
Deep Learning of Binary Hash Codes for Fast Image Retrieval

Kevin Lin†, Huei-Fang Yang†, Jen-Hao Hsiao‡, Chu-Song Chen†

†Academia Sinica, Taiwan ‡Yahoo! Taiwan
{kevinlin311.tw,song}@iis.sinica.edu.tw, hfyang@citi.sinica.edu.tw, jenhaoh@yahoo-inc.com

https://github.com/kevinlin311tw/caffe-cvprw15

Abstract

Approximate nearest neighbor search is an efficient
strategy for large-scale image retrieval. Encouraged by the
recent advances in convolutional neural networks (CNNs),
we propose an effective deep learning framework to gener-
ate binary hash codes for fast image retrieval. Our idea is
that when the data labels are available, binary codes can be
learned by employing a hidden layer for representing the la-
tent concepts that dominate the class labels. The utilization
of the CNN also allows for learning image representations.
Unlike other supervised methods that require pair-wised in-
puts for binary code learning, our method learns hash codes
and image representations in a point-wised manner, mak-
ing it suitable for large-scale datasets. Experimental re-
sults show that our method outperforms several state-of-
the-art hashing algorithms on the CIFAR-10 and MNIST
datasets. We further demonstrate its scalability and efficacy
on a large-scale dataset of 1 million clothing images.

1. Introduction

Content-based image retrieval aims at searching for sim-
ilar images through the analysis of image content; hence
image representations and similarity measure become criti-
cal to such a task. Along this research track, one of the most
challenging issues is associating the pixel-level information
to the semantics from human perception [25, 27]. Despite
several hand-crafted features have been proposed to repre-
sent the images [19, 2, 22], the performance of these visual
descriptors is still limited until the recent breakthrough of
deep learning. Recent studies [14, 7, 21, 23] have shown
that deep CNN significantly improves the performance on
various vision tasks, such as object detection, image clas-
sification, and segmentation. These accomplishments are
attributed to the ability of deep CNN to learn the rich mid-
level image representations.

As deep CNNs learn rich mid-level image descriptors,

Krizhevsky et al. [14] used the feature vectors from the
7th layer in image retrieval and demonstrated outstanding
performance on ImageNet. However, because the CNN
features are high-dimensional and directly computing the
similarity between two 4096-dimensional vectors is ineffi-
cient, Babenko et al. [1] proposed to compress the CNN
features using PCA and discriminative dimensionality re-
duction, and obtained a good performance.

In CBIR, both image representations and computational
cost play an essential role. Due to the recent growth of vi-
sual contents, rapid search in a large database becomes an
emerging need. Many studies aim at answering the ques-
tion that how to efficiently retrieve the relevant data from
the large-scale database. Due to the high-computational
cost, traditional linear search (or exhaustive search) is not
appropriate for searching in a large corpus. Instead of lin-
ear search, a practical strategy is to use the technique of
Approximate Nearest Neighbor (ANN) or hashing based
method [6, 29, 18, 20, 15, 30] for speedup. These meth-
ods project the high-dimensional features to a lower di-
mensional space, and then generate the compact binary
codes. Benefiting from the produced binary codes, fast im-
age search can be carried out via binary pattern matching
or Hamming distance measurement, which dramatically re-
duces the computational cost and further optimizes the effi-
ciency of the search. Some of these methods belong to the
pair-wised method that use similarity matrix (containing the
pair-wised similarity of data) to describe the relationship of
the image pairs or data pairs, and employ this similarity in-
formation to learn hash functions. However, it is demanding
to construct the matrix and generate the codes when dealing
with a large-scale dataset.

Inspiring from the advancement of deep learning, we
raise a question that can we take the advantage of deep
CNN to achieve hashing? Instead of the use of the pair-
wised learning method, can we generate the binary compact
codes directly from the deep CNN? To address these ques-
tions, we propose a deep CNN model that can simultane-
ously learn image representations and binary codes, under
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the assumption that the data are labeled. That is, our method
is designed particularly for supervised learning. Further-
more, we argue that when a powerful learning model such
as deep CNN is used and the data labels are available, the bi-
nary codes can be learned by employing some hidden layer
for representing the latent concepts (with binary activation
functions such as sigmoid) that dominate the class labels
in the architecture. This is different from other supervised
methods (such as [30]) that take into consideration the data
labels but require pair-wised inputs to the prepared learning
process. In other words, our approach learns binary hashing
codes in a point-wised manner, taking advantage of the in-
cremental learning nature (via stochastic gradient descent)
of deep CNN. The employment of deep architecture also
allows for efficient-retrieval feature learning. Our method
is suitable for large datasets in comparison of conventional
approaches.

Our method is with the following characteristics:

• We introduce a simple yet effective supervised learn-
ing framework for rapid image retrieval.

• With small modifications to the network model, our
deep CNN simultaneously learns domain specific im-
age representations and a set of hashing-like functions
for rapid image retrieval.

• The proposed method outperforms all of the state-
of-the-art works on the public dataset MNIST and
CIFAR-10. Our model improves the previous best re-
trieval performance on CIFAR10 dataset by 30% pre-
cision, and on MNIST dataset by 1% precision.

• Our approach learns binary hashing codes in a point-
wised manner and is easily scalable to the data size in
comparison of conventional pair-wised approaches.

This paper is organized as follows: We briefly review the
related work of hashing algorithms and image retrieval with
deep learning in Section 2. We elaborate on the details of
our method in Section 3. Finally, experimental results are
provided in Section 4, followed by conclusions in Section 5.

2. Related Work
Several hashing algorithms [6, 29, 18, 20, 28, 10] have

been proposed to approximately identify data relevant to the
query. These approaches can be classified into two main
categories, unsupervised and supervised methods.

Unsupervised hashing methods use unlabeled data to
learn a set of hash functions [6, 29, 8]. The most repre-
sentative one is the Locality-Sensitive Hashing (LSH) [6],
which aims at maximizing the probability that similar data
are mapped to similar binary codes. LSH generates the bi-
nary codes by projecting the data points to a random hyper-
plane with random threshold. Spectral hashing (SH) [29] is

another representative approach, which produces the com-
pact binary codes via thresholding with non-linear functions
along the PCA direction of the given data.

Recent studies have shown that using supervised infor-
mation can boost the binary hash codes learning perfor-
mance. Supervised approaches [18, 20, 15] incorporate la-
bel information during learning. These supervised hashing
methods usually use the pair-wised labels for generating ef-
fective hash functions. However, these algorithms generally
require a large sparse matrix to describe the similarity be-
tween data points in the training set.

Beside the research track of hashing, image representa-
tions also play an essential role in CBIR. CNN-based visual
descriptors have been applied on the task of image retrieval
recently. Krizhevsky et al. [14] firstly use the features ex-
tracted from seventh layer to retrieve images, and achieve
impressive performance on ImageNet. Babenko et al. [1]
focus on dimensional reduction of the CNN features, and
improve the retrieval performance with compressed CNN
features. Though these recent works [14, 1] present good
results on the task of image retrieval, the learned CNN fea-
tures are employed for retrieval by directly performing pat-
tern matching in the Euclidean space, which is inefficient.

Deep architectures have been used for hash learning.
However, most of them are unsupervised, where deep auto-
encoders are used for learning the representations [24, 13].
Xia et al. [30] propose a supervised hashing approach to
learn binary hashing codes for fast image retrieval through
deep learning and demonstrate state-of-the-art retrieval per-
formance on public datasets. However, in their pre-
processing stage, a matrix-decomposition algorithm is used
for learning the representation codes for data. It thus re-
quires the input of a pair-wised similarity matrix of the data
and is unfavorable for the case when the data size is large
(e.g., 1M in our experiment) because it consumes both con-
siderable storage and computational time.

In contrast, we present a simple but efficient deep learn-
ing approach to learn a set of effective hash-like functions,
and it achieves more favorable results on the publicly avail-
able datasets. We further apply our method to a large-scale
dataset of 1 million clothing images to demonstrate the scal-
ability of our approach. We will describe the proposed
method in next section.

3. Method
Figure 1 shows the proposed framework. Our method

includes three main components. The first component is
the supervised pre-training on the large-scale ImageNet
dataset [14]. The second component is fine-tuning the net-
work with the latent layer to simultaneously learn domain-
specific feature representation and a set of hash-like func-
tion. The third retrieves images similar to the query one
via the proposed hierarchical deep search. We use the pre-
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Figure 1: The proposed image retrieval framework via hierarchical deep search. Our method consists of three main com-
ponents. The first is the supervised pre-training of a convolutional neural network on the ImageNet to learn rich mid-level
image representations. In the second component, we add a latent layer to the network and have neurons in this layer learn
hashes-like representations while fine-tuning it on the target domain dataset. The final stage is to retrieve similar images
using a coarse-to-fine strategy that utilizes the learn hashes-like binary codes and F7 features.

trained CNN model proposed by Krizhevsky et al. [14]
from the Caffe CNN library [11], which is trained on the
large-scale ImageNet dataset which contains more than 1.2
million images categorized into 1000 object classes. Our
method for learning binary codes is described in detail as
follows.

3.1. Learning Hashlike Binary Codes

Recent studies [14, 7, 5, 1] have shown that the fea-
ture activations of layers F6−8 induced by the input im-
age can serve as the visual signatures. The use of these
mid-level image representations demonstrates impressive
improvement on the task of image classification, retrieval,
and others. However, these signatures are high-dimensional
vectors that are inefficient for image retrieval in a large cor-
pus. To facilitate efficient image retrieval, a practical way
to reduce the computational cost is to convert the feature
vectors to binary codes. Such binary compact codes can be
quickly compared using hashing or Hamming distance.

In this work, we propose to learn the domain specific im-
age representations and a set of hash-like (or binary coded)

functions simultaneously. We assume that the final outputs
of the classification layer F8 rely on a set of h hidden at-
tributes with each attribute on or off. In other points of view,
images inducing similar binary activations would have the
same label. To fulfill this idea, we embed the latent layer H
between F7 and F8 as shown in the middle row of Figure 1.
The latent layer H is a fully connected layer, and its neuron
activities are regulated by the succeeding layer F8 that en-
codes semantics and achieves classification. The proposed
latent layer H not only provides an abstraction of the rich
features from F7, but also bridges the mid-level features and
the high-level semantics. In our design, the neurons in the
latent layer H are activated by sigmoid functions so the ac-
tivations are approximated to {0, 1}.

To achieve domain adaptation, we fine-tune the proposed
network on the target-domain dataset via back propagation.
The initial weights of the deep CNN are set as the weights
trained from ImageNet dataset. The weights of the latent
layer H and the final classification layer F8 are randomly
initialized. The initial random weights of latent layer H
acts like LSH [6] which uses random projections for con-



structing the hashing bits. The codes are then adapted from
LSH to those that suit the data better from supervised deep-
network learning. Without dramatic modifications to a deep
CNN model, the propose model learns domain specific vi-
sual descriptors and a set of hashing-like functions simulta-
neously for efficient image retrieval.

3.2. Image Retrieval via Hierarchical Deep Search

Zeiler and Fergus [32] analyzed the deep CNN and
showed that the shallow layers learn local visual descriptors
while the deeper layers of CNN capture the semantic infor-
mation suitable for recognition. We adopt a coarse-to-fine
search strategy for rapid and accurate image retrieval. We
firstly retrieve a set of candidates with similar high-level se-
mantics, that is, with similar hidden binary activations from
the latent layer. Then, to further filter the images with simi-
lar appearance, similarity ranking is performed based on the
deepest mid-level image representations.

Coarse-level Search. Given an image I , we first extract
the outputs of the latent layer as the image signature which
is denoted by Out(H). The binary codes are then obtained
by binarizing the activations by a threshold. For each bit
j = 1 · · ·h (where h is the number of nodes in the latent
layer), we output the binary codes of H by

Hj =

{
1 Outj(H) ≥ 0.5,

0 otherwise.
(1)

Let Γ = {I1, I2, . . . , In} denote the dataset consisting of
n images for retrieval. The corresponding binary codes
of each images are denoted as ΓH = {H1,H2, . . . , Hn}
with Hi ∈ {0, 1}h. Given a query image Iq and its bi-
nary codes Hq , we identify a pool of m candidates, P =
{Ic1 , Ic2 , . . . , Icm}, if the Hamming distance between Hq and
Hi ∈ ΓH is lower than a threshold.

Fine-level Search. Given the query image Iq and the can-
didate pool P , we use the features extracted from the layer
F7 to identify the top k ranked images to form the candi-
date pool P . Let Vq and V P

i denote the feature vectors of
the query image q and of the image Ici from the pool, re-
spectively. We define the similarity level between Iq and
the i-th image of P as the Euclidean distance between their
corresponding features vectors,

si = ∥Vq − V P
i ∥. (2)

The smaller the Euclidean distance is, the higher level the
similarity of the two images is. Each candidate Ici is ranked
in ascending order by the similarity; hence, top k ranked
images are identified.
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Figure 2: Sample images from the Yahoo-1M Shopping
Dataset. The heterogeneous product images demonstrate
highly variation, and are challenging to image classification
and retrieval.

4. Experimental Results
In this section, we demonstrate the benefits of our ap-

proach. We start with introducing the datasets and then
present our experimental results with performance com-
parison to several state-of-the-arts on the public datasets,
MNIST and CIFAR-10 datasets. Finally, we verify the scal-
ability and the efficacy of our approach on the large-scale
Yahoo-1M dataset.

4.1. Datasets

MNIST Dataset [16] consists of 10 categories of the
handwritten digits form 0 to 9. There are 60,000 training
images, and 10,000 test images. All the digits are normal-
ized to gray-scale images with size 28× 28.

CIFAR-10 Dataset [12] contains 10 object categories
and each class consists of 6,000 images, resulting in a total
of 60,000 images. The dataset is split into training and test
sets, with 50,000 and 10,000 images respectively.

Yahoo-1M Dataset contains a total of 1,124,087 shop-
ping product images, categorized into 116 clothing-specific
classes. The dataset is collected by crawling the images
from the Yahoo shopping sites. All the images are labeled
with a category, such as Top, Dress, Skirt and so on. Fig-
ure 2 shows some examples of the dataset.

In the experiments of MNIST and CIFAR-10, we retrieve
the relevant images using the learned binary codes in order
to fairly compare with other hashing algorithms. In the ex-
periments of Yahoo-1M dataset, we retrieve similar images
from the entire dataset via the hierarchical search.

4.2. Evaluation Metrics

We use a ranking based criterion [4] for evaluation.
Given a query image q and a similarity measure, a rank can
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Figure 3: Top 10 retrieved images from MNIST dataset by vary bit numbers of the latent binary codes. Relevant images with
similar appearance are retrieved when the bit numbers increased.

Table 1: Performance Comparison (Error, %) of Classifica-
tion Error Rates on the MNIST dataset.

Methods Test Error (%)

2-Layer CNN + 2-Layer NN [31] 0.53
Stochastic Pooling [31] 0.47
NIN + Dropout [17] 0.47
Conv. maxout + Dropout [9] 0.45

Ours w/ 48 nodes latent layer 0.47
Ours w/ 128 nodes latent layer 0.50

be assigned for each dataset image. We evaluate the rank-
ing of top k images with respect to a query image q by a
precision:

Precision@k =

∑k
i=1 Rel(i)

k
, (3)

where Rel(i) denotes the ground truth relevance between a
query q and the i-th ranked image. Here, we consider only
the category label in measuring the relevance so Rel(i) ∈
{0, 1} with 1 for the query and the ith image with the same
label and 0 otherwise.

4.3. Results on MNIST Dataset

Performance of Image Classification. To adapt our deep
CNN on the new domain, we modify the layer F8 to 10-
way softmax to predict 10 digit classes. In order to measure
the effect of latent layer embedded in the deep CNN, we
set the number of neurons h in the latent layer to 48 and
128, respectively. Then, we apply stochastic gradient de-
scent (SGD) to train the CNN on the MNIST dataset. The
network is trained for 50,000 iterations with a learning rate
of 0.001.
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Figure 4: Image retrieval precision with 48 bits of MNIST
dataset.

We compare our results with several state-of-the-arts [31,
17, 9] in Table 1. Our approach with 48 latent nodes at-
tains 0.47% error rate and performs favorably against most
of the alternatives. It it worth noting that our model is
designed particularly for image retrieval whereas others
are optimizing for a classification task through modifica-
tion of a network. For example, the work of [31] pro-
posed the maxout activation function which improves the
accuracy of dropout’s approximate model averaging tech-
nique. Another representative work is Network in Network
(NIN) [17], which enhances the discriminability of local
patches via multilayer perception, and avoids overfitting us-
ing the global average pooling instead of the fully connected
layers. Also note that our method with 48 latent nodes
yields an error rate lower than the model with 128 nodes
does. This may be due to that few latent nodes are capable
of representing latent concepts for classification and adding
more neurons can cause overfitting.
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Figure 5: Top 10 retrieved images from CIFAR-10 by vary bit numbers of the latent binary codes. Relevant images with
similar appearance are retrieved when the bit numbers increased.

Table 2: Performance Comparison (mAP, %) of Classifica-
tion Accuracy on the CIFAR-10 dataset.

Methods Accuracy (%)

Stochastic Pooling [31] 84.87
CNN + Spearmint [26] 85.02
MCDNN [3] 88.79
AlexNet + Fine-tuning [14] 89
NIN + Dropout [17] 89.59
NIN + Dropout + Augmentation [17] 91.2

Ours w/ 48 nodes latent layer 89.4
Ours w/ 128 nodes latent layer 89.6

Performance of Images Retrieval. In this experiment,
we unify the retrieval evaluation that retrieve the relevant
images using 48 bits binary code and hamming distance
measure. The retrieval is performed by randomly select-
ing 1,000 query images from the testing set for the system
to retrieve relevant ones from the training set.

To evaluate the retrieval performance, we compare the
proposed method with several state-of-the-art hashing ap-
proaches, including supervised (KSH [18], MLH [20],
BRE [15], CNNH [30], and CNNH+ [30]) and unsuper-
vised methods (LSH [6], SH [29], and ITQ [8]). Fig-
ure 4 shows the retrieval precision of different methods
with respect to different number of retrieved images. As
can be seen, our method demonstrates stable performance
(98.2+−0.3% retrieval precision) regardless of the number of
images retrieved. Furthermore, our approach improves the
precision to 98.5% from 97.5% achieved by CNNH+ [30],
which learns the hashing functions via decomposition of the
pair-wised similarity information. This improvement indi-
cates that our point-wised method that requires only class
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Figure 6: Image retrieval precision with 48 bits of CIFAR-
10 dataset.

labels is effective.
We further analyze the quality of the learned hash-like

codes for h = 48 and h = 128, respectively, as shown in
Figure 3. As can be seen, both settings can learn informative
binary codes for image retrieval.

4.4. Results on CIFAR10 Dataset

Performance of Image Classification. To transfer the
deep CNN to the domain of CIFAR-10, we modify F8 to 10-
way softmax to predict 10 object categories, and h is also
set as 48 and 128. We then fine-tune our network model
on the CIFAR-10 dataset, and finally achieves around 89%
testing accuracy after 50, 000 training iterations. As shown
in Table 2, the proposed method is more favorable against
most approaches [31, 26, 3, 14, 17], which indicates that
embedding the binary latent layer in the deep CNN does
not severely alter the performance.
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Figure 7: Image classification results on Yahoo-1M dataset. The first row indicates ground truth label. The bars below depict
the prediction scores sorted in ascending order. Red and blue bar represent the correct and incorrect predictions, respectively.

Performance of Image Retrieval. In order for a fair com-
parison with other hashing algorithms, we unify the evalu-
ation method that retrieves the relevant images by 48 bits
binary codes and Hamming distance. Figure 6 shows the
precision curves with respect to different number of the
top retrieved samples. Our approach achieves better per-
formance than other unsupervised and supervised methods.
Moreover, it attains a precision of 89% while varying the
number of retrieved images, improving the performance by
a margin of 30% compared to CNNH+ [30]. These results
suggest that the use of a latent layer for representing the
hidden concepts is a practical approach to learning efficient
binary codes.

Figure 5 shows our retrieval results. The proposed la-
tent binary codes successfully retrieve images with rele-
vant category, similar appearance, and/or both. Increasing
the bit numbers from h = 48 to h = 128 retrieves more
appearance-relevant images according to our empirical eye-
ball checking. For example, in Figure 5, using h = 128
bits binary code tends to retrieve more relevant horse-head
images (instead of entire horses) than that of the h = 48
bits.

4.5. Results on Yahoo1M Dataset.

Performance of Image Classification. To show the scal-
ability and efficacy of our method, we further test it on the
large-scale Yahoo-1M dataset. This dataset consists of plen-
tiful product images that are heterogeneous and they are
variant in person poses with noisy backgrounds.

We set the number of neurons in the classification layer
to 116, and h in the latent layer to 128. We then fine-
tune our network with the entire Yahoo-1M dataset. Af-
ter 750, 000 training iterations, our proposed approach
achieves 83.75% accuracy (obtained by the final layer) on
the task of 116 categories clothing classification. As shown
in Fig 7, though the clothing images are backgroundless
or of noisy backgrounds, with or without human, the pro-
posed method demonstrates a good classification perfor-
mance. Note that some of the images are miss-predicted
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because the products might be ambiguous between some
specific categories. For example, it might be difficult to dis-
tinguish between the Mary Janes and the Flats as shown in
Fig 7. However, our method can still retrieve the images
similar to the query image.

Performance of Images Retrieval. In this experiment,
we demonstrate that our method can learn efficient deep bi-
nary codes for the dataset of million data. This is demand-
ing to achieve by using previous pairwised-data approaches
due to the large time and storage complexity.

Because image representations are critical to image re-
trieval, we compare the retrieval results obtained by fea-
tures from different network modes: (1) AlexNet: F7 fea-
ture from the pre-trained CNN [14]; (2) Ours-ES: F7 fea-
tures from our network; (3) Ours-BCS: Latent binary codes
from our network; and (4) Ours-HDS: F7 features and la-
tent binary codes from our network.

We conduct the exhaustive search (or linear search)
based on L2-norm distance when the F7 features are used in
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Figure 9: Top 5 retrieved images from Yahoo-1M dataset by different features. The blue check marks indicate the query and
retrieved images share the same label; the black crosses indicate otherwise.

retrieval; the hashing is performed based on Hamming dis-
tance when the binary codes of the latent layer are used;
the coarse-to-fine hierarchical search is performed to re-
trieve relevant images by using both the laytent layer codes
and F7. We randomly select 1000 images from the Yahoo-
1M dataset, and retrieve the relevant images from the same
dataset.

Figure 8 shows the precision regarding to various num-
ber of the top images retrieved using different CNN fea-
tures. The proposed methods perform more favorably
against the original AlexNet feature. Apparently, the proce-
dure of fine-tuning successfully transfers deep CNN to the
new domain (clothing images). Among the fine-tuned mod-
els, Our-ES and Our-HDS show good retrieval precision
at first. However, Ours-BCS outperforms Ours-ES with
higher and more stable retrieval precision when more than
12 images are retrieved. This indicates the learned binary
codes are informative and with high discriminative power.
Ours-HDS complements both Ours-BCS and Ours-ES and
achieves the best retrieval precision in overall.

Figure 9 shows the top 5 images retrieved by different
features. As can be seen, AlexNet retrieves the images with
great diversity. The fine-tuned models retrieve more images
with the same label as the query than AlexNet. Ours-HDS,
Ours-BCS, and Ours-ES demonstrate good performance,
and successfully retrieve similar products. Nevertheless,
benefiting from the binary codes, Ours-BCS achieves the
fastest search among the approaches compared. Extract-
ing CNN features takes around 60 milliseconds (ms) on the
machine with Geforce GTX 780 GPU and 3 GB memory.
The search is carried out on the CPU mode with C/C++ im-
plementation. Performing an Euclidean distance measure
between two 4096-dimensional vectors takes 109.767 ms.

In contrast, computing the hamming distance between two
128 bits binary codes takes 0.113 ms. Thus, Ours-BCS is
971.3x faster than traditional exhaustive search with 4096-
dimensional features.

5. Conclusions

We present a simple yet effective deep learning frame-
work to create the hash-like binary codes for fast image
retrieval. We add a latent-attribute layer in the deep CNN to
simultaneously learn domain specific image representations
and a set of hash-like functions. Our method does not rely
on pairwised similarities of data and is highly scalable to
the dataset size. Experimental results show that, with only
a simple modification of the deep CNN, our method im-
proves the previous best retrieval results with 1% and 30%
retrieval precision on the MNIST and CIFAR-10 datasets,
respectively. We further demonstrate the scalability and
efficacy of the proposed approach on the large-scale dataset
of 1 million shopping images.
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