
Proof: A DHT-based Peer-to-Peer Search Engine
Kai-Hsiang Yang

Institute of Information Science, Academia Sinica
Taipei, Taiwan 407, R.O.C.

Email: khyang@iis.sinica.edu.tw

Jan-Ming Ho
Institute of Information Science, Academia Sinica

Taipei, Taiwan 407, R.O.C.
Email: hoho@iis.sinica.edu.tw

Abstract— In this paper we focus on building a large scale
keyword search service over structured Peer-to-Peer (P2P) net-
works. Current state-of-the-art keyword search approaches for
structured P2P systems are based on inverted list intersection.
However, the biggest challenge in those approaches is that when
the indices are distributed over peers, a simple query may cause
a large amount of data to be transmitted over the network. We
propose a new P2P keyword search scheme, called ”Proof”, to
reduce network traffic for queries. The key idea is storing a
content summary for each web page in the inverted list, so that
a query can be processed by only transmitting a small size of
candidate results. Our simulation results showed that, compared
with previous DHT-based P2P systems, Proof can dramatically
reduce network traffic and computation time. It provides 100%
precision and 90.09% recall of search results, at an acceptable
cost of storage overhead, even when the number of peers and
documents increases continually.

I. INTRODUCTION

Search engines have become increasingly popular in recent
years. The most famous search engine, Google, currently
index 8 billion documents with approximately 10,000 cluster
machines to distribute the search load. Although Google has
been very successful in providing cluster computing search
services for the Web, a distributed Peer-to-Peer (P2P) search
engine would be more robust and practical than a cluster
computing system due to its scalability, fault-tolerance, and
self-organizing nature.

Recent research has proposed several techniques for pro-
viding full text keyword search in structured P2P systems
[12], [14], [11], [6], [7], and significantly improved techniques
for routing queries in unstructured P2P networks [8], [5],
[18], [4]. To understand the performance of these systems,
Yang et al [19] had provided a quantitative evaluation and
direct comparison of a structured P2P system [11] and an
unstructured P2P system with several optimizations [5] for full
text search, including the popular and widely deployed super-
peer systems used in Kazaa and the latest versions of Gnutella
[17]. Their results show that all these systems use roughly the
same bandwidth to process queries, and the structured systems
provide the best response time (30 percent better than a super-
peer system), but has a high cost of document publishing.
For a search engine, the response time is the most important
performance metric, we then focus on structured P2P systems
in this paper.

Structured P2P systems implement a Distributed Hash Ta-
ble (DHT), which manages a global identifier (ID) space.
However, they do not support keyword searching directly,

while keyword searching can easily be implemented by a
straightforward method. For a word ’a’, its inverted list (a →
X, Y, Z) indicates that the keyword ’a’ appears in documents
X, Y, and Z, and is stored in the peer that manages the
space DHT(hash(t1)). Based on these indices, a query with
t keywords can be answered by at most looking for t peers
to merge their corresponding inverted lists. This approach is
called as ”inverted list search scheme”. However, it has been
shown in [9] that this approach is not feasible to perform
large scale keyword search, because evaluating a query usually
consumes a large amount of network bandwidth.

Hence, in this paper we propose a structured P2P keyword
search scheme, called ”Proof”, which aims to reduce network
traffic and shorten search latency of a keyword search while
providing a high quality of search results. The key idea in
Proof is storing a content summary for each web page in the
inverted list, and a peer can select possible items in inverted
list by checking their content summaries. Hence, only a small
amount of possible results is transmitted over the network.

We had conducted extensive experiments on the TREC
data sets and our simulation results showed that, compared
with previous DHT-based P2P systems, Proof can dramatically
reduce network traffic and computation time. It also provides
100% precision and 90.09% recall of search results, at an
acceptable cost of storage overhead, even when the number
of peers and documents increases continually.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews current DHT-based P2P search schemes
and their limitations. Section III introduces the system ar-
chitecture of Proof. In Section IV, the index structures and
search algorithm are presented in detail. Section V describes
our experimental methodology, and the experimental results
are presented in the Section VI. Finally, our conclusions are
presented in Section VII.

II. RELATED WORK

Previous works on the content searching in DHT-based P2P
systems can be classified into two kinds of models: inverted
list models and vector space models. The inverted list model is
based on the inverted lists. Tang et al. [14] proposed a search
scheme that stores few important keywords of documents into
inverted lists to support the keyword searching, however it can
not support full-text search because the size of inverted list
will become very huge. Reynolds and Vahdat [11] adopted
a technique in the database system to perform the marge

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

operation more efficiently. It transmits the Bloom filter (a kind
of content summary) of inverted lists, instead of the large-
sized inverted lists themselves. However, the authors only
show the way to decide the Bloom filter size for a query
with two keywords, and we also show search performance of
their solution is not good enough in our experiments. Besides,
Karthikeyan et al. [12] store the Pagerank values of pages in
the inverted lists by Pagerank order. To evaluate a query, each
peer only transmits top x% of possible results to the next peer.
This scheme reduces the bandwidth cost, while decreasing the
recall rate. Li et al. [9] suggested combining several techniques
to reduce the cost of the merge operation, including caching,
applying the Bloom filter, and document clustering.

On the other hand, pSearch [15] implements a vector space
model on a CAN overlay network. Both data and queries are
represented as keyword (semantic) vectors, so that a query
can be evaluated by searching in a multi-dimensional Cartesian
space. However this approach is not efficient for more than 30
dimensions and is not scalable [16] due to the “dimensionality
curse” phenomenon.

III. SYSTEM ARCHITECTURE AND MODEL

The Proof system, shown in Fig. 1, comprises a crawler, a
database, an index generator, and a distributed DHT-based P2P
system. The crawler follows a crawling schedule to collect web
pages and exacts the hyperlink information for computing their
Pagerank values. At a system-defined time, an index generator
is invoked to produce new index structures and publish them
to the DHT-based P2P system.

In the following section, we focus on the DHT-based P2P
system, which stores index structures and evaluates queries.
A peer in the P2P system can be any cooperating server or
personal computer that has enough capability to handle the
search load. Actually, in a P2P system, any peer can be a local
entry point of the Proof, which means it can accept queries
from other computers and return the search results to the user.
Note that the system is independent of the underlying P2P
overlay network and routing protocol, and we use a Chord
model [13] as an example of the underlying P2P overlay
network.

Assume the system contains N peers and uses a consistent
hash function, such as SHA-1 [10], to assign an M-bit iden-
tifier to each peer. There is a total of Ndoc documents in the
system, and a vocabulary, T , which is the set of all keywords
in the documents. Each document di is composed of several
keywords tj ⊂ T . Given a query, q, containing several query
keywords, qtj ⊂ T , and a user-specified result threshold, k,
the search problem can be defined as: finding the top k relevant
documents that contain all the query keywords, qtj .

A solution to the search problem includes an index structure
and a search algorithm to evaluate queries. However, a good
search scheme has to minimize user latency, computation time
and network traffic at an acceptable storage cost, and also
provide high quality of search results, i.e. the precision and
recall metrics.

Fig. 1. The Proof system architecture, which comprises four elements:
crawler, database, index generator, and DHT-based P2P system.

IV. INDEX STRUCTURE AND SEARCH ALGORITHM

We now introduce document information and index struc-
ture in Proof, and then describe the index generation process
and search algorithm.

A. Document Information

Each document X in Proof has four properties, including
a document ID (id(X)), a Pagerank value (pagerank(X)), a
Bloom filter of m bits (BF (X)), and a Bloom filter precision
(pre(X)). Besides the document ID, which is assigned by
the system DHT, the other three properties are described as
follows.

(1) Pagerank value. According to the Google’s Pagerank
algorithm [3], each web page is assigned a Pagerank value,
which represents the importance of the page, and the search
results should be ranked by the Pagerank value.

(2) Bloom filter. The Bloom filter [1] is a hash-based content
summary that represents a set, A = {a1, a2, . . . , an}, of n
elements (also called keys). As Figure 2) shows, to generate
a Bloom filter for A is to allocate a vector of m bits, initially
all set to 0, and then choose p independent hash functions,
h1,h2,...,hp, each within the range 1,...,m. For each element
a ∈ A, the bits at positions h1(a), h2(a), ..., hp(a) in v are
set to 1. (One bit might be set to 1 multiple times.) To
membership query a keyword b, we check the bits at positions
h1(b), h2(b), ..., hp(b). If any one of them is 0, b is certainly
not in set A. Otherwise, we conjecture that b is in the set A
with a certain probability that we might be wrong. In Proof,
each web page can be regraded as a set of words, and a Bloom
filter of those words is the content summary of that web page.

(3) Bloom filter precision. The salient feature of the Bloom
filter is that there is a clear tradeoff between m and the
probability of a false positive. After inserting n elements into
a Bloom filter of size m, the probability of a false positive is
(1− (1− 1

m)pn)p. With an optimal choice of hash functions,

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

Fig. 2. Inserting a keyword, a, into the Bloom filter of document X.

Fig. 3. Summary Inverted List of word j.

we can obtain the minimum probability of a false positive as
(1
2)p, or (0.6185)

m
n , where p is the number of hash functions.

In Proof, we define the Bloom filter precision as 1 - the
probability of a false positive: 1 − ((1 − (1 − 1

m)pn)p). The
Bloom filter precision is used to measure the probability that
a page hits a query.

B. Summary Inverted List

The index structure used in Proof is called the “Summary
Inverted List” (SIL), which is extended from the basic inverted
list. Each item in SIL not only represents a page, but also
stores four properties of it. If a page, X , contains a word
j, then the SIL of word j will have a list item representing
the document X. As shown in Figure 3, the item includes
a document ID (id(X)), a Pagerank value (pagerank(X) =
0.532), a Bloom filter (BF (X)) and a precision value of the
Bloom filter (pre(X) = 0.85).

C. Index Generation Process

The index generation process is periodically invoked to
generate SILs and distributes them in the P2P system. The
process comprises the following steps.

(1) Pagerank computation. The process first applies an
iterative Pagerank formula [3] to assign each document a
Pagerank value.

(2) Bloom filter generation. For each page, a Bloom filter
of all words in that page is generated, and it precision is also
computed at the same time.

(3) Summary Inverted List generation. Suppose there are
n pages and m words in the system. An n × m document-
keyword matrix (M) is then created by checking every docu-
ment. If a word j appears in document i, M [i][j], is set to 1,
otherwise is set to 0. For any word j, its SIL can be produced
by checking the values in the j’th column. For any page k, if

the M [k][j] is 1, an item which represents the page k will be
added in the SIL.

(4) Index distribution. After all SILs have been generated,
they are distributed to the peers. For example, the SIL of word
j is stored in the peer that owns the DHT (hash(j)).

(5) Sorting SIL by Pagerank. After distributing all indices,
each peer sorts the items in SIL by the Pagerank value in
descending order of importance.

D. Search Algorithm

Here we formally present the search process, which com-
prises two steps: a query flow arrangement and a query
evaluation.

[Query flow arrangement]. For a query Q with several
query words qtj and a result threshold k, the first processing
peer, called the ”major query processing peer” (MQPP), re-
quests all other peers which are responsible for the inverted
lists of query words to report the length of its SIL. After all
the lengths are received, the MQPP then determines a query
flow from the shortest SIL to the longest one.

[Query evaluation]. The query process can be divided into
the operation in MQPP and the operation in other peers.

(1) MQPP: the goal of query process in MQPP is to select
possible results by checking their Bloom filters in inverted list.
Here, only the first Tchecking pages which pass the Bloom filter
checking are transmitted to the next peer, where Tchecking

is the checking threshold and default set to k + Θ. Here Θ
is a variable called the ”assurance number”, and the reason
to add Θ is because the Bloom membership query has a
small probability of false-positives, so finding a little more
possible results can guarantees a higher recall of search results.
Algorithm 1 shows the pseudo code of search algorithm in
MQPP.

The second step is to generate a Bloom filter BF (Q) for the
query, and start a checking procedure to match the Bloom filter
of each item and that of query. For example, when matching
item i and query Q, a bit-and (BitAnd) operation is employed
to check whether the condition BitAnd(BF (item i), BF (Q))
== BF (Q) holds; when it is true, item i is regarded as a
possible result. During the checking, the MQPP computes the
expected number of results, ENresult, by summing the Bloom
filter precision of all possible results, and when ENresult

reaches the checking threshold, Tchecking , the MQPP stops
the checking procedure immediately and sends the ResultList
to the next peer.

(2) The rest peers: each rest peer in the query flow receives
a result list from its previous peer, called ”previous result
list” (PRL), and it then performs a simple checking process
to verify the results. As shown in Algorithm 2, the process
applies a ”BinarySearch” function to match each item in the
PRL with its SIL. If an item is matched, it is regarded as a
possible result. Otherwise it is ignored. After all list items in
PRL have been checked, the new ResultList will be sent to
the next peer.

1) Advantages: We design the Proof system for the follow-
ing three intuitive advantages. (1) The query flow arrangement

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

Algorithm 1 Search Algorithm in MQPP
1: procedure MQPPSEARCH(Q, k, Θ)

Q: a query
k: a result threshold
Θ: an assurance number

2: Tchecking ← k + Θ
3: generate query Bloom filter, BF (Q)
4: for all item i in SIL do
5: if BitAnd(BF (i), BF (Q)) == BF (Q) then
6: add item i to ResultList
7: assign ENresult ← ENresult + pre(i)
8: end if
9: if ENresult ≥ Tchecking then

10: stop checking procedure
11: send the ResultList to the next peer
12: end if
13: end for
14: end procedure

Algorithm 2 Search Algorithm in other peers
1: procedure OPSEARCH(Q, k, PRL)

Q: a query
k: a result threshold
PRL: a previous result list

2: for all item i in PRL do
3: if BinarySearch(pagerank(itemi), id(itemi)) == true then
4: add item i to the ResultList
5: end if
6: end for
7: send the ResultList to the next peer
8: end procedure

chooses the shortest inverted list as the beginning of a join
operation, which causes fewer results to be transmitted over
the P2P network and processed during the join operation.
This yields a great benefit in terms of network load and
computation time. (2) The MQPP performs a Bloom filter
checking procedure to check the items of SIL, so that only
a few possible results are transmitted over the P2P network.
This design reduces network traffic. Moreover, the Bloom
filter’s precision can be enhanced by increasing the filter’s
size, which makes the Bloom membership query more accurate
and reduces network traffic further. (3) The MQPP sets a stop
condition for the Bloom filter checking procedure. When the
stop condition is reached, the MQPP immediately stops the
procedure, which reduces the computation time in MQPP. In
addition, all the SILs are sorted by the Pagerank value, so the
retrieved documents are more important than those that had
not been processed. Hence, the precision of search results can
be guaranteed.

V. EXPERIMENTAL METHODOLOGY

A. TREC Data Sets

In our experiments, we used four data sets from the TREC
corpus: (1) FT: the Financial Times Limited (1991, 1992,
1993, 1994), (2) CR: Congressional Record of the 103rd
Congress (1993), (3) FBIS: Foreign Broadcast Information
Service (1996), and (4) LATIMES: Los Angeles Times (1989,
1990). Table I lists the data set’s statistics. The FT data set
contained the largest number of documents (210,158), and
CR was the smallest data set with only 27,922 documents.
The average number of keywords in a document in FT was
126.43, and CR had the largest average number 193.47. For

TABLE I
TREC DATA SETS

Data set Doc Min Max Average Standard
Number Deviation

FT 210158 2 3092 126.43 99.73
CR 27922 1 5501 193.47 335.04

FBIS 130471 7 6109 140.47 137.28
LATIMES 131896 3 5375 170.03 130.25

all four data sets, the average number of words in a document
was less than 200. Besides, we use the ”title” field of TREC
topics 1-600 as queries. On average, each query consisted of
3.8 keywords, and 87.8% of queries contained less than 6
query keywords.

B. Comparison of Search Schemes

We developed a simulator to evaluate the performance of
the following three search schemes.

(1) Basic inverted list scheme (Basic). As mentioned in the
introduction, all inverted lists of query words are transmitted
among the processing peers to find the final results. We use
the result of this scheme as the final results.

(2) SSB search scheme (SSB). This search scheme was
proposed by Sankaralingam, Sethumadhavan, and Browne
[12]. A Pagerank value of a page is stored into an inverted
list, and all inverted lists are sorted by the Pagerank before
query evaluation. During the merge operation, each peer only
transmits top x% of results to the next peer. In our experiment,
we set up x=30 (SSB-30), 60 (SSB-60), and 90 (SSB-90) as
different search schemes.

(3) RV search scheme (RV). The RV search scheme was
proposed by Reynolds and Vahdat [11]. The search comprises
two phases: in the first phase, each peer sends a Bloom filter
of inverted list to next peer, and in the second phase, each peer
checks the results by a received Bloom filter. However, the size
of Bloom filter is an important factor and usually depends on
the data sets. We performed an experiment to choose a best
size of filter for our data sets, where the size of filter is 20
times of the number of list items.

C. Performance Metrics

We measured network traffic load, computation time, and
search quality of each search scheme in our experiments. First,
we define Load as the number of transmitted results, which
is the most important factor affecting network transmission
time. Second, computation time is the total time for peers
to complete the merge operation. Third, search quality is
measured by the precision and recall of results.

D. Simulation Process

The simulation parameters used in our experiments are
shown in Table II. The simulator first generates all indices
and distributes inverted lists to the corresponding peers, and
then simulates each search scheme to evaluate queries. In
our simulator, all the indices are stored in the main memory;
hence, all the operations in peers are memory operations.

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

TABLE II
SIMULATION PARAMETERS

System Parameters Notation Default
Number of Peers Npeer 500
Result Threshold k 50
Number of Documents Ndoc FT data set
Size of a document ID SID 128 bits
Bloom Filter Size m 600 bits
Assurance Number Θ 25
Checking Threshold Tchecking k + Θ
Size of a Pagerank value Spagerank 8 bytes
Size of a Bloom filter Precision Spre 8 bytes

TABLE III
LOAD UNDER DIFFERENT QUERY FLOW

Number of Transmitted Result Reduce Ratio
Scheme Original query Sorted query

flow (o) flow (s) (s/o) %
Basic 3989.44 1573.90 39.45%
SSB-30 1149.14 442.98 38.55%
SSB-60 2336.26 909.02 38.91%
SSB-90 3568.96 1403.17 39.32%
RV 1046.97 714.52 68.25%
Proof 122.35 95.91 78.39%

VI. EXPERIMENTAL RESULTS

We now report the experimental results, and as the results
for each data sets are quite similar, we only present the results
of the FT data set, which was the largest. We first study
the effect of different query flows, and then compare the
search performance of different search schemes in terms of
network load, computaion time, precision and recall. After
that, we then study the effect when the number of peers
and documents increases. Finally, for the parameters used in
Proof, we evaluate the effect of the Bloom filter’s size and the
checking threshold.

A. Effect of Query Flow

The first experiment is designed to evaluate whether the
Load is affected by different query flows. When a user inputs
a query, the ”original query flow” is defined as the input
order of query keywords, and the ”sorted query flow” is the
order of keywords from the shortest inverted list to the longest
one. Table III shows the Load of each search scheme under
these two query flows. On average, the sorted query flow
can reduce the Load to 39% of the original Load in both
the Basic and SSB schemes, 68.25% of the original Load in
the RV scheme, and 78.39% of the original Load in Proof.
The results prove that the sorted query flow achieves a better
search performance. Thus, we apply the sorted query flow to
all search schemes in the following experiments.

B. Search Performance Comparison

The goal of the second experiment was to compare the
search performance of each search scheme. We ran the sim-
ulation 100 times, and the average performance results are
presented in Table IV. For the Load metric, it is clear that the
Basic search scheme has the largest Load, i.e., 1118.18, the

TABLE IV
SEARCH PERFORMANCE

schemes Load CT (sec) Precision Recall
Basic 1118.18 10.6 100% 100%

SSB-30 331.94 9.9 92.59% 23.64%
SSB-60 664.38 10.3 93.19% 47.36%
SSB-90 1004.46 10.5 97.82% 88.97%

RV 722.87 21.9 100% 100%
Proof 93.08 5.18(1.08+4.1) 100% 90.09%

Load in SSB-x search scheme is x% of the Load in the Basic
search scheme, and most importantly, the Load in Proof is the
smallest (93.08), which is only 8.32% of the Load in the Basic
search scheme.

With regard to the computation time (CT), the CT in the
RV search scheme is longest (21.9 sec.). Recall that the query
flow in this scheme comprises two phases, so it may take
more time to complete the query process. Besides, the CT in
Proof is only 5.18 seconds (1.08 sec. in MQPP and 4.1 sec. in
other peers), which is 48.86% of the time in the Basic search
scheme. Hence, the result confirms that Proof can reduce the
computation time. Note that user latency results from the
computation time in peers and the time to transmit the results
between peers. According to the Load and CT in Proof, it is
obvious that the user latency in Proof is shortest.

Recall that the answer set of each query is defined as the
top k results in the Basic search scheme, so the precision and
recall in the Basic search scheme are 100%. In the SSB-x
scheme, the precision slightly drops as x decreases, but the
recall sharply drops to 23.64% when x = 30. This shows that
many results can not be retrieved if only the top x% of results
are transmitted. In Proof, the precision is 100%, which is the
same as that in the Basic search scheme, and the recall is
90.09%, which is also higher than that in the SSB-x search
scheme. Basically, the precision in Proof is always 100%,
because all inverted lists are sorted by Pagerank. However,
Proof sets a stop condition for the Bloom filter checking
procedure in MQPP, if too many false-positive results occur,
Proof may not be able to retrieve k results, thus the recall may
decline.

Overall, Load and computation time in Proof can be greatly
reduced, which means user latency can be substantially short-
ened, and Proof can provide 100% precision and a high recall.

C. Effect of Number of Peers

In this experiment, we studied variation of the Load when
the number of peers increases. Recall that each inverted list is
stored in a peer, for a given query, when two successive query
keywords are mapped to the same peer, no any result needs
to be transmitted; hence, the Load will be lower. When the
number of peers is small, the probability of two successive
query keywords being mapped to the same peer is high;
therefore, Load is smaller than when there is a large number
of peers.

We ran the simulation 50 times for each different setting
of the number of peers, Npeer, (=10, 100, 1,000, 10,000, and

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

Fig. 4. Load with different number of peers.

100,000). Fig. 4 depicts the average Load for different numbers
of peers. Clearly, when the number of peers increases expo-
nentially, the Load slightly increases and rapidly converges
to a value. In this result, the Load in each search scheme
converges when the number of peers is larger than 100. Most
importantly, the Load in Proof is the smallest and remains
fairly stable when the number of peers continually increases.

D. Effect of Number of Documents

After analyzing the effect of the number of peers, we now
study variation of the Load when the number of documents
increases. We can predict that, when the number of documents
increases, all inverted lists become longer and the Load
increases. We ran the simulation 50 times for each number of
documents, Ndoc, (=10,000, 20,000, 40,000, 80,000, 160,000),
and the documents were randomly chosen from the FT data
set.

Figs. 5 and 6 show the variation of Load and recall with
each number of documents. The Load in the Basic and SSB-x
schemes linearly increases with the number of documents, and
the Load in the RV search scheme is similar to the Load in the
SSB-30 search scheme. However, the Load in Proof is always
the same. The main reason is because of the stop condition in
MQPP, the Load are not affected by the size of SILs. For
the recall metric, the recall in the Basic and RV schemes
is always 100%, and the recall in SSB-x search scheme is
x%. In Proof, the recall decreases very slowly as the number
of documents increases; it is still 90% when the number of
documents reaches 160,000. The reason for the decrease in
recall is that more false-positive results occur as the number of
documents increases, so that the query process can not retrieve
k results before the stop condition is activated.

E. Effect of the Bloom Filter Size

The goal of this experiment was to study the effect of the
Bloom filter size, m, in Proof. According to the analysis of
Load, if m is larger, the Load will be smaller. We set up
different Bloom filter sizes, m, (= 400, 600, 800, 1,000, and
1,200 bits). According to the results shown in Fig. 7, Load
slowly decreases as m increases. When a larger filter is used,
the filter’s precision improves, so that few false-positive results
occur in MQPP; hence, the Load decreases. Table V lists the

Fig. 5. Load with different numbers of documents.

Fig. 6. Recall with different numbers of documents.

Bloom filter precision and storage cost for each m. The Bloom
filter precision = 78% when m = 400, and rapidly increases
to 88.16% when m = 600. The last column in the table is
the ratio of the total storage size in Proof to that in the Basic
search scheme. Here we used 16 bytes for a document ID, 8
bytes for a Pagerank value and a Bloom filter precision. When
m = 600 bits, the Bloom filter precision is high enough and
the storage cost (6.69X) is acceptable.

F. Effect of the Checking Threshold

Recall that the Bloom filter checking procedure stops when
the number of retrieved results reaches the checking threshold
Tchecking . This experiment analyzes the effect of the Tchecking

on the performance metrics. We run the simulation at the
setting of k=50, and Θ/k = 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.

Table VI shows the experimental results. We can easily
observe that the Load linearly rises when the Θ/k increases,
because in Proof, the MQPP at most sends out the Tchecking(=

Fig. 7. Load at different Bloom filter size.

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

TABLE V
STORAGE COST AT DIFFERENT BLOOM FILTER SIZE(N=126.4, K=2)

m(bits) m/n Bloom filter precision Storage Cost
Proof/Basic

400 3.16 78.01% 5.12X
600 4.75 88.16% 6.69X
800 6.33 92.65% 8.25X

1000 7.91 95.01% 9.81X
1200 9.49 96.39% 11.38X

TABLE VI
PERFORMANCE METRICS AT DIFFERENT CHECKING THRESHOLD (K=50)

Θ/k Load Precision Recall Storage(Proof/Basic)
0.5 93.08 100.00% 90.09% 6.69X
0.75 101 100.00% 92.55% 6.69X

1 109 100.00% 93.64% 6.69X
1.25 115 100.00% 94.18% 6.69X
1.5 120 100.00% 94.89% 6.69X
1.75 125 100.00% 95.52% 6.69X

2 130 100.00% 96.27% 6.69X

k + Θ) results. Most importantly, the recall rises to 96.27%
when increasing Θ so that Θ/k reaches 2. This tells us the
recall will rise by using larger Θ, because more relevant
results should be processed before the Bloom filter checking
procedure stops. Therefore, Proof can achieve higher recall by
increasing the Θ/k ratio with a smaller increase of network
Load.

VII. CONCLUSION

This paper was motivated by the need for a robust P2P
search engine that can provide better search performance and
shorter user latency. The main contribution of our work is that
we propose a new P2P search scheme, called ”Proof”, which
substantially reduces network traffic during a query process
by storing a content summary of a document in inverted
lists. By allowing for an acceptable space cost, Proof also
substantially reduces user latency and achieves an outstanding
performance, as shown by our experiment results. We also
present the cost model to show that if a larger Bloom filter is
used, network load and computation time could be bounded to
a small amount. Most importantly, Proof is easy to implement
and independent of the underlying P2P overlay network and
routing protocol.

As well as developing a P2P full-text search scheme, which
we are now doing, there are several promising directions
for future research. In particular, we will consider the load
balance issue, especially for the inverted list index structure.
Note that the distribution of keywords follows a Zipf-like
distribution [2]; hence, the distribution of inverted lists is
unbalanced under consistent hashing. In addition, the data
consistency control, replications, and recovery mechanisms
are also critical to making P2P systems more reliable. We
believe that more research in these areas would definitely be
worthwhile.

ACKNOWLEDGMENT

This work was supported by the project of NSC 95-2221-
E-001-021-MY3.

REFERENCES

[1] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and zipf-like distributions: Evidence and implications. In Proceedings
of INFOCOM, pages 126–134, 1999.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1–7):107–
117, 1998.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker.
Making gnutella-like p2p systems scalable. In ACM SIGCOMM, August
2003.

[5] B. F. Cooper. An optimal overlay topology for routing peer-to-
peer searches. In ACM/IFIP/USENIX 6th International Middleware
Conference, 2005.

[6] O. Gnawali. A keyword set search system for peer-to-peer networks. In
Master’s thesis, Massachusetts Institute of Technology, June 2002.

[7] Y.-J. Joung, C.-T. Fang, and L.-W. Yang. Keyword search in dht-based
peer-to-peer networks. In ICDCS ’05: Proceedings of the 25th IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS’05),
pages 339–348, Washington, DC, USA, 2005. IEEE Computer Society.

[8] A. Kumar, J. Xu, and E. Zegura. Efficient and scalable query routing for
unstructured peer-to-peer networks. In INFOCOM 2005, pages 1162–
1173, March 2005.

[9] J. LI, B. LOO, J. HELLERSTEIN, F. KAASHOEK, D. KARGER, and
R. MORRIS. The feasibility of peer-to-peer web indexing and search.
In the 2nd International Workshop on Peer-to-Peer Systems, 2003.

[10] N. I. of Standards and Technology. Secure hash standard. FIPS 180-1
Standard in U.S. Department of Commerce/NIST, April 1995.

[11] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching.
In Proceedings of International Middleware Conference, pages 21–40,
June 2003.

[12] K. Sankaralingam, S. Sethumadhavan, and J. C. Browne. Distributed
Pagerank for P2P Systems. In Proceedings of the 12th International
Symposium on High Performance Distributed Computing, pages 58–68,
June 2003.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the 2001 conference on applications, technologies,
architectures, and protocols for computer communications, pages 149–
160. ACM Press, 2001.

[14] C. Tang and S. Dwarkadas. Hybrid global-local indexing for efficient
peer-to-peer information retrieval. In Proceedings of the Symposium on
Networked Systems Design and Implementation (NSDI), June 2004.

[15] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information retrieval in
structured overlays. In ACM HotNets-I, October 2002.

[16] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces. In VLDB ’98: Proceedings of the 24rd International Conference
on Very Large Data Bases, pages 194–205, San Francisco, CA, USA,
1998. Morgan Kaufmann Publishers Inc.

[17] B. Yang and H. Garcia-Molina. Designing a super-peer network. In
Proceedings of the 19th International Conference on Data Engineering,
page 49, March 2003.

[18] K.-H. Yang, C.-J. Wu, and J.-M. Ho. Antsearch: An ant search
algorithm in unstructured peer-to-peer networks. In IEICE Transactions
on Communications Special Section on Networking Technologies for
Overlay Networks, September 2006.

[19] Y. Yang, R. Dunlap, M. Rexroad, and B. F. Cooper. Performance of
full text search in structured and unstructured peer-to-peer systems. In
INFOCOM 2006, April 2006.

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

