

Approximate String Matching in LDAP based on edit distance

Chi-Chien Pan and Kai-Hsiang Yang and Tzao-Lin Lee
Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan, R.O.C.
E-mail: {d5526001, f6526004, tl_lee}@csie.ntu.edu.tw

Abstract
As the E-Commerce rapidly grows up, searching

data is almost necessary in every application.
Approximate string matching problems play a very
important role to search with errors. Against these
problems “Edit distance” and “Soundex” are two
common techniques, especially the latter one is a
“sound-like” method and had been applied to the
LDAP server. Nevertheless, it is not adequate for
certain situations especially when we perform the
symbol matching (as in DNA); it doesn’t make sense
to use the “sound-like” method. On the other hand,
“Edit distance” has a clear definition and also is
widely used in many fields of application. Since the
design of LDAP server is optimized for reading,
applying edit distance technique to LDAP server has
the problem of lowering speed. In this paper we
design efficient data structures and an algorithm to
solve the speed problem, and furthermore we use
three filter conditions [1] based on the n-gram
technique to achieve a well filter performance.
Finally we also demonstrate experimentally the
benefits of applying our algorithm and its limitations.

1. Introduction

With the explosive deployment of the
E-Commerce, more and more companies update their
application systems to be used in the Internet. No
matter the application system is web-based or not, it
needs a large number of various applications and
services to organize and manage information
efficiently in distributed environments. Especially the
directory related services are very important for those
distributed systems. It could be applied to Operating
System, asset management systems, security systems,
etc. Furthermore, The Gartner Group [2], a market
research firm, predicts that 40% to 90% portion of
new software and hardware will be directory related
products at end of year 2001 to 2003.

LDAP (Lightweight Directory Access Protocol)
is an IETF standard for accessing directory
information, and it is the most advanced, popular
method for the directory service. It was originally
designed to be just a gateway between X.500
directory server agents. LDAP version 1, RFC1478
[3], is a lightweight alternative to the X.500
Directory Access Protocol (DAP). It is simpler and
easier to implement than DAP, and uses TCP/IP
stack versus the overly complex OSI stack.

LDAP services provide a variety of searching
functions, and use “Soundex” method [16] to
perform the approximate string matching function.
However, it is not adequate for certain applications
such as the DNA symbol matching. Traditional
approximate string matching models use the edit
distance as the measurement of similarity, and they
could achieve different similar levels by setting
different error threshold values. When we applied
edit distance to LDAP server containing a huge
amount of data, the performance decreased
substantially because it spends a lot of time for
computing edit distance of each data. This does not
agree with the LDAP server design goal for quick
searching, therefore we need efficient methods to
reduce the searching time. Two approaches could be
considered: one is to optimize the algorithm of edit
distance, and the other is to filter out lots of records
impossible to be the answers before the computing
of edit distance. There are already many papers
about the former [8,9,10,11], but in this paper we
focus on the latter approach. The goal of our
research is to filter LDAP database records
efficiently, and to design an algorithm with suitable
filter conditions in order to improve the
performance. During each filter process, we use the
sort and merge methods (like merge-sort algorithm)
to reduce the filter time in O(n), this makes our
algorithm a good candidate to be incorporated by
the LDAP server.

This paper is organized as follows: Section 2
presents related work, section 3 lists some basic

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

concepts about our algorithm, section 4 outlines the
algorithm and data structures, section 5 presents
experimental performance results, and the last
section is the conclusion.

2. Related Work

A lot of researches have been published about the

“approximate string matching” problem. For two
strings of length n and m, there exists a dynamic
programming algorithm to compute the edit distance
of the strings in O(nm) time and space [4], and
improvements to the average and worst case have
appeared [11,12,13].

Indexed approximate string matching is a
relatively new problem where it is possible to build
some indices beforehand in order to answer queries
later. Indices such as built by Glimpse [5] store a
dictionary and use an algorithm to obtain a set of
words to retrieve. These approaches are limited in
scope due to the static dictionary, and they are not
suitable for dynamic environments. For the Netscape
LDAP servers, they use the “sound-like” method to
reduce each word into a short form (such as
“Washington” is coded “W252”) [16] in order to
perform the approximate searching. However, each
language may need its own particular sound-like
algorithm.

In [1], they solve the problem of approximate
string joins in a database, using n-gram as index
stored in database and using three filter conditions for
quickly joins. In the field of database, several
indexing techniques proposed for the “approximately
string matching” problem, however such techniques
have to be supported by the database management
system [14,15].

3. Basic Concepts

In this section, we describe some basic concepts

about our algorithm.

3.1 Approximate String Matching

For any string s, we denote its length as |s|. The
problem of approximate string matching is to find all
the data strings that match a given pattern with up to
k errors. The k value is the threshold of the edit
distance.

3.2 Distance function

The edit distance d(x, y) between two strings x

and y is the minimal cost of a sequence of operations
that transform x into y. The cost of a sequence of
operations is the sum of the costs of the individual
operations. In this paper we use the three standard
operations of cost 1 such as follows.

─ Insertion: inserting the letter a.
─ Deletion: deleting the letter a.
─ Replacement: for a≠b, replacing a by b.

3.3 N-grams: Indices for Approximate
String Matching

For a given string s, its positional n-grams are

obtained by “sliding” a window of length n over the
characters of s. Since n-grams at the beginning and
the end of the string have fewer than n characters
from s, we introduce new characters “#” and “$”, and
conceptually extend the string by prefixing it with
occurrences of “#” and suffixing it with occurrences
of “$”. Thus, each n-gram contains exactly n
characters.

Definition 3.1 [Positional n-gram]: A positional
n-gram [6] of a string s is a pair (i , k) ,where k is
the q-gram of s that starts at the position i ,counting
on the extended string. The set Gs of all positional
n-grams of a string s is the set of all the |s|+n-1 pairs
constructed from all n-grams of s. □

The concept behind using n-grams is that when
two strings a, b are within a small edit distance of
each other, they must share a large number of
n-grams in common [6].

3.4 Number of the n-grams

For any string s (its length is |s|), we can easily

find out the number of its n-gram is |s| + n –1. (Figure
1)

3.5 Filtering technique using n-gram

In a very large string database, we use three filter

conditions to filter out strings which is impossible
having edit distance less then k with a given target
string A. In this section, we present the three filtering
conditions [1] based on the n-gram and edit distance.
The key objective here is to efficiently identify
candidate answers to our problem before we use the
“expansive” distance function to compute the real
distance. The three filtering conditions are as follows:

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

 # # D I G I T A L $ $
GIT ◆ ◆ ◆
DIG ◆ ◆ ◆
IGI ◆ ◆ ◆
TAL ◆ ◆ ◆
ITA ◆ ◆ ◆
#DI ◆ ◆ ◆
AL$ ◆ ◆ ◆
##D ◆ ◆ ◆
L$$ ◆ ◆ ◆

Figure1: The 3-grams for the string “DIGITAL”. The number of 3-grams: 9 = 7 (length) + 3(n) – 1.

Count Filtering: Consider strings s1 and s2, of
lengths |s1| and |s2|, respectively. If the equation
d(s1,s2) <= k holds, then the two strings must have at
least (max(|S1|,|S2|)–1–(k-1)*n) the same n-grams.
□

Position Filtering: If strings s1 and s2 are within
an edit distance of k, then a positional n-gram in one
cannot correspond to a positional n-gram in the other
that differs from it by more than k positions. □

Length Filtering: The last condition is that string
length provides useful information to quickly prune
strings that are not within the desired edit distance. If
two strings s1 and s2 are within edit distance k, their
lengths cannot differ by more then k. □

4. Algorithm and data structures

In this section we introduce our algorithm and

data structures for the three filtering conditions.

4.1 Symbol Definition

We define some symbols below used in this
paper:

S: the string pattern we want to search.
L: the length of S. (L = |S|).
D: a very large string database.
RID: the unique recode identifier in the string

database D.
Ds: one string in the string database D, which has

unique RID in D.
Gs: the set of n-grams of Ds.
Gs,i: the positional n-grams of Ds starting at the

i-th position.

K: the distance error threshold.

4.2 Index Architecture

During the existent implementations of the LDAP
server, some of them (such as OpenLDAP) use
n-grams as the indices of each string. We also use the
set of n-gram (Gs) as the original indices. For each
string Ds in D, we put the indices Gs into a large
table (called “Index Set”). The Index Set contains
four fields: 1.n-gram 2.string length (denote L)
3.position (the position which n-gram appears)
4.RID.

Example 4.1 [Index Set] Assume that string Ds =
“HELLO”, Length(Ds)= |Ds| = 5, we use the 3-grams
as indices(n = 3), then we get the following 3-grams:
G3,1=”##H”, G3,2=”#HE”, G3,3=”HEL”, G3,4=”ELL”,
G3,5=”LLO”, G3,6=”LO$”, G3,7=”O$$”. We collate all
the indices into a table as figure 2 shows:

Figure 2: the indices for string Ds using 3-grams.

N-grams Length Position RID

##H 3 1 00001

#HE 3 2 00001

HEL 3 3 00001

ELL 3 4 00001

LLO 3 5 00001

LO$ 3 6 00001

O$$ 3 7 00001

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

4.3 Searching Processes and Structures

The approximate searching processes using
n-gram is as follows:
1. For each string Ds, we produce all the n-grams of

Ds.
2. Retrieve each filter list in the Index Set
corresponding to each n-gram.

3. In all the filter lists, we sum the records which
have the same RID. If the sum is greater then the
Count Filtering, the record with the RID maybe is
the answer. Then we check it for the Length
Filtering, and add it into the last result list when it
passes the condition.

4.Use the distance function to compute the real
distance for the records in the last result list.

Some problems arise during these processes,
especially when the amount of record in filter lists is
very large. Therefore we need an efficient method for
these merge processes. We sort records in each filter
list by record id (RID) field, like the merge-sort
algorithm. The following j iterations present the
method:

List 1 => Result List (initiation).
List 2 + Previous Result List => new Result List
(because we sort the records by record id (RID) in
lists, we can do the counting linearly in time
O(n)).
List j + Previous Result List => new Result List

During the Merge iterations, we can observe that the
preceding list records also appear in the latter lists,
and the space and time used for counting increases
quite substantially. For the purpose to reduce the
space and time, we sort all lists by size beforehand,
and the first list has the smallest size. The goal of
LDAP server is for searching quickly, therefore we
design all data structures to reduce searching time by
using reasonable space. Figure 3 is our searching
process and data structure.

Figure 3. Lists contain fields (length, id, pos) and
are sorted by each field. Result lists contain fields

(length, id, count) and are the candidate set for
each filtering process.

4.4 Algorithm Design

In this section, we propose our efficient algorithm

using the three conditions to filter data efficiently. We
use the example string “HELLO” and 3-grams to
explain our algorithm.

Algorithm 4.1 [Algorithm using n-grams with
sorted Index Set]
1. We produce the 3-grams of the S = “HELLO”, and

easily retrieve lists corresponding to its 3-grams in
the sorted Index Set. Then we sort lists by size. For
example, we retrieve the “HEL” list containing
10,000 records, and the “LLO” list containing 5,000
records, and “ELL” list containing 100 records, and
go on. Then we sort the lists by size, the smallest
list is called List1, and go on. In general, the
n-grams “##H” and “O$$” have a lot of records,
and are sorted to be the last ones.

2. From List1 to List 7(because S has 7 3-grams), we
cut each list by the Length Filtering to a small one.
For example, S = ”HELLO”, L = |S| = 5, assume K
(distance threshold) = 2, then we have the cut
condition (3 <= L <= 7) to filter each list .

3. During merge processes, we filter out many strings
by using Count Filtering and Position Filtering to
avoid computing real distance because of its
expensive cost. These processes check two conditions:
one is to check whether the distance of corresponding
n-grams (called positional n-grams) is less then or
equal to K = 2, and the other is to check whether total
number of same n-grams passes the Count Filtering,
Especially we can filter out any record immediately
when we are sure it is impossible to pass the Count
Filtering. For example: S = “HELLO”, L = |S| = 5, k
= 2, n = 3, when string length |Ds| = 7, it must have at
least 7-1-(2-1)*3 = 3 same 3-grams with S.

4. After the merge processes we use distance function
to compute real distance for the records in the last
result list.

Algorithm 4.1 [The formal definition]
1. Retrieve all lists corresponding to each n-grams of
the search pattern S.

2. Filter each list by the Length Filtering.
3. Sort all lists by size in ascend order.
4. Prepare a null result list, and two pointers for the
result list and list 1.

5. For j = 1 to k
5.1 Move the pointer to next record in the list j
If there is no data, go to (3), else check the

Position Filtering, if it passes the filter, then add

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

record score by 1, score = score + 1.
Check whether the next record has the same pair
(L, RID). If it is true, check the condition again,
and update the score of the record. Then we can
get the triple (L, RID, score).

5.2 Check the record in the result list:
5.2.1 If (L, RID) result < (L, RID) List j: check

whether the score of the record in the result
list plus the number ((L+n-1)-j) is less then (),
if it is true, we delete the record immediately
by the Count Filtering, else we insert the
record of the result list into new result list.

5.2.2 If (L, RID) result = (L, RID) List j : sum
the two score in two lists, and check whether
the score plus (L+n-1)-j is less then , if it is
true, we delete the record, else we insert the
record into new result list.

5.2.3 If (L, RID) result > (L, RID) List j: check
whether the score of the record in the list j plus
the number ((L+n-1)-j) is less then the value (),
if it is true, we delete the record, else we insert
the record of the list j into new result list. Go
to (1).

5.3 Check the remnant records for the condition
above, if it is true, we insert it into new result list.
5.4 Change the new result list as result list.
Next j

6. For the last result list, we compute the real distance
for each record. Then we get the answer set.

5. Experimental performance

According to our algorithm and data structures,

we developed programs and used a lot of practical
data to verify the effectiveness of the filter.
Furthermore, we experiment on different n-gram,
string length (L), and distance value (k) to evaluate
their relation. In this section, we start in Section 5.1
by describing the implementation environment. In
Section 5.2, we evaluate the performance and list
their limitations.

5.1 Environment

All data used in our experiments are the strings of

real trademarks. The data set contains about 510,000
short strings that generate more then 5,000,000
n-gram data.

Our platform is the “OpenLDAP” system which
is developed by LDAP community and is an open
source (http://www.openldap.org), and we also use
the DB library developed by the University of
Berkeley.

Our programs contain two parts:
1. Index Generation

The part is responsible for generating n-grams
and making the sorted Index Set mentioned above,
and sorting lists, etc. In order to experience different
n-grams we generate four different grams (2-grams,
3-grams, 4-grams, 5-grams).

2. Filtering and Searching

Programs could search for different parameters
such as edit distance or n-gram. Furthermore, we also
add some parameters like “sort-order” for the purpose
of experiments.

Our programs use the “Levenshtein” distance
algorithm [7] to compute the real distance between
two strings.

5.2 Performance Analysis

In this section, we perform three experiments on

the relations between L, k, and n. Programs chose
dynamically 30 strings of length 5, 8, 10, 15
respectively to search, then reported the average
results. The experiments are:

5.2.1 First, we want to evaluate the effect of different
L and k values upon the filter performance. Under
fixed n-grams (n=2, 3, 4, 5) we searched for different
(L, K) pairs, and recorded the amount of real answers
(“answer” in the figure 4) and the amount of
candidate records passed the three filter conditions
(“filter” in the figure 4). Figure 4 shows the results.

Analysis: As the figure 4 shows, we could
discover that:

(1) Some (L, K) pairs are not suitable for the filter,
because the triple (L, k, n) makes the record to be an
answer even it has 0 same n-grams. Therefore, the
filter loses its functionality.

(2) The k value increases with the decrease in
filter performance under all n-grams. Furthermore, as
the increase of L, we could still have good
performance for a bigger k.

(3) The algorithm filtered candidate strings from
510,000 to hundreds, and therefore it could search
very quickly. These results proof the effectiveness of
the algorithm.

5.2.2 In the second experiment, we want to
understand the effect of the n-grams and sort order
upon the amount of comparisons during the merge
processes. Therefore under fixed k value (k=1, 2, 3,
4), we searched for different (L, n) pairs and uses
three different kinds of sort order (S: Sequential, A:
Ascend, D: Descend). The results are presented in
Figure 5.

Analysis: As the figure 5 shows, the comparison
count is smallest under the ascend sort order. Besides,

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

the comparison count decreases as we use bigger
n-grams under the ascend sort order.

5.2.3 In the third experiment, we want to know about
the effect of different (L, n) pairs upon the filter
performance.

Analysis: In the results showed in the figure 6,
we can discover that:

(1) The case (K=1) is a special situation. Different
n-grams have the same performance, because the

Count Filtering condition is independent of n when
k=1. However for k>1, the filter performance
decreases rapidly as the n value increases. Another
fact is that, the performance increases with the L
value.

5.2.4 According to the results from (1) to (3), we
know the limitation for the three parameters is from
the Count Filtering: max(|S1|,|S2|) – 1 – (k-1) * n > 0.

2 -g r am s

0

50

100

150

200

K (fro m 1 to 4)

R
ec

or
d

co
un

t

f i l te r an sw er

3 421

L = 5 L = 8 L = 1 0 L = 1 5

3 421 3 421 3 421

3 -g r am s

0

50

100

150

200

K (fro m 1 to 4)

R
ec

or
d

co
un

t

f i l te r an sw er

3 421

L = 5 L = 8 L = 1 0 L = 1 5

3 421 3 421 3 421

4 -g r am s

0

50

100

150

200

K (fro m 1 to 4)

R
ec

or
d

co
un

t

f i l te r an sw er

3 421

L = 5 L = 8 L = 1 0 L = 1 5

3 421 3 421 3 421

5 -g r am s

0

50

100

150

200

K (fro m 1 to 4)

R
ec

or
d

co
un

t

f i l te r an sw er

3 421

L = 5 L = 8 L = 1 0 L = 1 5

3 421 3 421 3 421

Figure 4: the results of (1).

Figure 5: the result of (2).

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

K = 1

0

5

10

15

20

25

30

35

40

45

50

N (f ro m 2 to 5)

R
ec

or
d

co
un

t

f i l t e r a n sw e r

4 532

L = 5 L = 8 L = 1 0 L = 1 5

4 532 4 532 4 532

K = 2

0

2 00

4 00

6 00

8 00

10 00

12 00

14 00

16 00

N (f ro m 2 t o 5)

R
ec

or
d

co
un

t

f i l t e r a n sw e r

4 532

L = 5 L = 8 L = 1 0 L = 1 5

4 532 4 532 432

K = 3

0

2 00

4 00

6 00

8 00

10 00

12 00

14 00

16 00

N (f ro m 2 t o 5)

R
ec

or
d

co
un

t

f i l t e r a n sw e r

4 532

L = 5 L = 8 L = 1 0 L = 1 5

4 532 4 532 4 532

K = 4

0

2 00

4 00

6 00

8 00

10 00

12 00

14 00

16 00

N (f ro m 2 t o 5)

R
ec

or
d

co
un

t

f i l t e r a n sw e r

4 532

L = 5 L = 8 L = 1 0 L = 1 5

4 532 4 532 432

5

5

Figure 6: the result of (3).

6. Conclusions

We successfully apply the n-gram technique to

LDAP server for approximate string searching. By
sorting the n-grams into the Index Set we improve the
search performance, especially when the program
retrieves all the lists correspond to n-grams, and
when it merges the lists, like a “merge-sort” process.
In other words, we develop an efficient algorithm for
searching the approximate strings in the LDAP server.
And the algorithm with the sorted Index Set brings
the three filter conditions into a full play.
Furthermore we list the limitation between the pattern
length (L), error threshold (K), and n-gram. The
limitation could help programs to choose suitable
n-grams for different searching in order to improve
the performance.

References

[1] L. Gravano and P. G. Ipeirotis and H. V. Jagadish and N.
Koudas and S. Muthukrishnan and D. Srivastava.
Approximate String Joins in a Database (Almost) for Free.
In Proceedings of the 27th VLDB Conference, 2001.
[2] Gartner’s site: (http://gartner4.gartnerweb.com/).
[3] Lightweight Directory Access Protocol (V2) RFC 1777
(V3) RFC2251.
[4] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. In Journal of Molecular
Biology, 147: pages 195-197, 1981.
[5] U. Manber and S. Wu. Glimpse: A tool to search
through entire file system. In Proceedings of USENIX
Technical Conference, pages 23-32, 1994.
[6] E. Sutinen and J. Tarhio. On using q-gram locations in
approximate string matching. In Proceedings of Third
Annual European Symposium, pages 327-340, 1995.
[7] Levenshtein Distance method to compute the real
distance. (http://www.merriampark.com/ld.htm).
[8] P. Sellers. The theory and computation of evolutionary

distances. In pattern recognition. Journal of Algorithms,
1:359-373, 1980.
[9] W. Masek and M. Paterson. A faster algorithm for
computing string edit distances. In Journal of Computer
and System Sciences, 20:18-31, 1980.
[10] G. Landau, E. Myers, and J. Schmidt. Incremental
string comparison. In SIAM Journal on Computing,
27(2):557-582, 1998.
[11] R. Cole and R. Hariharan. Approximate string
matching: a simpler faster algorithm. In Proceedings of
ACM-SIAM SODA’98, pages 463-472, 1998.
[12] G. Myers. Incremental alignment algorithms and their
applications. In Technical Report 86-22, Dept. of Computer
Science, University of Arizona, 1986.
[13] W. Chang and E. Lawler. Sublinear approximate string
matching and biological applications. In Algorithmica,
12(4/5):327-344, 1994. Preliminary version in FOCS’90,
1990.
[14] T. Bozkaya and Z. M. Ozsoyoglu. Distance based
indexing for high dimensional metric spaces. In
Proceedings of String Processing and Information
Retrieval Symposium (SPIRE’99), pages 16-23, 1999.
[15] S.Brin. Near neighbor search in large metric spaces. In
Proceedings of the 21st International Conference on Very
Large Databases (VLDB’95), pages 574-584, 1995.
[16] The Soundex Indexing System. (http://www.nara.
gov/genealogy/soundex/soundex.html).
[17] “iPlanet” Directory Server. (http://www.iplanet.
com/products/iplanet_directory/home_2_1_1z.html).
[18] Gonzalo Navarro, Erkki Sutinen, Jani Tanninen and
Jorrna Tatbio. Indexing Text with Approximate q-grams. In
Proceedings of CPM’2000,LNCS 1848. P. 350-363,2000.
[19] G. Navarro and R. Baeza Yates. A new indexing
method for approximate string matching. In
Proceedings of CPM’99,LNCS 1645, pages 163-186, 1999.
[20] Gonzalo Navarro. A Guided Tour to Approximate
String Matching. In ACM Computing Surveys 33(1):31-88,
2001.
[21] Gonzalo Navarro and Ricardo Baeza-Yates. Improving
an Algorithm for Approximate String Matching.
Algorithmica 30(4):473-502, 2001.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

