
Chapter 5 
Operating Systems 

Chapter 5 
Operating Systems



January 7, 2011 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• Basic Operating System Functions

• Machine-Dependent Operating System Features

• Machine-Independent Operating System Features

• Operating System Design Options

• Implementation Examples



Basic Operating System 
Functions 

Basic Operating System 
Functions



January 7, 2011 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Basic Concept of an Operating System
• The main purpose of operating systems:

– To make the computer easier to use.
– To provide an interface that is more user-friendly.
– To provide a set of services that can aid in the performance of many 

common tasks.
– To manage the resources of the computer to meet overall system goals 

(e.g., efficiency).

Govern the interactions with 
programmers, operators, etc.
This interface may provide a 
control language to allow 
users to enter commands to 
invoke system functions.

Users enter a command such 
as RUN P to invoke the 
system loader to load and 
execute a program.

OS provides a service routine 
that could be invoked with a 
command such as read(f) to 
read data from file f.

A set of service routines that 
are available for use during 
program execution.



January 7, 2011 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Types of Operating Systems
• There are several ways to classify operating systems and 

some of the classifications overlap or fall into the same 
category.

– The kind of user interface provided:
- Single-job system

· Run one user job at a time because of the limited memory size and lack of data 
channels.

· Commonly found on microcomputers.
- Multiprogramming system

· Permit several user jobs to be executed concurrently.
· Switch the CPU among the various user jobs by the operating system.
· Provide a suitable run-time environment so the jobs do not interfere with each 

other.
- Multiprocessor system

· Contain more than one CPU that shares a common memory.
· Users can view the system as if it were a powerful single processor.

- Network operating system
· Provide an interface to allow communication via the network.
· Allow to login to remote machines and to copy files from one to another.



January 7, 2011 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Types of Operating Systems (Cont.)
- Distributed operating system

· Allow a complex type of network organization.
· Let users view the entire network as a single system.

» Users are unaware of which machine on the network is actually running a program or 
storing data.

– The type of accesses provided to a user:
- Batch processing system

· A job is described by a sequence of control statements stored in a machine-readable form.
· The operating system can read and execute a series of such jobs without human 

intervention.
· Goal: Make the most efficient use of the computer.

- Time-sharing system
· Provide interactive access to a number of users with less efficient machine utilization.
· Execute commands with a reasonably short response time.
· Goal: Provide good response time to the interactive users.

- Real-time system
· Response quickly to external signals such as those generated by data sensors.
· Usually used on computers that monitor and control time-critical process such as nuclear 

reactor operation or spacecraft flight.
· Goal: Provide a guaranteed response time to time-critical external events.



January 7, 2011 7

Copyright © All Rights Reserved by Yuan-Hao Chang

User Interface
• The user interface is designed to serve the needs of the 

various groups of people who must deal with the computer.
• The user interface of an operating system should be 

designed to match the needs of all the various types of 
users.

– In simple operating systems:
- The interface is generally designed to be easy to use.

· It may include a simple command language, a menu from which the user 
selects options, or a graphical representation of programs and data.

– In complex systems:
- There may be a number of different user-interface languages.
- There may be a more complex and more powerful command language.
- There is usually a special language that is used to communicate with the 

operators of the computer.
- Logs of system activity that can be used for performance analysis and 

error recovery are maintained.



January 7, 2011 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Run-Time Environment
• The run-time environment 

– Contain a set of service routines that are available for use during 
program execution.

– Provide facilities for managing the resources of the computing 
system and assigning these resources to user programs.

• Consider the I/O function under a single-job operations 
system on a SIC computer.

– To perform a read operation without operating systems, the program 
needs to test the I/O errors and provide error-recovery routines. 

– Without the support of an operating system, the user program can 
simply invoke a service routine and specify the device to be used. 
The operating system would take care of all details (e.g., status 
testing and counting of bytes transferred).



January 7, 2011 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Run-Time Environment (Cont.)
• A service routine can be thought of as providing an 

extension to the underlying machine.
– Service routines can be thought of defining an extended machine 

for use by programs during execution.
- The extended machine is easier to use than the real machine.
- Programs deal with the functions and capabilities provided by this 

extended machine.
- I/O operations on the extended machine may appear to be less error- 

prone than on the real machine, because the operating system takes 
care of error detection and recovery.

• The run-time environment contains routines that manage 
the resources of the computer, allocating them to user jobs.

– The user jobs do not need to be concerned with resource 
management.

– A virtual machine is provided to let user jobs run as if they own the 
machine, even though the underlying real machine is being shared.



January 7, 2011 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Run-Time Environment (Cont.)
• On advanced systems, users generally request operating system functions by 

some special hardware instruction such as supervisor call (SVC).
– Execution of an SVC instruction generates an interrupt that transfers control to an 

operating system service routine.
– A code supplied by the SVC instruction specifies the type of request.

• The generation of an interrupt causes the CPU to switch from user mode to 
supervisor mode.

– In supervisor mode:
- All machine instructions and features can be used. (including privileged instructions)
- Most parts of the operating system are designed to run in this mode.

– In user mode:
- Some instructions are not available. E.g., I/O functions, set memory protection flags, or switch 

the CPU from one mode to another.

• Restricting the use of such privileged instructions forces programs to make 
use of the services provided by the run-time environment.

– User programs must deal with the extended machine interface, rather than utilizing 
the underlying hardware functions directly.

– Privileged instructions and user/supervisor modes are a practical necessity for a 
system that supports more than one user at a time.



Machine-Dependent 
Operating System 

Features 

Machine-Dependent 
Operating System 

Features



January 7, 2011 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Interrupt Processing
• An interrupt is a signal that causes a computer to alter its normal flow of 

instruction execution.
– Such signals can be generated by different conditions, e.g., the completion of an I/O 

operation, the expiration of a preset time interval, or an attempt to divide by zero.

Interrupt-processing 
routine

• Interrupt processing:
– The interrupt automatically transfers 

controls to an interrupt-processing 
routine (called interrupt handler) that 
is usually part of the operating system.

– After completion of the interrupt 
processing, control can be returned to 
program A at the point at which its 
execution was interrupted.

– E.g., Program A is interrupted by the I/O 
completion of other programs.

- The interrupts is asynchronous with 
respect to program A.

- A is unaffected by the interrupt, expect for 
timing. 



January 7, 2011 13

Copyright © All Rights Reserved by Yuan-Hao Chang

Interrupt Processing (Cont.)
Class Interrupt type
I SVC
II Program
III Timer
IV I/O

• SIC/XE interrupt classes
– SVC interrupt

- The SVC interrupt is generated when a supervisor call (SVC) instruction is executed by the 
CPU.

- The SVC instruction is used by programs to request operating system functions.
– Program interrupt

- This program interrupt is generated by some condition that occurs during program execution.
· E.g., an attempt to divide by zero, an attempt to execute an illegal machine instruction.

– Timer interrupt
- The timer interrupt is generated by an interval timer within the CPU.
- The timer contains a register that can be set to an initial positive value by the privileged 

instruction STI.
· The value in this register is automatically decremented by 1 for each millisecond of CPU time.
· When the value reaches zero, a timer interrupt occurs.
· The interval timer is used by the operating system to govern how long a user program can remain in 

control of the machine.

– I/O interrupt
- The I/O interrupt is generated by an I/O channel or device.
- Most such interrupts are caused by the normal completion of some I/O operation.

SIC/XE interrupt types



January 7, 2011 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Interrupt Processing (Cont.)
• When an interrupt occurs, the status of the CPU is 

saved, and control is transferred to an interrupt- 
processing routine.

• On a SIC/XE machine, there is a fixed interrupt work 
area corresponding to each class of interrupt.

• E.g., The area assigned to the timer interrupt begins at 
memory address 160. The following storing and loading 
of registers (called context switch) are done 
automatically by the hardware of the machine. 

– 1. When a timer interrupt occurs, the contents of all 
registers are stored in this work area.

– 2. Then the first two words of the area are loaded to the 
status word (SW) and the program counter (PC). 



January 7, 2011 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Interrupt Processing (Cont.)
• The loading of PC with a new value 

automatically causes a transfer of control.
– The next instruction to be executed is taken from the 

address given by the new value of PC.
– This prestored address is the starting address of the 

interrupt-handling routine for a timer interrupt.
– The loading of SW also causes certain changes.

• After the handling routine returns by executing 
a Load Processor Status (LPS) instruction 
to restore the contents of SW, PC, and other 
registers.

– This transfers control to the instruction following the 
one that was being executed when the interrupt 
occurred.

Note: SW is similar to the program status word or processor status word in other computers.



January 7, 2011 16

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Status Word
• MODE field: 

– Specify whether the CPU is in user mode or supervisor mode.
– When an interrupt occurs, the new SW contents have MODE=1. This automatically 

switches the CPU to supervisor mode.
• ICODE field: 

– Before the old value of SW is saved, the ICODE field is automatically set to a value 
that indicates the cause of the interrupt.

- For an SVC interrupt, ICODE is set to the value specified by the user in the SVC instruction.
- For a program interrupt, ICODE indicates the type of condition, such as divided by zero.
- For an I/O interrupt, ICODE indicates gives the number of the I/O channel that generated the 

interrupt.

• CC field (condition code): 
– Saving SW automatically preserves the 

condition code value that was being 
used by the interrupted process.

• IDLE field:
– Specify whether the CPU is executing 

instructions or is idle.
• ID field:

– Identify the user program currently being executed. 
SIC/XE status word contents



January 7, 2011 17

Copyright © All Rights Reserved by Yuan-Hao Chang

SIC/XE Status Word (Cont.)
• Mask field:

– Control whether interrupts are allowed.
- Each bit in MASK is set to 0 to disable the corresponding interrupt. 

(Called masked or inhibited or disabled)
– This control is necessary to prevent loss of the stored processor status 

information.
- For example:

· 1. an I/O interrupt occurs. The values of SW, PC, and other registers are stored in the I/O 
interrupt work area, and the CPU begin to execute the I/O interrupt handler.

· 2. If another I/O interrupt occurs before the processing of the fist one had been completed, 
another context switch would take place.

· 3. This time, the values that were saved by the original interrupt would be destroyed, so it 
would be impossible to return control to the user program that was executing at the time of 
the first interrupt. 

– Interrupts that are masked are not lost because the hardware saves the 
signal that would have caused the interrupt. The delayed interrupt is said to 
be pending.

– The masking of interrupts on a SIC/XE machine is under the control of the 
operating system.

- It depends on the value of MASK in the SW that is prestored in each interrupt work 
aea.



January 7, 2011 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Interrupt Priority
• Each class of interrupts on a SIC/XE machine is assigned an interrupt 

priority. 
– SVC interrupt, program interrupts, and so on.
– For example:

- Initially, the MASK field in the status word for each interrupt class is set. 
- The status word that is loaded in response to a program interrupt would have 

· The MASK bits for program, timer, and I/O interrupts set to 0.
· The MASK bit for SVC interrupts set to 1.

– Such an interrupt priority would 
cause a nested interrupt situation.

MASK bits set to 1.
MASK bit for I/O interrupt is set 
to 0. Others are set to 1.



January 7, 2011 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Process Scheduling
• A process (sometimes called a task) is defined as a program in 

execution.
– The CPU is assigned to processes by the operating system in order to 

perform computing work.
– In a single-job process scheduling, only one user process at a time.
– In a multiprogramming system, many independent processes competing for 

control of the CPU.

• Process scheduling is the management of the CPU by switching control 
among the various competing processes according to some scheduling 
policy.

• In most cases, a process corresponds to a user job. However, 
– Some systems allow one user job to create several different processes that 

are executed concurrently.
– Some systems allow one program to be executed by several independent 

processes.



January 7, 2011 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Process Scheduling (Cont.)
• A process is created when a user job begins execution, and 

this process is destroyed when the job terminates.
• During the period of its existence, the process can be 

considered to be in one of three states:
– Running:

- A process is running when it is executing instructions using the CPU.
– Blocked:

- A process is blocked if it must wait for some event to occur before it can 
continue execution.

- E.g., a process might be blocked because it must wait for the completion 
of an I/O operation before proceeding.

– Ready:
- Processes that are neither blocked nor running are said to be ready.
- Ready processes are candidates to be assigned the CPU when the 

currently running process gives up control.



January 7, 2011 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Process Scheduling (Cont.)
• At any particular time, there can be no more than one process in the 

running state. 

• When the operating system transfers control to a user process, it sets 
the interval timer to specify a time-slice.

– A time-slice is a maximum amount of CPU time the process is allowed to 
user before giving up control.

– The selection of a process is called dispatching. The part of the opearting



January 7, 2011 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Process Scheduling (Cont.)
• Each time a process leaves the running state, its current 

status must be saved.
• This status must be restored the next time the process is 

dispatched so that the switching will have no effect on the 
results of the computation being performed.

• The status information for each process is saved by the 
operating system in a process status block (PSB) for that 
process.

– A PSB is created when a process first begins execution of the 
process state. It contains
- An indication of the process state (running, ready, or blocked).
- An area that is used to save all machine registers (including SW and PC).
- A variety of other information (e.g., variables).



January 7, 2011 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Process Scheduling - Dispatching
• It is about to switch from one process to another. The status information 

of the previously running process needs to be saved.
– If that process lost control of the CPU because its time-slice expired, the 

status information can be found in the timer-interrupt work area.
– If that process gives up control (via an SVC request) because it needed to 

wait for the occurrence of some event, the status information can be found 
in the SVC-interrupt work area.

– It is possible that no process was previously running process.

• After saving the status of the previously running process, the dispatcher 
selects a new process to receive control.

– The dispatcher sets the interval timer to specify the time-slice.
– Then the dispatcher switches control by using the LPS instruction to load 

the status information saved in the PSB for that process. 
– If there is no process in the ready state, set the CPU to idle.



January 7, 2011 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Process Scheduling – Dispatching (Cont.)



January 7, 2011 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Process Scheduling – Dispatching (Cont.)
• There are several different methods for selecting the next 

process to be dispatched:
– Round robin:

- The dispatcher cycles through the PSBs, selecting the next process that 
is in the ready state.

- Each process dispatched is given the same length time-slice as all other 
processes.

– Priority scheme:
- 1. Each user job has its predefined priority.

· The goal of such a system is to provide the desired level of service for each 
class of job.

- 2. the priorities are assigned by the operating system.
· The assignment of priorities is made in an effort to improve the overall system 

performance.
- 3. Assign different time-slices to different processes in conjunction with 

the priority system.



January 7, 2011 26

Copyright © All Rights Reserved by Yuan-Hao Chang

Process Scheduling – Wait & Signal
• When a running process reaches a point at which it must wait for some 

event to occur, the process informs the operating system by making a 
WAIT (SVC 0) service request. 

• The occurrence of an event on which other processes may be waiting is 
communicated to the operating system by a SIGNAL (SVC 0) request.

• The event to be awaited or signaled is specified by giving the address of 
an event status block (ESB) that is associated with the event.

– The ESB contains a flag bit ESBFLAG that records whether or not the 
associated event has occurred.

– The ESB contains a pointer to ESBQUEUE, a lost of all processes 
currently waiting for the event.



January 7, 2011 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Process Scheduling – Wait & Signal (Cont.)
Requested by a 
running process

Requested by a process 
that detects that some 
event corresponding to 
ESB has occurred.

If the dispatching method being 
used is based on priorities, the 
SIGNAL algorithm would invoke 
the dispatcher to transfer control 
to the highest-priority process 
that is currently ready.
This is called preemptive 
process scheduling: It permits a 
process that becomes ready to 
seize control from a lower-priority 
process that is currently running.



January 7, 2011 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Management of Real Memory
• Many systems divide memory into partitions, with each 

process being assigned to a different partition.
– Fixed partition:

- Partitions are predefined in size and position.
– Variable partition:

- Partitions are allocated dynamically according to the requirements of the 
jobs being executed.



January 7, 2011 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Fixed Partitions
• Load each incoming job into the smallest free partition in 

which it will fit.



January 7, 2011 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Variable Partitions Problem: fragmentation

Allocation strategy:
-First fit
-Best fit
-Next fit



January 7, 2011 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Relocatable Partition
• Remaining partitions are moved as far as possible.



January 7, 2011 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Relocation 
Register


	投影片編號 1
	Outline
	投影片編號 3
	Basic Concept of an Operating System
	Types of Operating Systems
	Types of Operating Systems (Cont.)
	User Interface
	Run-Time Environment
	Run-Time Environment (Cont.)
	Run-Time Environment (Cont.)
	投影片編號 11
	Interrupt Processing
	Interrupt Processing (Cont.)
	Interrupt Processing (Cont.)
	Interrupt Processing (Cont.)
	SIC/XE Status Word
	SIC/XE Status Word (Cont.)
	Interrupt Priority
	Process Scheduling
	Process Scheduling (Cont.)
	Process Scheduling (Cont.)
	Process Scheduling (Cont.)
	Process Scheduling - Dispatching
	Process Scheduling – Dispatching (Cont.)
	Process Scheduling – Dispatching (Cont.)
	Process Scheduling – Wait & Signal
	Process Scheduling – Wait & Signal (Cont.)
	Management of Real Memory
	Fixed Partitions
	Variable Partitions
	Relocatable Partition
	Relocation�Register

