
Chapter 4
Macro Processors

Chapter 4
Macro Processors

December 31, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• Basic Macro Processor Functions

• Machine-Independent Macro Processor Features

• Macro Processor Design Options

• Implementation Examples

Basic Macro Processor
Functions

Basic Macro Processor
Functions

December 31, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Macro and Macro Processor
• A macro instruction (abbreviated to macro) is simply a

notational convenience for the programmer.
• A macro represents a commonly used group of statements

in the source programming language.
• The macro processors do macro expansion by replacing

each macro instruction with the corresponding group of
source language statements.

– Macro instructions allow the programmer to write a shorthand
version of a program, and leave the mechanical details to be
handled by the macro processor.

– E.g., Use a macro SAVEREGS to save the contents of all registers
on SIC/XE machine, instead of a sequence of seven instructions
(STA, STB, etc.).

December 31, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Macro Processor
• The functions of a macro processor involves the

substitution of one group of characters or lines for
another.

– The design and capabilities of a macro processor may be influenced
by the form of the programming language statements.

– The meaning of these statements and their translation into machine
languages are of no concern during the macro expansion.

• The design of a macro processor is usually machine
independent.

• Macro processors are commonly used in assemblers, high-
level programming languages, and operating system
command languages.

December 31, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE

Read records
from input device
‘F1’ and then write
to the output
device ’05’

Line number Label Instruction Operand Object code Machine address

December 31, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE

Read records
from input device
‘F1’ and then write
to the output
device ’05’
Use macros before
macro expansion

Line number Label Instruction Operand Comment

Macro
name parameters

Macro
invocation

Macro
definition

December 31, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE

Read records
from input device
‘F1’ and then write
to the output
device ’05’

Use macros after
macros expansion

Line number Label Instruction Operand Comment

Comment

December 31, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Macro Expansion Example
• Two new assembler directives

– MACRO: the beginning of a macro
– MEND: the end of a macro

• The macro name and parameters define a pattern or
prototype for the macro.

– Macro name is the symbol before the directive MACRO.
– In SIC/XE, each parameter begins with the character &.

- This facilitates the substitution of parameters during macro expansion.

• A macro invocation will introduce macro expansion.
– In expanding the macro invocation, the arguments are substituted

for the parameters.
– E.g., Line 190,

- F1 is substituted for &INDEV,
- BUFFER for &BUFADR, and
- LENGTH for &RECLTH.

December 31, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Macro Expansion Example (Cont.)
• The macro expansion in this example:

– The macro invocation statement is included as a comment line.
(serve as documentation)

– The label on the macro invocation statement (e.g., LOOP) is
retained as a label on the first statement generated in the macro
expansion.

• After macro processing, the expanded file can be used as
input to the assembler.

– Each macro invocation introduces the generation of macro body.
- Statements “JEQ *-3” and “JLT *-14” are used to avoid label duplication.

– Statements in a subroutine appear only once, regardless of how
many times the subroutine is called.

December 31, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Macro Processor Algorithm
• Two pass macro processor

– Pass 1: All macro definitions are processed.
– Pass 2: All macro invocation statements are expanded.

• Features of a two-pass macro processor
– Easy to design.
– Not allow the body of one macro instruction to contain

definitions of other macros because all macros would
have to be defined during the first pass before any
macro invocations were expanded.
- Macros inside a macro can’t be seen unless the outer macro

is invoked and also expanded.
– Definitions of macros (nested macros) by other macros

can be useful in some areas.

December 31, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Example of Macros in a Macro
• A program could run on either SIC or SIC/XE machine by calling the

corresponding macros.

• Defining MACROS or MACROX does not define RDBUFF and the
other macros instructions.

– The definitions are processed when an invocation to them is expanded.

SIC SIC/XE

December 31, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

One-Pass Macro Data Structure
• A one-pass algorithm could handle macros in a macro body because it

can alternate between macro definition and macro expansion.

• Because of the one-pass structure, the definition of a macro must appear
in the source program before any statement that invokes the macro.

• Three data structures involved:
– Definition table (DEFTAB):

- Macro definitions and body are stored.
- Comment lines are skipped.
- References to macro instruction parameters are converted to a positional notation.

– Name table (NAMTAB):
- Macro names with pointers to the beginning and end of the macro in DEFTAB.

– Argument table (ARGTAB):
- Store invocation parameters that are used during the expansion of macro invocation.

December 31, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

One-Pass Data Structure (Cont.)

Definition of
RDBUFF
stored in
DEFTAB.

Positioning
notation

(to enhance the
performance on

macro expansion)
Macro invocation (Line 190):
CLOOP RDBUFF F1, BUFFER, LENGTH

When the ?n notation is
recognized in a line from
DEFTAB, a simple indexing
operation supplies the proper
argument from ARGTAB.

December 31, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

One-Pass Macro Algorithm
• Procedure DEFINE:

– Being called when the beginning of a macro definition is recognized.
– Make appropriate entries in DEFTAB and NAMTAB.

• Procedure EXPAND:
– Being called to set up the argument values in ARGTAB.
– Expand a macro invocation statement.

• Procedure GETLINE:
– Being called at several points to get a line in the algorithm:
– The line may come from

- The input file (EXPANDING = FALSE)
- The DEFTAB (EXPANDING = TRUE)

• Counter LEVEL:
– Count the macro level (similar to match left and right parentheses):

- When a MACRO directive is encountered, LEVEL is advanced by 1.
- When a MEND directive is encountered, LEVEL is decreased by 1.

Note: Most macro processors allow the definitions of commonly used macro
instructions to appear in a standard system library (to make macro uses convenient).

December 31, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

One-Pass Macro Algorithm (Cont.)

Machine-Independent
Macro Processor Features

Machine-Independent
Macro Processor Features

December 31, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Concatenation of Macro Parameters
• Suppose that a macro instruction is name &ID, the
body of the macro definition like

– &ID is concatenated after the character string X and
before 1.

– The end of the parameter is not marked.

• Special concatenation operator
– Most macro processors use it to solve the right marker

problem.
– In SIC, this operator is , so that the above example can

be written as:

LDA X&ID1

LDA X&ID1

December 31, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Concatenation of Macro Parameters (Cont.)

December 31, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Generation of Unique Labels
• If the example program in this chapter include a
label on the TD statement (Line 135), this label
would be defined twice.
– The relative addressing in a source statement (e.g., *-3

and *-14) would not be acceptable for long jumps.
– Long jumps over several instructions are inconvenient,

error-prone, and difficult to read.

• Many processor creates special labels within
macros instructions to solve the labeling problem.
– Each symbol begins with $ is modified by $xx, where xx is

a two-character alphanumeric counter.
- E.g., first expansion with $AA, and the succeeding is $AB, $AC, etc.

December 31, 2010 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Generation of Unique Labels (Cont.)

Macro

After macro expansion with the
macro invocation:
RDBUF F1, BUFFER, LENGTH

December 31, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Conditional Macro Expansion
• Most macro processors can modify the sequence
of statements generated for a macro expansion,
depending on the arguments supplied in the macro
invocation.

• For example (listed in the next slides):
– The definition of the macro RDBUFF has two additional

parameters:
- &EOR: Specify a hexadecimal character code that marks the end

of a record.
- &MAXLTH: Specify the maximum length record that can be read.

December 31, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Conditional Macro Expansion (Cont.)

If &MAXLTH equals to the null string, Line 45 is
generated. Otherwise Line 47 is generated.

SET is a macro processor directive.
&EORCK is a macro-time variable (also called set symbol) that is used to store working values during macro expansion.
- Any symbols that begin with the character & and that is not a macro instruction parameter is assumed to

be a macro-time variable.
- All such variables are initialized to a value as 0.

If an argument corresponding to &EOR, the variable
&EORCK is set to 1. Otherwise, &EORCK remains 0.

Examining the value of variables is faster than repeating the original test, especially if the test involves complicated expression.

December 31, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Conditional Macro Expansion (Cont.)
-The macro processor must maintain a symbol table that contains the values of all used macro-
time variables.
-The testing of Boolean expressions in IF statements occurs at the time macros are expanded.
-Entries in this table are made or modified when SET statements are used.
-When an IF statement is encountered, the Boolean expression is evaluated to determine which
part of statements should be expanded.

December 31, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Conditional Macro Expansion (Cont.)
The nested IF structure is not allowed in this example.

Test at run time.

December 31, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

Conditional Macro Expansion (Cont.)
• The macro-time IF-THEN-ELSE structure provides
a mechanism for either generating or skipping
selected statements in the macro body.

• The macro-time looping statement WHILE
specifies that the following lines (until the next
ENDW) are to be generated repeated as long as a
particular condition is true.

• The programmer is also allowed to provide a list
corresponding to the same parameter.
– E.g., (00, 03, 04) corresponds to the parameter &EOR.

December 31, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Conditional Macro Expansion (Cont.)

&EORCT = 3

%NTIMES is a macro processor function that reuturns the number of members in an argument
list. E.g., when &EOR= (00, 03, 04), %NITEMS(&EOR) returns 3.
&CTR is used to count the number of times the lines following the WHILE have been generated.

Initialized to 1

Incremented by 1

Generated 3 times

The nested WHILE structure is not allowed in this example.

December 31, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Keyword Macro Parameters
• Format of macro parameters:

– Positional parameters:
- Parameters in the macro prototype and arguments in the macro

invocation statement were associated with each other according
to their positions.

– Keyword parameters:
- Only parameters that has corresponding arguments in the macro

invocation need to be listed. (Others adopt the default values.)
- Simplify the macro definition in many cases.
- Good for macros with a large number of parameters.
- For example: macro GENER has 10 parameters

· Positional parameter method:
· Keyword parameter method:

GENER ,,DIRECT,,,,,,3
GENER TYPE=DIRECT, CHANNEL=3

December 31, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Keyword Macro Parameters
Specify a keyword
parameter

Default value

Macro Processor Design
Options

Macro Processor Design
Options

December 31, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursive Macro Expansion
• The one-pass assembler

algorithm introduced in
this chapter can’t deal
with the invocations of
macros within macros.

Test-and-wait loop to control access

Parameter Value
1 BUFFER
2 LENGTH
3 F1
4 (unused)
． ．

Parameter Value
1 F1
2 (unused)
． ．

Procedure EXPAND is
called during preprocessing.
EXPANDING = TRUE

Procedure PROCESSLINE
call EXPAND again.
EXPANDING = TRUE

Set EXPANDING = FALSE

EXPANDING = FALSE

December 31, 2010 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursive Macro Expansion (Cont.)
• The cause of these difficulties:

– The recursive call of the procedure EXPAND.
- When the RDBUFF macro invocation is encountered, EXPAND is called.
- Later it calls PROCESSLINE for Line 50, which results in another call to

EXPAND before a return is made from the original call.
– PROCESSLINE would be called recursively.

- From main (outermost) loop of the macro processor logic
- From the loop within EXPAND

• If a programming language supports recursive calls (like C),
it problem could be solve automatically.

– Save registers and parameters automatically on each call, and
restore them on return.

• If a programming language does not support recursive calls,
the looping structure should save data values on a stack.

December 31, 2010 33

Copyright © All Rights Reserved by Yuan-Hao Chang

General-Purpose Macro Processors
• General-purpose macro processors are independent to any particular

programming language.
– General-purpose macro processors have higher development cost.
– The development cost does not need to be repeated.

• The large number of details that needs to be dealt with makes general-
purpose macro processors less popular.

– E.g., Each programming language has its own comments:
- Pascal and C use special character to mark the start and end of a comment.
- Ada uses a special character to mark the start of a comment that is automatically

terminated at the end of the source line.
- FORTRAN uses a special symbol to flag an entire line as a comment.
- Some assembler languages consider characters following the end of the

instructions as comments.
- Some recognize comments according their position in the source line. (COBOL)

December 31, 2010 34

Copyright © All Rights Reserved by Yuan-Hao Chang

General-Purpose Macro Processors (Cont.)
• A general-purpose macro processor may need to take

groupings into consideration to group terms, expressions,
and statements.

– Some languages use keywords begin and end for grouping. (Pascal)
– Some uses { and } (C and Java)
– Some uses (and)

• A general problem involves the tokens of the programming
languages.

– Tokens are identifiers, constants, operators, and keywords.
– Languages differ substantially on their tokens.

- Some have multiple-character operators such as ** in FORTRAN and :=
in Pascal.

· Macro processors may consider them as two characters.
- Blanks may be significant and may be not.

• Another program is the syntax used for macro definition
and macro invocation statements.

December 31, 2010 35

Copyright © All Rights Reserved by Yuan-Hao Chang

Macro Processing within Language
Translators (Integrated Macro Processor)
• Combining the macro processing functions with the language translator

is another design option.
• The simplest method is to combine a line-by-line macro processor.

– The macro processor reads the source program statements and performs
all macro processing functions.

– The output lines are passed to the language translator as they are
generated (one at a time).

- The macro processor operates like an input routine for the assembler or complier.

• Advantages of the line-by-line approach:
– Avoid making an extra pass over the source program.
– Combine data structures together. E.g., OPTAB and NAMTAB.
– Share utility subroutines and functions.

- E.g., Scanning input lines, table searching, and converting numeric values.
– Give diagnostic messages related to the source statement containing errors.

• The main form of communication between integrated macro processor
and language translator is the passing of source statements from one to
the other.

December 31, 2010 36

Copyright © All Rights Reserved by Yuan-Hao Chang

Macro Processing within Language
Translators (Cont.)
• The integrated macro processor may use the
results of translator operations such as scanning
symbols and constants.
– This is useful when the rules vary from one part of the

program to another. (e.g., FORTRAN)

• FORTRAN example:

– The macro processor would be very difficult to
distinguish them.

DO 100 I = 1,20 DO 100 I = 1

DO is a keyword
100 is a statement number

DO100I is an variable

A Loop: An assignment:

December 31, 2010 37

Copyright © All Rights Reserved by Yuan-Hao Chang

Macro Processing within Language
Translators (Cont.)
• An integrated macro processor can support macro
instructions.
– Macro instructions depend on the context in which they

occur.

• Disadvantages of integrated macro processors:
– They must be specially designed and written to work with

a particular implementation of an assembler or compiler.
– The costs of development must be added to the cost of

the language translator Make translators more
complicate.

– The size may be a problem if the translator is to run on a
computer with limited memory.

Implementation ExamplesImplementation Examples

December 31, 2010 39

Copyright © All Rights Reserved by Yuan-Hao Chang

MASM Macro Processor
• The macro processor of MASM is integrated with Pass 1 of the assembler.

• Macros may be redefined in a program to replace the first one. But this is confusing in practice.
|OP1 – OP2|

Word registers

doubleword registers

Indicate using EAX

Declare EXIT a local label

Direct MASN to terminate

Macro comment
Ordinary assembly comment

Generate unique names for labels: ??0000 ~ ??FFFF

Singal MASN an error

December 31, 2010 40

Copyright © All Rights Reserved by Yuan-Hao Chang

MASM Macro Processor (Cont.)
IRP sets S to a sequence of values.

December 31, 2010 41

Copyright © All Rights Reserved by Yuan-Hao Chang

ANSI C Macro Language
• In ANSI C language, macro definitions and invocations are handled by a

preprocessor.

• The preprocessor is not integrated with the compiler.

• For example:
#define NULL 0
#define EOF (-1)

#define EQ == while (I EQ 0) … while (I == 0) …

Avoid the common C error of writing = in place of ==.

#define ABSDIFF(X,Y) ((X) > (Y) ? (X) – (Y) : (Y) – (X))

ABSDIFF(I+1,J-5) ((I+1) > (J-5) ? (I+1) – (J-5) : (J-5) – (I+1))

Using macros is more efficient than using functions in this case.

Support different data types

#define ABSDIFF(X,Y) X > Y ? X – Y : Y – X

ABSDIFF(3+1, 10-8) 3+1 > 10-8 ? 3+1-10-8 : 10-8-3+1

ABSDIFF(I, 3.14159) ABSDIFF(‘D‘, ‘A‘)

Result becomes -14 instead of 2.

December 31, 2010 42

Copyright © All Rights Reserved by Yuan-Hao Chang

ANSI C Macro Language (Cont.)
#define DISPLAY(EXPR) printf("EXPR = %d\n", EXPR)

DISPLAY(I*J+1) printf("EXPR = %d\n", I*J+1) Quoted string won’t be expanded

#define DISPLAY(EXPR) printf(##EXPR "= %d\n", EXPR)

DISPLAY(I*J+1) printf("I"I*J+1" *J+1" "= %d\n", I*J+1)

Special “stringizing” operator #

printf("I"I*J+1 *J+1 = %d\n", I*J+1)

DISPLAY(ABSDIFF(3,8)) printf(“ABSDIFF(3,8)” “= %d\n”, ABSDIFF(3,8))
printf(“ABSDIFF(3,8)” “= %d\n”, ”,((3) > (8) ? (3) – (8) : *8) – (3)))Macro in macro

If the body of a macro contains a token that happens to match the
name of the macro, the token is not replaced during recanning.

December 31, 2010 43

Copyright © All Rights Reserved by Yuan-Hao Chang

ANSI C Macro Language (Cont.)
• Conditional compilation

– To make sure that a macro (or other name) is defined at
least once:

– Control debugging statements:

#ifndef BUFFER_SIZE
#define BUFFER_SIZE 1024
#endif

#define DEBUG 1
.
.
.
#if DEBUG == 1
printf(...) /* debugging output */
#endif

#ifdef DEBUG
printf(...) /* debugging output */
#endif

December 31, 2010 44

Copyright © All Rights Reserved by Yuan-Hao Chang

ELENA Macro Processor
• The ELENA is a general-purpose macro processor.

– It is a research tool, not a commercial software product.

• Macro definitions in ELENA are composed of a header and a body.
– The header is not required to have any special form.
– It consists of a sequence of keywords and parameter markers.
– Parameter markers are identified by the special character %.
– At least one of the first two tokens in a macro header must be a keyword,

not a parameter marker.
– A macro invocation is a sequence of tokens that matches the macro header.

%1 = %2 + %3
Header

ALPHA = BETA + GAMMA
Invocation

ADD %1 TO THE VALUE OF %2
Header

ADD 10 TO THE VALUE OF INDEX
Invocation

December 31, 2010 45

Copyright © All Rights Reserved by Yuan-Hao Chang

ELENA Macro Processor (Cont.)
Header

Body for C

Macro invocation

After macro expansion

Body for assembly

Macro invocation

After macro expansion

&STOR is changed to &STOR0001
because & identify &STOR as a local
label within the macro definition.

December 31, 2010 46

Copyright © All Rights Reserved by Yuan-Hao Chang

ELENA Macro Processor (Cont.)
Header

Body

Set macro-time variable .LAA to 1

Increase 1 to .LAA

The macro-time
instruction .IF causes
the macro processor to
jump back to the line
with the macro-time
label .E, if .LAA < %2.

Macro invocation

After macro expansion

December 31, 2010 47

Copyright © All Rights Reserved by Yuan-Hao Chang

ELENA Macro Processor (Cont.)
• The ELENA macro processor uses a macro definition table.

• A macro is identified by the sequence of keywords that appear in its
header.

– For example: Two macro headers

• ELENA constructs an index of all macro headers according to the
keywords in the first two tokens of the header.

– Invocation should match at least one of their first tokens.

ADD %1 TO %2
ADD %1 TO THE FIRST ELEMENT OF %2

A SUM B, C (Invocation): Compare all macro headers with the first token is A or the
second token is SUM

A = B + 1 Invocation

%1 = %2 + %3 %1 = %2 + 1

Matched header: select the header with the
fewest parameters. Otherwise, select the
most recently defined macro.

DISPLAY %1 %1 TABLE

DISPLAY TABLE Invocation

Header

Ambiguous

	投影片編號 1
	Outline
	投影片編號 3
	Macro and Macro Processor
	Macro Processor
	投影片編號 6
	投影片編號 7
	投影片編號 8
	Macro Expansion Example
	Macro Expansion Example (Cont.)
	Macro Processor Algorithm
	Example of Macros in a Macro
	One-Pass Macro Data Structure
	One-Pass Data Structure (Cont.)
	One-Pass Macro Algorithm
	One-Pass Macro Algorithm (Cont.)�
	投影片編號 17
	Concatenation of Macro Parameters
	Concatenation of Macro Parameters (Cont.)
	Generation of Unique Labels
	Generation of Unique Labels (Cont.)
	Conditional Macro Expansion
	Conditional Macro Expansion (Cont.)
	Conditional Macro Expansion (Cont.)
	Conditional Macro Expansion (Cont.)
	Conditional Macro Expansion (Cont.)
	Conditional Macro Expansion (Cont.)
	Keyword Macro Parameters
	Keyword Macro Parameters
	投影片編號 30
	Recursive Macro Expansion
	Recursive Macro Expansion (Cont.)
	General-Purpose Macro Processors
	General-Purpose Macro Processors (Cont.)
	Macro Processing within Language Translators (Integrated Macro Processor)
	Macro Processing within Language Translators (Cont.)
	Macro Processing within Language Translators (Cont.)
	投影片編號 38
	MASM Macro Processor
	MASM Macro Processor (Cont.)
	ANSI C Macro Language
	ANSI C Macro Language (Cont.)
	ANSI C Macro Language (Cont.)
	ELENA Macro Processor
	ELENA Macro Processor (Cont.)
	ELENA Macro Processor (Cont.)
	ELENA Macro Processor (Cont.)
	投影片編號 48

