Data Structure

* A one-pass algorithm could handle macros in a macro body because it
can alternate between macro definition and macro expansion.

» Because of the one-pass structure, the definition of a macro must appear
In the source program before any statement that invokes the macro.

» Three data structures involved:

— Definition table (DEFTAB):
- Macro definitions and body are stored.

- Comment lines are skipped.
- References to macro instruction parameters are converted to a positional notation.

— Name table (NAMTAB):
- Macro names with pointers to the beginning and end of the macro in DEFTAB.

— Argument table (ARGTAB):
- Store invocation parameters that are used during the expansion of macro invocation.

Copyright © All Rights Reserved by Yuan-Hao Chang

@

14

December 31, 2010

One-Pass Data Structure (Cont.)

NAMTAB DEFTAB
/ RDBUFF &INDEV,&BUF‘ADR,&RECLTH\\\
CLEAR X N
RDBUFF ®
CLEAR A Mmoo
E’;i“‘ #jo% Definition of
o RDBUFF
JEQ 3 stored in
When the ?n notation is ’;‘;MPR - DEFTAB.
recognized in a line from JEQ 11
DEFTAB, a simple indexing sten (C_e2X> 0 N N
operation supplies the proper ji’;R 3_19 '\\ Positioning
argument from ARGTAB. stx 5 e |l notation
g (to enhance the
performance on
ARGTAB (@) . macro expansion) :
1| F1
[Borren Macro invocation (Line 190):
s Tenah CLOOP RDBUFF F1, BUFFER, LENGTH
hts Reserved by Yuan-Hao Chang

December 31, 2010 15

@

One-Pass Macro Algorithm

* Procedure DEFINE:
— Being called when the beginning of a macro definition is recognized.
— Make appropriate entries in DEFTAB and NAMTAB.

* Procedure EXPAND:
— Being called to set up the argument values in ARGTAB.
— Expand a macro invocation statement.

* Procedure GETLINE:
— Being called at several points to get a line in the algorithm:
— The line may come from
- The input file (EXPANDING = FALSE)
- The DEFTAB (EXPANDING = TRUE)

e Counter LEVEL.:
— Count the macro level (similar to match left and right parentheses).
- When a MACRO directive is encountered, LEVEL is advanced by 1.
- When a MEND directive is encountered, LEVEL is decreased by 1.
Note: Most macro processors allow the definitions of commonly used macro

instructions to appear in a standard system library (to make macro uses convenient).
Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010 16

One-Pass Macro Algorithm (Cont.

begin {macro processor}
EXPANDING := FALSE

while OPCODE # 'END’ do
else if OPCODE = 'MEND’ then

begin LEVEL := LEVEL - 1
PROCESSLINE end {while}

store in NAMTAB pointers to beginning and end of definition
end {DEFINE}

end {while}

! |
| |
i :
| end {if not comment}

1 1
| |
l :
1

end {macro processor} '

i GETLINE i

! procedure PROCESSLINE
i begin

| search NAMTAB for OPCODE
E if found then
i EXPAND

1
1
1
|
1
get first line of macro definition {prototype} from DEFTAB |
set up arguments from macro invocation in ARGTAB !
write macro invocation to expanded file as a comment !
while not end of macro definition do
1
1
1
1
1
1
1
1
1
1
1

S-a begin
TTT--.___ GETLINE
else if OPCODE = ’‘MACRO’ then * PROCESSLINE
DEFINE ___end {while} ____

else write source line to expanded file
end {PROCESSLINE}

procedure DEFINE procedure GETLINE

substitute positional notation for parameters
enter line into DEFTAB
if OPCODE = 'MACRO’ then

r | |
1 [|
1 . 1! 1
: begin L begin |
| enter macro name into NAMTAB b if EXPANDING then !
| enter macro prototype into DEFTAB . begin

| LEVEL :=1 . get next line of macro definition from DEFTAB

! while LEVEL > 0 do b substitute arguments from ARGTAB for positional notation
| begin ' end (if} :
: GETLINE s else e from 4 ci1 !
| if this is not a comment line then D read next line from input file

i . i end {GETLINE} !
1 begin P i
| D !
1 [I
1 1

1 1

1 1

1 1

1 1

Copyright © All Rights Reserved by Yuan-Hao Chang

Machine-Independent
Macro Processor Features

December 31, 2010

@

Concatenation of Macro Parameters

e Suppose that a macro instruction is name &ID, the
body of the macro definition like

LDA X&ID1

— &ID Is concatenated after the character string X and
before 1.

— The end of the parameter is not marked.

e Special concatenation operator

— Most macro processors use it to solve the right marker
problem.

—In SIC, this operator is =, so that the above example can
be written as:

LDA X&ID->1

Copyright © All Rights Reserved by Yuan-Hao Chang

18

December 31, 2010 19

1 SuM MACRO &ID |
2 LDA X&ID—1 |
-3 ADD X&ID—2
4 ADD X&ID—3 |
5 STA X&ID—S |
6 MEND |
SUM A SUM BETA
LDA XAl LDA XBETA1
ADD XA2 ADD XBETA2
ADD XA3 ADD XBETA3
STA XAS STA XBETAS

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010

@

Generation of Unique Labels

o If the example program in this chapter include a
label on the TD statement (Line 135), this label
would be defined twice.

—The relative addressing in a source statement (e.g., *-3
and *-14) would not be acceptable for long jumps.

—Long jumps over several instructions are inconvenient,
error-prone, and difficult to read.

* Many processor creates special labels within
macros instructions to solve the labeling problem.

— Each symbol begins with $ is modified by $xx, where xx is
a two-character alphanumeric counter.

20

- E.g., first expansion with $AA, and the succeeding is $AB, $AC, etc.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010 21

25 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH

| |
! |
|30 CLEAR X CLEAR LOOP COUNTER :
. 35 CLEAR A |
'\ 40 CLEAR S '
|45 +LDT #4096 SET MAXIMUM RECORD LENGTH
' 50 LOOP ™D =X'&INDEV' TEST INPUT DEVICE ;
. 55 JEQ $SLOOP LOOP UNTIL READY !
60 RD =X'&INDEV'’ READ CHARACTER INTO REG A |
| 65 COMPR A,S TEST FOR END OF RECORD Macro
' 70 JEQ EXIT LOOP IF EOR :
175 STCH &BUFADR, X STORE CHARACTER IN BUFFER !
. 80 TIXR T LOOP UNLESS MAXIMUM LENGTH !
| 85 JLT $LOOP HAS BEEN REACHED !
. 90 SEXIT STX &RECLTH SAVE RECORD LENGTH |
| 95 MEND

RDBUFF F1, BUFFER, LENGTH

After macro expansion with the
macro invocation:

130 CLEAR X CLEAR LOOP COUNTER
o R e " RDBUF F1, BUFFER, LENGTH
L 45 __4IDT #4096 SET MAXIMUM RECORD LENGTH |
' 50 $AATQOP | TD =X'F1’ TEST INPUT DEVICE |
' 55 JEQ SAALOOP LOOP UNTIL READY |
. 60 RD =X'F1’ READ CHARACTER INTO REG A .
| 65 COMPR A,S TEST FOR END OF RECORD
' 70 JEQ SAAEXTT EXIT LOOP IF EOR !
75 STCH BUFFER, X STORE CHARACTER IN BUFFER |
' 80 TIXR T LOOP UNLESS MAXIMUM LENGTH |
| 85 JLT SAALQOP HAS BEEN REACHED |
90 SAAEXIT | STX LENGTH SAVE RECORD LENGTH |

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010

@

Conditional Macro Expansion

* Most macro processors can modify the sequence
of statements generated for a macro expansion,
depending on the arguments supplied in the macro
Invocation.

* For example (listed in the next slides):
— The definition of the macro RDBUFF has two additional

parameters:

- &EOR: Specify a hexadecimal character code that marks the end
of a record.

- &MAXLTH: Specify the maximum length record that can be read.

Copyright © All Rights Reserved by Yuan-Hao Chang

22

Conditional Macro

| ' SET is a macro processor directive.

' & EORCK is a macro-time variable (also called set symbol) that is used to store working values during macro expansion.
- Any symbols that begin with the character & and that is not a macro instruction parameter is assumed to

be a macro-time variable.
- All such variables are initialized to a value as 0.

23

December 31, 2010

Expansion (Cont.)

et SO ettt ettt .
;r.;.g____EQBPFF___}‘%CBP.-__%EEJS}E{YN%P@?QB_%@QL?F_§<:E9B_§¥%}£I:T_H_____, : If an argument corresponding to &EOR, the variable
" " sssr---- 1
127 SEORCK SET 1 R &EORCK is set to 1. Otherwise, &EORCK remains 0.
) I ENDIF .. T
130 .. CLEAR X CLEAR LOOP COUNTER |
135 ~.CLEAR A ..
T Ti B~ (&EORCK EQ 1) T T TR :: RDBUFF F3,BUF,RECL, 04,2048 |
[1 Y |
|40 LDCH =X'&EOR’ SET EOR CHARACTER- - _ ro -
|42 RMO AS - IR :
< R -1 o1 SRR S -) S CLEAR X CLEAR LOOP COUNTER :
144 IF (&MAXLTH EQ '*) cee-o___ ' | 35 TTs-._ CLEAR A l
! :45 +LDT #4096 SET MAX LENGTH = 4096 ! N ::“4-0- ________ “A 1DCH =X'04" SET EOR CHARACTER X
| 146 FLSE a2 T -brMO A,S :
: :j; +§§'§IF #&MAXLTH SET MAXTMUM RECORD LENGTH f- - g ---------- > +LDT #2048 SET MAXIMUM RECORD LENGTH |
DRt RN . 1 ! 50 SAALOOP TD =X'F3’ TEST INPUT DEVICE |
! |
: 50 SLOOP TD =X'&INDEV TEST INPUT DEVICE |: 55 JEQ SAAT.00P LOOP UNTIL READY :
% JEQ SLOOP LOOP UNTIL READY ! 60 RD =X'F3’ READ CHARACTER INTO REG A |
C 60] RD ____: =X'&INDEV’ ____ READ CHARACTER INTO REG A__ | h :
6 T (SEORCK B0 1) T 65 - » COMPR A,S TEST FOR END OF RECORD :
' 16s COMPR A,S TEST FOR END OF RECORD™~ 1 1 w0 sac_------ » JEQ SAAEXTT EXIT LOOP IF EOR !
! 170 JEQ SEXIT EXIT LOOP IF EOR -~~~ N ::— 75\\ S~ STCH BUF, X STORE CHARACTER IN BUFFER |
L N ENDIF L8O sy TS TIXR T LOOP UNLESS MAXIMUM LENGTH |
75 STCH &BUFADR, X STORE CHARACTER IN BUFFER | 85 JUT~~__ $AALOOP HAS BEEN REACHED :
| 80 TIXR T LOOP UNLESS MAXIMUM LENGTH | 90 SAAEXIT STX > RECL SAVE RECORD LENGTH ;
: 85 JLT $LOOP HAS BEEN REACHED :""':::::::::l\ '::::::::::::::::::::::::::::::::::::::"
| 90 $EXIT STX &RECLTH SAVE RECORD LENGTH 1 If &MAXLTH equals to the null string, Line 45 is .
95 MEND ! |

]

1

'L Examining the value of variables is faster than repeating the original test, especially if the test involves complicated expression.

________________ CTUPYITJITUE AN TXIYTITS TYSST1VTU 0y TTrualT-T1ao Criang -~

generated Otherwise Line 47 is generated.

December 31, 2010 24

' -The macro processor must maintain a symbol table that contains the values of all used macro-
time variables.

' -The testing of Boolean expressions in IF statements occurs at the time macros are expanded.
' -Entries in this table are made or modified when SET statements are used.

-When an IF statement is encountered, the Boolean expression is evaluated to determine which

] 1

] 1

Tee TR w T (&EOR NE 77y T TTTTTTTTTTTTTTTTTTTT v

127 &EORCK SET 1 I

1128 > ENDIF o

L gy |

'30 CLEAR X CLEAR LOOP COUNTER T e T e TP)

1

V35 . SCLEAR A L _____. L RDBUFF OE, BUFFER, LENGTH, , 80 :

1138 IF~~-__p (&EORCK EQ 1) b :

140 ILDCH =X'&EOR’ SET EOR CHARACTER P !

a2 RMO A,S b ;

043 L ENDIE iy 1130 CLERR- X CLESR LUOE COUTTER :

Ll IF (&MAXLTH EQ ' /) T35 CLEAR A I

1 !]

! 545 +LDT #4096 SET MAX LENGTH = 4096 L1147 .-y +LDT #80 SET MAXIMUM RECORD LENGTH

E :is Jj}gﬁE . - CET MAXIMUM RECORD Lenarsa---120 SABLOOP D =X' O’ TEST INPUT DEVICE ;

' 18 ENDIF SMAXL MUM L1155 JEQ $ABLOOP LOOP UNTIL READY !
—— 1 ! ' ¥ =)

| 50T TELoop ™ %7 R TRDET TEST INPUT DEVICE : ' 60 RD =X'0E READ CHARACTER INTO REG A

| 55 JEQ $L.OOP LOOP UNTIL READY ! :75 STCH BUFFER, X STCRE CHARACTER IN BU"E‘FER:

c 0] D - =X'&INDEV' ____ READ CHARACTER INIO REG A ' |80 TIXR T LOOP UNLESS MAXIMUM LENGH

163 ¥ (SEORCK EQ 1) L o1gy JLT $ABLOOP HAS BEEN REACHED

1165 COMPR A,S TEST FOR END OF RECORD 1 | 10 o _ s :

L 170 JEQ SEXIT EXIT LOOP IF EOR e pedERll R& LR aneE RACHEh TENET t

[< R ENDIF . o

.75 STCH &BUFADR, X STORE CHARACTER IN BUFFER

. 80 TIXR T LOOP UNLESS MAXIMUM LENGTH |

. 85 JLT $LOOP HAS BEEN REACHED '

' 90 SEXIT STX &RECLTH SAVE RECORD LENGTH |

' 95 MEND |

Copyright © All Rights Reserved by Yuan-Hao Chang

1 1
] 1
T hi (&EOR N:E""'i """""""""""""" | :
L2y &EORCK ~ SET 1 R
) I ENDTF. .. Lo
'30 .. CLEARR X CLEAR LOOP COUNTER |
- NCLEAR A _____. |
1138 IF~---_p (&EORCK EQ 1) Loy
40 LDCH =X'&EOR’ SET EOR CHARACTER---_____ P
142 RMO B,S “Tmm--eol DT
VA o T T T T e (-
Ll e ENDIE i iiiccsaccsasssesssseoZiiiiiiEaafol
L ad IF (§8MAXLTH EQ ' ') L
' 145 +L.DT #4096 SET MAX LENGTH = 4096 -- - _|
' 146 ELSE .
a7 +LDT #&MAXT/TH SET MAXIMUM RECORD LENGTH | |
L48 . ENDIF e -
50 SLOOP D =X’ &INDEV’ TEST INPUT DEVICE :
| 55 JEQ $LOOP LOOP UNTIL READY :
C 60 RD ____: =X'&INDEV' ____ READ CHARACTER INTO REG A =
1163 IF (%EORCK EQ 1) -
165 COMPR A,S TEST FOR END OF RECORD -~7r__.
1170 JEQ SEXIT EXIT LOOP IF EOR--~"~ v
VU3 ENDIE | ol |

75 STCH &BUFADR, X STORE CHARACTER IN BUFFER :
: 80 TIXR T LOOP UNLESS MAXIMUM LENGTH :
. 85 JLT $LOOP HAS BEEN REACHED |
' 90 SEXIT STX &RECLTH SAVE RECORD LENGTH |
'95 MEND |

e e

1---
\d agn Oy U0 U iy
o wm m o ;o Wwm

(83}

e

\O 00 00 ~i

Fl,BUFF, RLENG, 04

A
=X'04"
A, 8
#4096
=X'F1’
$ACLOOP
=X'F1*
A,S

SACEXIT
BUFF, X

VT
\ $ACLOOP

December 31, 2010 25

CLEAR LOQP COUNTER
SET ECR CHARACTER

SET MAX LENGTH = 4096

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG!

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER TN BUFFE

LOOP UNLESS MAXIMUM LEN
HAS BEEN REACHED

SAVE RECORD LENGTH

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010

Conditional Macro Expansion (Cont.)

* The macro-time IF-THEN-ELSE structure provides
a mechanism for either generating or skipping
selected statements in the macro body.

* The macro-time looping statement WHILE
specifies that the following lines (until the next
ENDW) are to be generated repeated as long as a
particular condition Is true.

* The programmer is also allowed to provide a list
corresponding to the same parameter.

—E.g., (00, 03, 04) corresponds to the parameter &EOR.

Copyright © All Rights Reserved by Yuan-Hao Chang

26

December 31, 2010 27

'%NTIMES IS @ macro processor function that reuturns the number of members in an argument

list. E.g., when &EOR= (00, 03, 04), %NITEMS(&EOR) returns 3.
'&CTR is used to count the number of times the lines following the WHILE have been generated.

1
| &EORCT =3 S :
I_ ___________ ¢ ‘—“‘_‘____________________________________'; :- __]
| _25__RDBUFF'___MACRO __&INDEV,S&BUFADR,&RECLTH,&EOR _____________ Lo RDBUFF F2, BUFFER, LENGTH, (00,03,04) |
|L27 &EORCT SET __ ®NITEMS(SFOR) _________________________ o |
1730 CLEAR X CLEAR LOOP COUNTER o ‘ |
35 CLEAR A 130 CLEAR X CLEAR LOOP COUNTER !
e +LDT #4096 SET MAX LENGTH = 4096 L35 CLEAR A !
| 50 $IOOP TD =X & INDEV' TEST INPUT DEVICE 145 +LDT #4096 SET MAX LENGTH = 4096 !
|55 JEQ $LOOP LOOP UNTIL READY ' | 50 $AALOOP TD =X'F2" TEST INPUT DEVICE I
1 80 __FD_____SXI&INDEV' B’@%Q.Q@BBQTEE-I@TQ.RJE_G_A__; | 55 JEQ $AATOOP LOOP UNTIL READY |
1 63 &CTR SET S C o ; !
1 63 &R SET 1 ~ecaan) Lalo60 RD =X'F2 READ CHARACTER INTO REG A
o wme (eom 1= ceorcr) YINHAIZERNONTE | ¢ 5 _yCOP X'000000" |
—y & [-
¥ o TTTTrrmmesndig 19-- JEQ SAREXIT :
n 70 JEQ SEXTT s > coMP =X'000003 -
] T [~ < -
|71 semRooSED &CTR+1 ‘Incremented by 1 i1 | o9 - TE0 SAREXTT :
N3 NENDW e ~a >) '
LTS \\ STCH &BUFADR,X STORE CHARACTER IN BUFFER | | ©9 COMP =X"000004 E
-) VNTIXR T LOOP UNLESS MAXIMUM LENGTH ' 1 /0 JEQ SAAEXIT |
g i SLOOP HAS BEFN REACHED TS STCH BUFFER, X STORE CHARACTER IN BUFFER |
' 90 $EXIT |\ STX &RECLTH SAVE RECORD LENGTH ro 80 TIXR T LOOP UNLESS MAXIMUM LENGTH |
' 100 | MEND : 2 JLT $AALOOP HAS BEEN REACHED I
_____________ a e e e e]]
X 20 AAEXIT STX LENGTH SAVE RECORD LENGTH
LY 190 SAAEXIT ~STX _ LENGTH __ SAVE RECORD LENGTH !
\
R N

—
>
@D
=)
D
n
—
®
Q.
=
—
M
%))
—
=
=
)
—
=
=
@D
i
>
o
—
D
@)
=
®
Qo
>
—
=)
wn
®
X
Q
3
=2
D

December 31, 2010

@

Keyword Macro Parameters

« Format of macro parameters:

— Positional parameters:

- Parameters in the macro prototype and arguments in the macro
Invocation statement were associated with each other according
to their positions.

— Keyword parameters:

- Only parameters that has corresponding arguments in the macro
Invocation need to be listed. (Others adopt the default values.)

- Simplify the macro definition in many cases.
- Good for macros with a large number of parameters.

- For example: macro GENER has 10 parameters
- Positional parameter method: GENER ,,DIRECT,,,,,,3

- Keyword parameter method: GENER TYPE=DIRECT, CHANNEL=3

Copyright © All Rights Reserved by Yuan-Hao Chang

28

e S i

(&EORCK EQ 1)
=X'&EOR'’
A,S

=X’ &INDEV’
$L.00P
=X'"&INDEV’

 Default value ' !
CLEAR LOOP COUNTER s]

SET MAXTMUM RECORD LENGTH
TEST INPUT DEVICE

LOOP UNTIL READY .

READ CHARACTER INTO REG A -

TEST FOR END OF RECORD ~.~~
EXIT LOOP IF EOR g

90

SEXIT

SLOOP

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTMUM LENGTH
HAS BEEN REACHED

SAVE. RECORD LENGTH

__

29

December 31, 2010

BUFADR=BUFFER, RECLTH=LENGTH

CLEAR LOQOP COUNTER

SET EOR CHARACTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

RECLTH=LENGTH, BUFADR=BUFFER, EOR=, INDEV=F3

RDBUFF
30 CLEAR X
35 CLEAR A
40 w IDCH =X'04’
42 ’,—’ZVRMO A,S
47 -7 -7 s1pr #4096
50°7 _$AALOOP D =X'F1’
557 JEQ $AALOOP
60 RD =X'F1’
65 'vCOMPR A,S
70 /’v JEQ SAAEXIT
75 .7 ,-7" STCH BUFFER, X
8a -7 -7 TIXR T
85~ e JLT $SAALOOP
1.9077 SAAEXIT STX LENGTH
| RDBUFF
1
1
|
130 CLEAR X
135 CLEAR A
1
:47 +LDT #4096
'50 $ABILOOP TD =X'F3’
155 JEQ $ABLOOP
E 60 RD =X'F3"
75 STCH BUFFER, X
180 TIXR T
1
185 JLT $ABLOOP
190 SABEXIT STX LENGTH

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

Copyright © All Rights Reserved by Yuan-Hao Chang

Macro Processor Design
Options

December 31, 2010

31

' Procedure EXPAND is |
' called during preprocessing.
- EXPANDING = TRUE ‘

et S e iy

° The One_paSS assemb|er 10 ARDBUFF ~ MACRO &BUFADR, &RECLTH, & INDEV ' Procedure PROCESSLINE
/ 15) : -
algorithm introduced in /20 MACRO TO READ RECORD INTO EUFFER E"’Q‘Piﬁ;’mg agTaF'e“UE

this chapter can’t deal

30 CLEAR X CLEAR LOOP COUNTER’ T
. . . 135 CLEAR A -
with the invocations of /| i :
macros within macros. | * WD #4096 - SET WAKIMOM RECORD LENGTH
! 150 | ROCHAR ~ &INDEV _ _ _ _ READ CHARACTER_INTO REG A1
I 165 COMPR A,S -~ TEST FOR END OF RECORD
170 JEQ SEXIT - EXIT LOOP IF EOR .
Parameter Value |75 STCH &BUFADR,X . 'STORE CHARACTER IN BUFFER |
1 BUFFER ' 80 TIXR T LOOP WNLESS MAXIMUM LENGTH |
2 LENGTH AN JLT $LOOP HAS -BEEN “REACHED
3 F1 boo90 STX &RECLTH SAVE RECORD._ LENG"E‘H \
L 195 111101 J e T —
4 (unused) A '?_X_'?A'_\!P_'_N_Q__EA'_—_S_E_ ________
' N \E ! 13 RDCHRR MACRO &IN Test-and-wait loop to control access
w N \ 15 MACRO TO READ CHARACTER INTO REGISTER A |
LN 20
Parameter Value 2\ ¥ =X'&IN’ TEST INPUT DEVICE
1 F1 = JEQ *-3 LOOP UNTIL READY
L35 RD =X’ &IN READ CHARACTER .\ .
2 (unused) . N St eyl -
, , L x____@?___________________:::::::::;_S_ezt__E_XE’_A_NP_'!_'Q___EAL__S__E___E
N __. RDBUFF BUFFER, LENGTH, F1

1

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010

@

Recursive Macro Expansion (Cont.)

 The cause of these difficulties:
— The recursive call of the procedure EXPAND.

- When the RDBUFF macro invocation is encountered, EXPAND is called.

- Later it calls PROCESSLINE for Line 50, which results in another call to
EXPAND before a return is made from the original call.

— PROCESSLINE would be called recursively.
- From main (outermost) loop of the macro processor logic
- From the loop within EXPAND

e If a programming language supports recursive calls (like C),
It problem could be solve automatically.

— Save registers and parameters automatically on each call, and
restore them on return.

e If a programming language does not support recursive calls,
the looping structure should save data values on a stack.

Copyright © All Rights Reserved by Yuan-Hao Chang

32

@

December 31, 2010

General-Purpose Macro Processors

* General-purpose macro processors are independent to any particular
programming language.
— General-purpose macro processors have higher development cost.
— The development cost does not need to be repeated.

* The large number of detalls that needs to be dealt with makes general-
purpose macro processors less popular.

— E.g., Each programming language has its own comments:

Pascal and C use special character to mark the start and end of a comment.

Ada uses a special character to mark the start of a comment that is automatically
terminated at the end of the source line.

FORTRAN uses a special symbol to flag an entire line as a comment.

Some assembler languages consider characters following the end of the
instructions as comments.

Some recognize comments according their position in the source line. (COBOL)

Copyright © All Rights Reserved by Yuan-Hao Chang

33

December 31, 2010 34

@

General-Purpose Macro Processors (Cont.)

* A general-purpose macro processor may need to take
groupings Into consideration to group terms, expressions,
and statements.

— Some languages use keywords begin and end for grouping. (Pascal)
— Some uses { and } (C and Java)
— Some uses (and)

* A general problem involves the tokens of the programming
languages.

— Tokens are identifiers, constants, operators, and keywords.

— Languages differ substantially on their tokens.

- Some have multiple-character operators such as ** in FORTRAN and :=
in Pascal.

- Macro processors may consider them as two characters.
- Blanks may be significant and may be not.

» Another program is the syntax used for macro definition
and macro Invocatlon Statements' Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010

@

Macro Processing within Languag
Translators (Integrated Macro Processor)

« Combining the macro processing functions with the language translator
IS another design option.

» The simplest method is to combine a line-by-line macro processor.

— The macro processor reads the source program statements and performs
all macro processing functions.

— The output lines are passed to the language translator as they are
generated (one at a time).
- The macro processor operates like an input routine for the assembler or complier.

» Advantages of the line-by-line approach:
— Avoid making an extra pass over the source program.
— Combine data structures together. E.g., OPTAB and NAMTAB.
— Share utility subroutines and functions.
- E.g., Scanning input lines, table searching, and converting numeric values.
— Give diagnostic messages related to the source statement containing errors.

« The main form of communication between integrated macro processor
and language translator is the passing of source statements from one to

the other.

Copyright © All Rights Reserved by Yuan-Hao Chang

35

December 31, 2010

@

Macro Processing within Languag
Translators (Cont.)

* The integrated macro processor may use the
results of translator operations such as scanning
symbols and constants.

— This is useful when the rules vary from one part of the
program to another. (e.g., FORTRAN)

* FORTRAN example:

A Loop DO 1001 =1,20 An assignment: DO 100 =1

DOisa keyword i L_D_Q_l_QQ!_'?z anvariable |
100 is a statement number

__

—The macro processor would be very difficult to
distinguish them.

Copyright © All Rights Reserved by Yuan-Hao Chang

36

December 31, 2010

Macro Processing within Language
Translators (Cont.)

* An integrated macro processor can support macro
Instructions.

— Macro instructions depend on the context in which they
occur.

e Disadvantages of integrated macro processors:

— They must be specially designed and written to work with
a particular implementation of an assembler or compiler.

— The costs of development must be added to the cost of
the language translator - Make translators more
complicate.

—The size may be a problem if the translator is to run on a
computer with limited memory.

Copyright © All Rights Reserved by Yuan-Hao Chang

37

Implementation Examples

December 31, 2010 39

MASM Macro Processor

* The macro processor of MASM is integrated with Pass 1 of the assembler.
* Macros may be redefined in a program to replace the first one. But this is confusing in practice.

JOP1—-OP2| | o .
"1 ABSDTF MACRO OP1,OP2,STZE. ----ri 'Declare EXIT a local label |
2 __1_49951_4____Ezim_-::fj‘?_'_'_'_______'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_j""_'_"- __
3 v IFNB_____ <STZE>_ ______ ;i IF SIZE IS NOT BLANK |
4 | IIFDIF <SIZE>,<E> ;; THEN IT MUST BE E ! _I_D_I_I’_QC'[MA_SN_ tO termmate
5 | ERROR -- SIZE MUST BE E OR_BLANK h . ——
[N -7 _—"‘ .-V
6_ L ERR-«-.——-' Singal MASN an error | /,')Ir’_,——’ vl SesmETe oo Indlcate USIng EAX ... :
7 . ;.Eg(_r_pm______-_________,:;_:;_—j. ¥ ABSDIF M,N,E . !
8 _JENDIE i END OF IFDIF "~ _______ . h doubleword registers
9 ! ENDIF ;; END OF IFNB ¥ J, :
10 MOV SIZE&AX,0P1 ; COMPUTE ABSOLUTE DIFFERENCE || :
11 | SUB STZE&AX,0P2 ;; SUBTRACT OP2 FROM OP1 o MOV EAX,M ; COMPUTE ABSOLUTE DIFFERENCE |
12 ' JNS EXIT ;; EXIT IF RESULT GE 0 o SUB EAX,N !
13 ' NEG SIZE&AX @ OTHERWISE CHANGE STGN n INS 220001 :
14 EXIT: | R S N NEG EAX !
! | | " . [}
R i M i Macro comment i 0001 -
! : Ordinary assembly comment | '
T ABSDIF J,K :
: Word registers il
: \L I ABSDIF P,Q,X :
| MOV AX,J ; COMPUTE ABSOLUTE DIFFERENCE | \L :
| SUB AX,K ' ' |
! JNS 2?0000 ¥ ; ERROR —- SIZE MUST BE E OR BLANK !
L. NEG AX b

Generate unigue names for labels: ??0000 ~ 2?FFFF 5 Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010 40

l / ’/
2 IRP S,<’LEFT’, 'DATA’, 'RIGHT'> ;
3 | NAME&S DW 0 i
i 200 ;; END OF MACRO
’ NODE X

XLEFT DW 0

XDATA DW 0

XRIGHT DW 0

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010 41

ANSI C Macro Language

* In ANSI C language, macro definitions and invocations are handled by a
preprocessor.

* The preprocessor is not integrated with the compiler.

* For example:
#define NULL 0

''

fidefine EOF (1) | Avoid the common C error of writing = in place of ==.
idefine EQ == while IEQO)...” > whie(1==0)...

———

__

———

December 31, 2010 42

ANSI C Macro Language (Cont.)

#define DISPLAY(EXPR) printf("EXPR = %d\n", EXPR)

______________________________ ' Special “stringizing” operator #

__

__

If the body of a macro contains a token that happens to match the
name of the macro, the token is not replaced during recanning.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010 43

@

ANSI C Macro Language (Cont.)

e Conditional compilation

—To make sure that a macro (or other name) is defined at

least once:

#ifndef BUFFER_SIZE
#define BUFFER_SIZE 1024
#endif

— Control debugging statements:
#define DEBUG 1

#ifdef DEBUG
. printf(...) [* debugging output */
#if DEBUG == #endif

printf(...) [* debugging output */
#endif

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010

ELENA Macro Processor

 The ELENA Is a general-purpose macro processor.
— It is a research tool, not a commercial software product.

* Macro definitions in ELENA are composed of a header and a body.
— The header is not required to have any special form.
— It consists of a sequence of keywords and parameter markers.
— Parameter markers are identified by the special character %.

— At least one of the first two tokens in a macro header must be a keyword,
not a parameter marker.

— A macro invocation is a sequence of tokens that matches the macro header.

Copyright © All Rights Reserved by Yuan-Hao Chang

44

December 31, 2010 45

e __..—Header: oo :
|_%1 _:= ABSDIFF(32,%3) 777 " - Z := ABSDIFF (X,YJ | I_\{I_a_lg:_r_q_!r_l_\(_o_c_:gt_l_q_n__'
(a) e |
e BOAY TOP G

I_____________________..n_ ___________________________________

%1l o= (%2) > (%3) ? (%2) - (%3) : (%3) - (%2) |

LB T A%e) 7 leA) P ARe) T ORIl VRS T Al . MOV EAX, X
(b) SUB EAX,Y
_________________________ JNS STORO001
7 := ABSDIFF(X,Y) ---sss050700] Macro invocation ! - NEG i
“““““““““““““ STOR0O001 MOV EAX,Z
\Ix ‘ (e)
Z = (X) > (V) 2 (X) - (V) : (V) - (X \
“’3 After macro expansion: Aﬂ_e_(_f_‘?ﬁ?_f_(?_‘??_(l@@r_‘_s_'_@ﬂ_
) MOV EAX,%2 |
| SUB EAX, %3 |
: JINS &STOR |7 Fre oo oo TOR is chan TOR0001
| wo mx | Bodyforassemply, ~ SSTOR S changed 19 &STOROOI
| &sToR wov EAX, %1 | because & identify &STOR as a loca
---------------------------- o label within the macro definition.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010 46

.SET .LaAA = 1 A
L E V(.LAA) = V(.LAA) + %1 !~
oteeetooctoioeeeeooti oo SET LLAA = LIAA + 1 |
L]_r](_:_r_e_gg_e__:_l.__tg__l___,é_,ﬁ__ | _.IF .LAA LE %2 .JUMP .E |
Themasotme © Macro invocation
instruction .IF causes A RS !

1 v - -

' the macro processor to

:jump back to the line EADD 5 TO THE FIRST 3 ELEMENTS DF‘ v

‘with the macro-time , \L

label E, if LAA<%2.
V(1) = V(1) +5 ~.
V(2) =V(2) +5 e
V(3) = V(3) + 5 After macro expansion :

(c)

Copyright © All Rights Reserved by Yuan-Hao Chang

December 31, 2010 47

ELENA Macro Processor (Cont.)

 The ELENA macro processor uses a macro definition table.
* A macro is identified by the sequence of keywords that appear in its

header. DISPLAY %1 %1 TABLE . |

— For example: Two macro headers Header
ADD %1 TO %2 | TNICDl AV TARI e
ADD %1 TO THE FIRST ELEMENT OF %2 DISPLAYTABLE Invocation :

Ambiguous T

 ELENA constructs an index of all macro headers according to the
keywords in the first two tokens of the header.
— Invocation should match at least one of their first tokens.

A=B+1 :_t"""_!n__’Q?ﬁ'F'_‘?ﬂ_ 'Matched header: select the header with the
B _fewest parameters. Otherwise, select the
- most recently defined macro.

) =0 + 0) =0 +
01 /02 /03 /01 /02 1 Copyright © All Rights Reserved by Yuan-Hao Chang

	投影片編號 1
	Outline
	投影片編號 3
	Macro and Macro Processor
	Macro Processor
	投影片編號 6
	投影片編號 7
	投影片編號 8
	Macro Expansion Example
	Macro Expansion Example (Cont.)
	Macro Processor Algorithm
	Example of Macros in a Macro
	One-Pass Macro Data Structure
	One-Pass Data Structure (Cont.)
	One-Pass Macro Algorithm
	One-Pass Macro Algorithm (Cont.)�
	投影片編號 17
	Concatenation of Macro Parameters
	Concatenation of Macro Parameters (Cont.)
	Generation of Unique Labels
	Generation of Unique Labels (Cont.)
	Conditional Macro Expansion
	Conditional Macro Expansion (Cont.)
	Conditional Macro Expansion (Cont.)
	Conditional Macro Expansion (Cont.)
	Conditional Macro Expansion (Cont.)
	Conditional Macro Expansion (Cont.)
	Keyword Macro Parameters
	Keyword Macro Parameters
	投影片編號 30
	Recursive Macro Expansion
	Recursive Macro Expansion (Cont.)
	General-Purpose Macro Processors
	General-Purpose Macro Processors (Cont.)
	Macro Processing within Language Translators (Integrated Macro Processor)
	Macro Processing within Language Translators (Cont.)
	Macro Processing within Language Translators (Cont.)
	投影片編號 38
	MASM Macro Processor
	MASM Macro Processor (Cont.)
	ANSI C Macro Language
	ANSI C Macro Language (Cont.)
	ANSI C Macro Language (Cont.)
	ELENA Macro Processor
	ELENA Macro Processor (Cont.)
	ELENA Macro Processor (Cont.)
	ELENA Macro Processor (Cont.)
	投影片編號 48

