2300

IEICE TRANS. COMMUN., VOL.E89-B, NO.9 SEPTEMBER 2006

| PAPER Special Section on Networking Technologies for Overlay Networks |

AntSearch: An Ant Search Algorithm in Unstructured Peer-to-Peer

Networks

Kai-Hsiang YANG'®, Member, Chi-Jen WU, and Jan-Ming HO', Nonmembers

SUMMARY The most prevalent peer-to-peer (P2P) application till to-
day is file sharing, and unstructured P2P networks can support inherent
heterogeneity of peers, are highly resilient to peers’ failures, and incur low
overhead at peer arrivals and departures. Dynamic querying (DQ) is a new
flooding technique which could estimate a proper time-to-live (TTL) value
for a query flooding by estimating the popularity of the searched files, and
retrieve sufficient results under controlled flooding range for reducing net-
work traffic. Recent researches show that a large amount of peers in the P2P
file sharing system are the free-riders, and queries are seldom hit by those
peers. The free-riding problem causes a large amount of redundant mes-
sages in the DQ-like search algorithm. In this paper, we proposed a new
search algorithm, called “AntSearch,” to solve the problem. In AntSearch,
each peer maintains its hit rate of previous queries, and records a list of
pheromone values of its immediate neighbors. Based on the pheromone
values, a query is only flooded to those peers which are not likely to be the
free-riders. Our simulation results show that, compared with DQ and its
enhanced algorithm DQ+, the AntSearch algorithm averagely reduces 50%
network traffic at almost the same search latency as DQ+, while retrieving
sufficient results for a query with a given required number of results.

key words: peer-to-peer network, dynamic querying, flooding, free-riding

1. Introduction

Peer-to-peer (P2P) networks such as Gnutella, KaZaA,
and BitTorrent have emerged as a new Internet computing
paradigm over the past few years. The most prevalent P2P
application till today is file sharing. In contrast to struc-
tured P2P networks, search in unstructured P2P networks is
considerably more challenging because of the lack of global
routing and directory service. In spite of this apparent limit,
unstructured P2P networks have several desirable proper-
ties: (1) they support inherent heterogeneity of peers; (2)
they are highly resilient to peers’ failures, and (3) they incur
low overhead at peer arrivals and departures. Most impor-
tantly, they are simple to implement and result in virtually
no overhead in topology maintenance. Consequently, many
real-world large-scale P2P networks are unstructured.

In a Gnutella P2P network, a blind flooding algorithm
is used to search results for a query under a time-to-live
(TTL) constraint. The biggest problem of the blind flooding
algorithm is that a single query may cause a large amount
of network traffic, and the second problem is that, the num-
ber of search results can not be guaranteed. A good search
algorithm should be able to retrieve sufficient (small or no

Manuscript received December 26, 2005.
Manuscript revised April 11, 2006.
"The authors are with Institute of Information Science,
Academia Sinica, Taiwan, ROC.
a) E-mail: khyang@iis.sinica.edu.tw
DOI: 10.1093/ietcom/e89-b.9.2300

overshooting) results for a query with a given required num-
ber of results at low network traffic cost. For this purpose, a
new controlled flooding technique, dynamic querying (DQ)
[1], is proposed for these requirements. It works as fol-
lows. (1) Probe phase: a requester peer (a peer that gen-
erates a query) first floods a query towards a few neighbors
with a small TTL value for estimating the popularity of the
searched items. Then (2) an iterative process takes place.
During each of iterations, the requester peer computes the
number of peers to be contacted for obtaining the desired
number of results; then it chooses a neighbor peer, calculates
a TTL for a query flooding to that neighbor, and propagates a
query with that TTL to the neighbor peer. This iterative pro-
cess stops when the desired number of results is returned, or
all neighbor peers have been visited. Intuitively, this flood-
ing algorithm is dynamic because the requester peer esti-
mates the item’s popularity to adjust a TTL value for each
flooding, so that sufficient results can be retrieved at lower
network traffic overhead than a blind flooding algorithm.

Jiang et al. [4] evaluated and analyzed the DQ tech-
nique and proposed an enhanced DQ technique, DQ+,
which can further reduce network traffic cost and shorten
search latency. To avoid network traffic cost, the DQ+ tech-
nique uses a confidence interval method to provide a safety
margin on the estimate of the popularity of the searched
item. To achieve the lower search latency, the DQ+ tech-
nique uses the greedy strategy in each of iterations where the
requester peer expects to find sufficient results from a chosen
neighbor. Compared with the DQ technique, a query packet
is only flooded to a small amount of the required number of
peers, and thus the DQ+ technique is excellent in the perfor-
mance of search latency. Basically these two algorithms are
still based on a flooding technique.

Unfortunately, there is a serious problem, called the
free-riding problem, for a flooding technique. Current re-
search papers [2], [3] show that a large amount of peers in
P2P file sharing systems are free-riders, which is defined as
the peers sharing less than 100 files (about 96% in [2], and
75% in [3]), and queries are seldom hit at these peers. Thus,
a query flooding causes a large amount of network traffic for
sending queries to those free-riders. For example, the part
(a) of Fig. 1 depicts an unstructured P2P network which is
formed by eight peers, and each peer has three immediate
neighbors. Suppose the peer A is the requester peer, and the
target files are located in peers B, E, and H. It is easily to ob-
serve that each peer excluding peer A receives three query
packets from its immediate neighbors. In this paper, we de-

Copyright © 2006 The Institute of Electronics, Information and Communication Engineers

YANG et al.: ANTSEARCH: AN ANT SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS

Requester Peer

(b)

Fig.1 The excessive traffic overhead in a flooding search algorithm. The
part (a) depicts an unstructured P2P network topology, and peers B, E, and
H contain the target files. The part (b) shows the total flooding path when
peer A floods a query with TTL = 2. A solid line represents a hit message,
and a dotted line represents a redundant message.

fine a query packet/message is redundant when it is sent to
a peer and does not hit in that peer. In the part (b) of Fig. 1,
the total 21 packets generated in a query flooding consist
of 10 hit messages (solid lines) and 11 redundant messages
(dotted lines). Hence, a query flooding will cause too much
redundant network traffic.

In this paper, we focus on the free-riding problem in the
DQ-like search algorithm, and propose a new search algo-
rithm, called “AntSearch,” to reduce the redundant messages
during a query flooding. In AntSearch, each peer maintains
a pheromone value to represent its hit rate of previous re-
ceived queries, and also records a list of pheromone values
for its immediate neighbors. Based on these pheromone val-
ues, the AntSearch algorithm can flood a query only to those
peers which are not likely to be free-riders. The main idea in
the AntSearch algorithm is using pheromone values to iden-
tify the free-riders, prevent sending messages to those peer
in order to reduce the amount of redundant messages.

We have conducted extensive experiments to evalu-
ate the number of searched files, network traffic cost and
search latency in AntSearch. Compared with the DQ and
DQ+ search algorithms, our simulation results show that the

2301

AntSearch algorithm averagely reduces 50% network traffic
at almost the same search latency as DQ+, while retrieving
sufficient results for a query with a given required number
of results.

The remainder of this paper is organized as follows.
Section 2 briefly reviews current related works in unstruc-
tured P2P networks. Section 3 introduces the system ar-
chitecture of AntSearch, and its index structures and search
algorithm. Section 4 discusses several important issues of
AntSearch. The experimental methodology and results are
presented in Sect. 5. Finally, we summarize our results and
represent our conclusions in Sect. 6.

2. Related Work

In this section, we review previous search algorithms in un-
structured P2P networks and describe the free-riding prob-
lem in a P2P system. As mentioned above, a flooding search
algorithm is blind and expensive, since the network does not
provide any clues to facilitate a search. Hence, it is very
crucial to reduce network traffic, shorten search latency, and
retrieve sufficient results for a query. The Gnutella devel-
oper community proposed the DQ technique to guarantee
that sufficient results can be retrieved and a research result
in [5] indicated that DQ technique could predict a proper
TTL value for a query flooding in order to reduce network
traffic load. Jiang et al. [4] evaluated and analyzed the DQ
technique and proposed an enhanced DQ technique, DQ+.
However, the design of DQ and DQ+ techniques are still
based on a flooding search algorithm without considering
the free-riding problem in the P2P network.

Besides the DQ-like technique, several solutions [6]—
[8] have also been proposed to reduce network traffic load
during a query flooding. Yang et al.[7] proposed a tech-
nique in which each peer only forwards a query to a sub-
set of its neighbors according to statistics of previous query
contents. This solution reduces network traffic; however the
number of retrieved results may not be able to satisfy the
query. Another limitation of this solution is that, each peer
has to spend large space for storing the statistics about the
query contents, and periodically maintain the statistics. An-
other type of search algorithm is a well-known random walk
technique, which forwards a query to a neighbor at each
step until a file is found. Yatin et al. [6] proposed an al-
gorithm called GIA, based on the random walk technique.
Each peer maintains an index of files stored in its neighbors
and floods a query to those high capacity peers. In gen-
eral, random walk based algorithm can reduce network traf-
fic and enhance the system scalability; however, it usually
results in longer search latency, and the number of retrieved
results varies to a great extent for different underlying net-
work topologies [9].

Recently, several research papers [12], [13] study the
user behavior in P2P systems, and discover the free-riding
problem is very serious in a flooding-based algorithm. Feld-
man et al. [12] present an economic model of user behavior
in P2P systems, explore the effect of free-riders, and propose

2302

several research problems for the free-riding phenomenon.
Ramaswamy et al. [13] introduce a concept of utility func-
tion to measure the usefulness of every user to the system,
and proposed a free-rider control scheme. They focus on
modeling the free-riding phenomenon and studying the user
behavior in P2P systems. However, our proposed AntSearch
algorithm is a feasible solution for solving the free-riding
problem in an unstructured P2P network.

3. Design of AntSearch

In this section we first give an overview of AntSearch algo-
rithm, and then present the data structures in each peer and
detail the search algorithm.

3.1 Overview

The AntSearch algorithm is designed for solving the free-
riding problem while searching in unstructured P2P net-
works. Like the DQ search algorithm [1], AntSearch algo-
rithm comprises two search phases: (1) a probe phase and
(2) a flooding phase.

(1) Probe phase: when a requester peer starts to pro-
cess a query, it first has to flood probe queries to a few
neighbors with a small TTL (in general, flooding to three
neighbors with TTL=2) for estimating the popularity of tar-
get files. When the small-area flooding ends, the requester
peer obtains the statistics information about the searched
files. By this statistics information, the requester peer can
predict how many results could be retrieved when each step
only floods the query to k% (k=10, 20. .., 100) of immediate
neighbors. All these information will be stored into a data
structure which is called the “probe table.”

(2) Flooding phase: When the probe table is gener-
ated, the requester peer has to decide two parameters about
a query flooding, the first one is the k value, and the other is
the TTL value. The k value represents how much percent-
age of neighbors should be chosen to flood a query, and the
TTL value is an upper bound of flooding hops. According
to the probe table, a requester peer can estimate the search
cost (including search latency and flooding messages) for
each k value, and chooses a suitable k value for the follow-
ing query flooding. When a k value is assigned, an iterative
search process takes place. During each of iterations, (1)
the requester peer calculates how many peers should be fur-
ther contacted, and computes a suitable TTL for a neighbor.
(2) The requester peer then propagates the query packet to-
wards a neighbor, and all the following peers only forwards
the query to the k% of neighbors with higher pheromone val-
ues. This iterative process stops when the desired number of
results is returned, or all neighbors have been visited.

The main difference between the AntSearch algorithm
and the dynamic querying search algorithm [1], DQ+ [4], is
that the AntSearch algorithm improves the search efficiency
of a flooding by reducing the number of messages sent by
a peer and the number of peers that are queried. Accord-
ing to the table of pheromone values, a peer only propagates

IEICE TRANS. COMMUN., VOL.E89-B, NO.9 SEPTEMBER 2006

Requester Peer

0.3 @

|
®OPO® OD® O® ®©

Fig.2 An example of AntSearch, the number at the peer p; side is pre-
sented the pheromone value of the peer p;.

a query to top k% of its neighbors with higher pheromone
values. The pheromone table is used to help a peer identify
the neighbors which may be free-riders. Figure 2 illustrates
search efficiency in the AntSearch algorithm. Compared
with the part (b) in Fig. 1, each peer only floods the query to
fewer neighbors with higher pheromone values. Intuitively,
the pheromone table is a data structure to hint the direction
where a target file is located.

3.2 Pheromone Table

The objective of storing a pheromone table in each peer
is to record the hit rate of previous queries in each imme-
diate neighbor, so that a peer can choose a neighbor with
higher pheromone value to forward a query. A neighbor’s
pheromone value primarily measures the probability it is a
free-rider. Each peer in the system maintains two values:
the first one is the number of hit queries N, and the other is
the number of total processed queries N,. These two values
are permanently stored in a peer when it joins the system in
the first time. For a peer ¢, suppose that the d,, is the degree
of peer g (which means peer g has d, number of immedi-
ate neighbors), the pheromone value of peer g, (pv,), can be
computed as follows:

dy

Z Y44

v —tha+ =
g = —
N, d,

(1 -a),)]

where the first part of the formula, N,/N,, is the hit rate of
previous queries in peer ¢, and the second part is the av-
erage pheromone values in immediate neighbors of peer g,
which represents the effect of neighbors. The value a (be-
tween 0 and 1) is a parameter to adjust the weights between
the hit rate of peer g and the average pheromone value of the
neighbors of peer g. Another benefit of using the value « is
to prevent a pheromone value from being zero. A peer still
has certain probability to be searched when it first joins into
the network. If a peer g is a free-rider, the ratio of N;/N,
will be very small. On the other hand, if the peer ¢ is a peer
sharing a lot of popular files, the ratio of Nj/N, will increase

YANG et al.: ANTSEARCH: AN ANT SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS

rapidly. Note that the N, value will be added by one when
a query is hit. These two values are continually updated
both in probe phase and flooding phase. The pheromone ta-
ble stored in a peer is only updated under the following two
situations. (1) When a peer joins into the system, it first col-
lects the pheromone values of its immediate neighbors. The
pheromone value is sent within PING and PONG messages
in the Gnutella protocol. (2) When a peer receives a query,
it then updates each record of the pheromone table. When
a neighbor leaves the network, a peer immediately removes
the pheromone value of the neighbor from its pheromone
table. No other action is required in the AntSearch system,
and it is clear to observe that the maintenance cost for a
pheromone table is very limited.

3.3 AntSearch Algorithm

The AntSearch algorithm is a controlled flooding technique
to search results for a query with a specified required num-
ber of results, denoted by N. The search process comprises
two phases: (1) the probe phase and (2) the flooding phase.

(1) Probe phase. When a requester peer produces a
query with a required number of results, N, it first floods
a “probe query” to a few neighbors with a small TTL (in
general, flooding to three neighbors with TTL=2). After the
flooding of the probe query finishes, the requester peer col-
lects the statistics about the numbers of searched files and
total searched peers. A probe table is then generated to sum-
marize the numbers of the searched files and the searched
peers when only flooding different k% of neighbors in each
step. Table 1 gives an example of a probe table, which con-
sists of three columns: the k value, the number of searched
files n;, and the estimated number of searched peers, /i (also
called the search horizon in this paper).

In this case when & is 10%, each peer only forwards a
query to 10% of its neighbors with higher pheromone val-
ues, and the requester peer can search 1 file while the flood-
ing averagely visits to 15.84 number of peers. In this paper,
we assume the degree d of a neighbor can be known, and the
average degree of network is D which can be estimated. For
each k, the search horizon, #, is calculated by the following
formula, where TTL = 2 in our experiments.

3 TTL-1 3
e =) (dk) Y. (Dk=1) = > (dk)Dky™!
i=1 j=0 i=1
3
= Y d;Dk? 2

In order to gather the number of searched files, ny, for
each k during a single flooding to small area, we designed
a probe flooding mechanism (PFM) to obtain all the needed
information for a probe table. In the PFM, each query packet
is sent with a mark to identify which k it belongs to during
the search steps. Figure 3 shows an example of the PFM.
Step 1 represents that a requester peer, A, forwards a query
to its neighbor, B, which belongs to the top 10% neighbors

2303
Table1 The probe table.

k W Iy
10% 1 15.84
0% 3 63.36
0% 5 142.36

e 8 25344
0% 12 396.00
60% 12 570.24
e 13 776.16
30% 15 1013.76
90%e 16 1283.04
100% 17 1584.00

Fig.3 An example of a probe phase in the AntSearch system. Peer
A is the requester peer, and peer B belongs to the top 10% peers in the
pheronome table of peer A. Peer C belongs to the top 30% peers in the
pheronome table of peer B, and it contains a target file.

with higher pheromone values. In Step 2, the peer B for-
wards the query to its neighbor, C, which belongs to the top
30% neighbors with higher pheromone values. Before for-
warding the query to peer C, peer B has to rewrite the new
k value into the mark in the query from 10% to 30%. In
Step 3, when a query is hit, the peer C returns a hit message
with the mark £ = 30% to the requester peer A. Thus, the
requester peer can calculate the number of searched files for
each different k after the flooding of a probe query finishes,
and then generates a probe table.

(2) Flooding phase: Since a probe table is already gen-
erated, the first step in the flooding phase is to choose a
proper k and compute a TTL value for the query. Figure 4
illustrates the pseudo code of the AntSearch algorithm. For
each k, we can easily calculate how many peers the flood-
ing has to further search for retrieving a required number of
results, N. Suppose H; denote the further search horizon
for a given k, and it could be estimated by hy(N — nyg)/ny.
When the H is computed, we can estimate a proper TTL
for a flooding with a given k to reach the search horizon by
the following formula (2) in [4].

H(Dk - 2)
dk -1
Here we start to introduce the method for choosing a

proper k value. Figure 5 shows the pseudo code of the func-
tion “Choosing_K.” As shown in Fig. 5, a requester peer has

TTLk ~ log i, (3)

1) AntSearch (desired number of result V)

2) Begin

3) Probe_Table= Probe()

4) If returned_Results >= N then return Results

5) Else

6) K= Choosing_K(Probe Table, MAX TTL)

7 While returned Results <= N

8) Neighbor = randomly choosing a unvisited neighbor
9) d = degree(Neighbor)

10) TTL = Calculating _TTL(X, d)

11) Forwarding query to the Neighbor with K and 77L
12) End while

13) End if

14) return returned _Results

15) End begin

Fig.4 Pseudo code of the AntSearch algorithm.

1) Choosing_K (Probe_Table, MAX TTL)

2) Begin
3) For (k=0.1t01.0)
4) Hy = hk(N_nk)
ny

H,(Dk-2)
5) TTL = 1og —————"dk —
6) if TTL <= MAX TTL then break
7) End for
8) return k

9) End begin
Fig.5 The pseudo code of choosing k rate.

to calculate the required TTL value for each k, and finds a
minimum k with a TTL less than or equal to a TTL thresh-
old, the MAX_TTL. (The MAX_TTL is generally set to 4).

After a proper k is chosen, the requester peer starts an
iterative process to search the results (from line 7 to line 12
in Fig. 4). During each of iteration, the requester peer ran-
domly chooses a neighbor and calculates a proper TTL for
the neighbor. It then sends out a query with the chosen k
and the calculated TTL to the neighbor (at line 10 in Fig. 4,
and the function Calculating TTL is implemented by the
formula 3 to calculate a TTL value for a given k value). The
iteration continues until the required number of files is ob-
tained or all neighbors are visited.

There is a tradeoff between choosing a larger k value
and choosing a smaller one. A flooding with a larger k value
results in more query messages. For example, when k =
100%, all the neighbors will be searched in each step of a
flooding. Hence, it will cause too much network traffic. On
the other hand, choosing a smaller k value will result in a
larger TTL value to be calculated to reach the search hori-
zon, so the flooding will take longer to retrieve the required
number of files.

Recall that in the original DQ and DQ+ techniques,
a query packet is propagated to all the peers that can be

IEICE TRANS. COMMUN., VOL.E89-B, NO.9 SEPTEMBER 2006

reached within the TTL constraint. They do not consider the
free-riding problem in a real P2P file sharing system. The
AntSearch algorithm uses the pheromone table to prevent
flooding a query to a free-rider, in order to reduce redundant
network traffic.

4. Discussion

In this section, we discuss several important issues in terms
of scalability and load balancing, convergence property of
pheromone table, and file diversity of the AntSearch algo-
rithm.

4.1 Scalability and Load Balancing

It is well known that Gnutella systems are not scalable due
to their widespread use of flooding. To solve this prob-
lem, Jiang et al. [4] proposed a Dynamic Query algorithm
to averagely reduce 50% network traffic. Hence, the DQ-
like systems are more scalable than the Gnutella systems.
In this paper, our AntSearch algorithm averagely reduces
50% network traffic in the DQ-like systems. Therefore, the
AntSearch system is more scalable than the DQ-like sys-
tems.

To consider the load balancing issue, the non free-
rider nodes may suffer from heavier network traffic load
than the free-rider nodes do in our AntSearch network.
This is because our AntSearch algorithm is designed to re-
duce the flooding messages which will be sent to free-rider
nodes. However, in a flooding-based network, a query will
be flooded to all nodes in a flooding region with a TTL
constraint. Hence, load in a non free-rider node in the
AntSearch network is equivalent to load in “anyone” node
in a flooding-based P2P network.

Many research papers have addressed the load imbal-
ance problem in unstructured P2P systems. Recent work
[9], [15], [16] considers applying a static replication mecha-
nism on the Gnutella network. The authors show that repli-
cating objects proportionally to their population will achieve
optimal load balance, and shorten average search latency. In
[17], the authors proposed a distributed caching protocol for
Gnutella-like system, which distributes index cache among
nodes and divides the searching space into multiple layers.
This protocol can significantly balance network traffic load
for a query, and we believe that our AntSearch algorithm
can collaborate well with these algorithms.

4.2 Convergence Property of Pheromone Table

In this section, we discuss about the convergence property of
pheromone table in the AntSearch algorithm, and also show
that the pheromone tables only need to locally converge. Re-
call that in the design of the AntSearch algorithm, each node
only needs to know which of its immediate neighbors are
likely to be the free-rider nodes before it forwards a query
message, and does not send any query message to those
neighbors. Indeed, when the pheromone tables only locally

YANG et al.: ANTSEARCH: AN ANT SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS

converge, the flooding paths of the same queries issued at
different time are probably different, but the AntSearch al-
gorithm still can find efficient results for a query. It is the
reason why our AntSearch system can work well when each
pheromone table converges locally.

Moreover, another reason to our design is that nodes in
the P2P systems are extremely transient, so that it is impos-
sible to reach a globally convergence state. Some analyses
[3] for the Gnutella and Napster systems indicate that the
average online time of a node is around 60 minutes. For
a large P2P system of 100,000 nodes, this implies a high
churn rate of over 1600 nodes joining and leaving the sys-
tem per minute. This high churn rate makes the pheromone
tables difficult to globally converge. Our AntSearch algo-
rithm, therefore, is very suitable and easy to implement for
areal P2P system.

4.3 File Diversity

In this section, we discuss and show that the proposed
AntSearch algorithm has the same ability to search the non-
popular files as a flooding-based algorithm does.

First the search region in the AntSearch algorithm is
limited and bounded by that in a flooding-based algorithm
under the same TTL constraint. If a file is needed by minori-
ties or it is created recently, the AntSearch algorithm will
realize this during the probe phase of the search algorithm.
Recall that the probe phase is to flood probe queries to a
small region (usually, three neighbors with TTL=2) for es-
timating the popularity of target files. After the probe phase
finishes, the number of searched files, ng, in a probe table
will be very small, so that the AntSearch algorithm selects
a larger k value to find sufficient results. When k is chosen
to a maximal value (1.0), all the neighbors are flooded for
this query, and the search region is equivalent to that in a
flooding-based algorithm.

Unfortunately, even though using a flooding-based al-
gorithm to search, paper [14] tells us that some queries still
can not return results. They measured the traffic characteris-
tics of the Gnutella network from multiple vantage points
in the Planet Lab, and showed that average 18% queries
can not find results, and among two-third of which, there
are results available in the network. The result implies that
our AntSearch algorithm suffers from the same problem in
a flooding-based algorithm. The paper [14] had proposed a
hybrid search algorithm to increase search region for solving
this problem, and we believe that our AntSearch algorithm
can collaborate well with their solutions.

5. Performance Evaluation

In this section, we use three metrics to measure the perfor-
mances of the AntSearch, DQ and DQ+ search algorithms.
The simulation model is first described and then our simu-
lation results are presented. Our simulator is based on that
used in [4], which runs on a real Gnutella network topology
on February 2, 2005 [10], and simulates 160,000 peers in

2305

this network. The average number of neighbors per peer is
close to 24, and more detail information is provided in the
technical report [11]. In the probe phase of the AntSearch
algorithm, a query is propagated to random three neighbors
with TTL=2, and in our experiments the default maximum
TTL value is 4 seconds, and the timeout is set to 2.4 times
TTL seconds. All the experimental setting is the same as
that in [4].

During each simulation run, 1,000 different objects are
located over 160,000 peers, and each object has 1,600 repli-
cas in the P2P network. The placement policy of replicas
follows the 80/20 distribution [2] to simulate a large number
of free-riders existing in the P2P file-sharing system. Aver-
age 20% peers contain the 80% replicas, and the other 20%
replicas are randomly located in the rest 80% peers. All the
queries are uniformly distributed to the network (randomly
choosing a peer without the searched file as the source peer
to issue a query), and each query aims to retrieve 100 results
(N=100). In formula (1) of pheromone value, the parameter
a is set to 0.7. According to our extensive experiments, the
parameter a does not significantly affect the performance of
the AntSearch algorithm when it is set between 0.3 and 0.8.

The evaluation metrics used in our experiments include
the followings. (i) Number of searched files: for a query
with a required number of results, N, a good search algo-
rithm should retrieve the number of results over but close
to N. (ii) Per result cost: we define the per result cost as
the total amount of query messages divided by the number
of searched results. This metric measures how many aver-
age query messages generated to gain a result. (iii) Search
latency: the search latency is defined as total time for the
query process.

Figure 6 shows the number of searched results in the
Dynamic Querying (DQ), the enhanced version of Dynamic
Querying (DQ+), and the AntSearch (DQ-Ants) algorithms
at 100 simulation runs. It is clearly to observe that, the num-
ber of searched results in DQ is less than the required num-
ber of results (N=100), because the DQ search algorithm

180

—-¢-=DQ-Ans
170 | !

o B DDQ
160 —4&— DQ+

150
140 t
130
120 {f
110 A
100
90

u] m]

18 15 22 29 36 43 50 57 64 71 78 85 92 99

Number of results

Sequence number of run

Fig.6 The performance comparison of Dynamic Querying (DQ), the en-
hanced version of Dynamic Querying (DQ+), and our AntSearch (DQ-
Ants) algorithms in the number of searched results.

2306
20000 o
18000 © — ¢ DQ-Ants

: 8 DQ
) 16000 : S
£ 14000 97 =
212000 A
o " 2
5 10000 e A 'y
£ ‘ g o Pl
Ny | \ i | R RN L
RN & o E® T 0‘%5 !
6000 %@%&ﬁﬁ&%@o%@% R &5% i
4000 ¢ LRI ® $
3
2000 L

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
Sequence number of run

Fig.7 The performance comparison of Dynamic Querying (DQ), the en-
hanced version of Dynamic Querying (DQ+), and our AntSearch (DQ-
Ants) algorithms in the number of query messages.

140

—-¢— DQ-Ants
0y B
- Ba—Dor
T am

Number of latencies

17 13 19 25 31 37 43 49 55 61 67 73 79 8 91 97
Seqence number of run
Fig.8 The performance comparison of Dynamic Querying (DQ), the en-

hanced version of Dynamic Querying (DQ+), and our AntSearch (DQ-
Ants) algorithms in search latency.

is designed to use a very conservative approach to flood-
ing queries. On the other hand, the DQ+ and AntSearch al-
gorithms always can retrieve the desired number of results.
The most difference between them is that, the AntSearch
sometimes retrieves a larger number of results than that in
DQ+, and this overshooting problem is caused by the mis-
estimate of search horizon, which means the actual number
of searched peers is larger than the estimated one.

Figure 7 depicts the total number of query messages
generated in the three algorithms at 100 simulation runs.
First, we can observe that the total number of query mes-
sages in the AntSearch algorithm is much smaller than those
in the DQ and DQ+ algorithms. The total number of query
messages in the AntSearch algorithm is around 6,000, while
those in the DQ and DQ+ algorithms are both approximately
12,000. In other words, the AntSearch algorithm average re-
duces 50% of query messages during a query. Recall that a
query is propagated to all neighbors in the DQ and DQ+ al-
gorithms, but it is only propagated to top k% of neighbors
with higher pheromone values.

IEICE TRANS. COMMUN., VOL.E89-B, NO.9 SEPTEMBER 2006

120

107 105

DQ-Ants
apQ
B DQ+ 83

100

80

Number of results, packets, latencies

Average number of Average perresult Average number of
results cost latencies

Fig.9 The overall performance comparison of Dynamic Querying (DQ),
the enhanced version of Dynamic Querying (DQ+), and our AntSearch
(DQ-Ants) algorithms.

Figure 8 shows search latency in the three search algo-
rithms at 100 simulation runs. Search latency is an impor-
tant factor for the P2P file sharing system. We can observe
that search latency in the DQ algorithm is longest, approxi-
mately 100 seconds at each simulation run. The DQ+ algo-
rithm has the shortest search latency due to a greedy strategy
applied in its iterative process. During each of iteration, the
requester peer estimates to retrieve sufficient results from a
selected neighbor. Besides, search latency in the AntSearch
algorithm is a little higher but very close to that in the DQ+
algorithm, because a query is only propagated to top k% of
neighbors with higher pheromone values, and in some cases
the query needs more iterations to gain enough results.

The overall performance comparison of the three
search algorithms are listed in Fig.9. Averagely speaking,
the per result cost (the number of query messages generated
by a result) is about 105 in the DQ+, 107 in the DQ, and 54
in the AntSearch algorithm. It is clearly that the AntSearch
algorithm did reduce approximately 50% network traffic for
a query, and search latency in it is a little longer than that in
the DQ+ algorithm by 5 seconds.

Figure 10 illustrates the performance metrics of the
AntSearch, and DQ+ algorithms under different number of
replicas. We can draw several conclusions by this result.
First, the AntSearch algorithm always has smaller per result
cost than that in the DQ+ algorithm under all different num-
ber of replicas. Second, search latency in the AntSearch al-
gorithm is very similar to that in the DQ+ algorithm. Both of
them produce short search latency. Third, for the number of
searched results, the AntSearch algorithm can retrieve more
results than the DQ+ algorithm does, especially when more
replicas exist in the P2P system. According to these per-
formance metrics, it is clearly that the AntSearch algorithm
can reduce a large amount of network traffic at an acceptable
cost of search latency, while receiving sufficient results for
a query.

YANG et al.: ANTSEARCH: AN ANT SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS

500
450 —%— Num. of results (DQ-Ant)
>
2 400 + —— Num. of results (DQ¥)
3 L & Per result cost (DQ-Ant)
;350
S am | —— Per result cost (DQ+)
) —* Latency (DQ-Ant)
S 250 | —*— Latency (DQH
F nc
o200 ¢ !
5150
O
§ 100
50
0
400 800 1200 1600 2000 2400 2800 3200 3600
Number of Replcates
Fig.10 The performance comparison of the enhanced version of Dy-

namic Querying (DQ+), and our AntSearch (DQ-Ants) algorithms under
different number of replicas.

6. Conclusions

This paper was motivated by the need of a search algo-
rithm for an unstructured P2P system that can provide bet-
ter search performance in terms of network traffic cost and
search latency. The main contribution of our work is that we
propose a search algorithm, called “AntSearch,” which can
greatly reduce network traffic in a query by only sending
queries to those peers which are not likely to be free-riders.
By allowing for a small space cost (the pheromone values in
each peer), our simulation results show that AntSearch sub-
stantially reduces network traffic which is caused by sending
queries to the free-riders, and completes a query at almost
the same search latency as DQ+ search algorithm. Most
importantly, AntSearch is scalable, simple and easy to im-
plement into a real system.

Acknowledgments

The authors would like to thank Mr. Hongbo Jiang for the
support of simulator used in his work [4].

References

[1] A. Fisk, “Gnutella dynamic query protocol v0.1,” May 2003.
http://www?9.limewire.com/developr/dynamic_g-uery.html

[2] E. Adar and B.A. Huberman, “Free riding on Gnutella,” Technical
Report, Xerox PARC, 10 Aug. 2000.

[3] S. Saroiu, PK. Gummadi, and S.D. Gribble, “A measurement study
of peer-to-peer file sharing systems,” Proc. Multimedia Computing
and Networking (MMCN), pp.156-170, Jan. 2002.

[4] H. Jiang and S. Jin, “Exploiting dynamic querying like flooding
techniques in unstructured peer-to-peer networks,” Proc. IEEE In-
ternet Conference on Network Protocol (ICNP), pp.122-131, Oct.
2005.

[5] D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing unstructured
overlay topologies in modern P2P file-sharing systems,” Proc. Inter-
net Measurement Conference (IMC), pp.49-62, Oct. 2005.

[6] Y. Chawathe, S. Ratnasamy, L. Breslau, and S. Shenker, “Mak-
ing Gnutella-like P2P systems scalable,” Proc. ACM SIGCOMM,

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

2307

pp.407-418, 2003.

B. Yang and H. Garcia-Molina, “Improving search in peer-to-
peer networks,” Proc. 22nd International Conference on Distributed
Computing Systems (ICDCS), pp.5-14, 2002.

V. Cholvi, P.A. Felber, and E.W. Biersack, “Efficient search in un-
structured peer-to-peer networks,” European Trans. Telecommun.,
vol.15, no.6, pp.535-548, 2004.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replica-
tion in unstructured peer-to-peer networks,” Proc. 16th International
Conference on Supercomputing (ICS), pp.84-95, 2002.

D. Shakkottai and R. Rejaie, “Characterizing the two-tier Gnutella
topology,” Proc. ACM SIGMETRICS (Poster), pp.402-403, June
2005.

D. Shakkottai and R. Rejaie, “Characterizing today’s Gnutella topol-
ogy,” Technique Report, CIS-TR-04-02, CIS, University of Oregon,
Nov. 2004.

M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free-
riding and whitewashing in peer-to-peer systems,” Proc. ACM SIG-
COMM’04 Workshop on Practice and Theory of Incentives in Net-
worked Systems (PINS), pp.228-236, Aug. 2004.

L. Ramaswamy and L. Liu, “Free riding: A new challenge to
peer-to-peer file sharing systems,” Peer-to-Peer Computing Track,
Hawaii International Conference on System Sciences, HICSS-2003,
pp.220-222, Jan. 2003.

B. Loo, R. Huebsch, 1. Stoica, and J. Hellerstein, “The case for a
hybrid P2P search infrastructure,” Proc. 3nd International workshop
on Peer-to-Peer Systems, (IPTPS’04), pp.141-150, Feb. 2005.

E. Cohen and S. Shenker, “Replication strategies in unstruc-
tured peer-to-peer networks,” Proc. ACM SIGCOMM Conference,
pp.177-190, 2002.

V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher,
“Adaptive replication in peer-to-peer systems,” Proc. 24th IEEE In-
ternational Conference on Distributed Computing Systems, pp.360—
369, 2004.

C. Wang, L. Xiao, Y. Liu, and P. Zheng, “Distributed caching and
adaptive search in multilayer P2P networks,” Proc. 24th IEEE inter-
national conference on distributed computing systems, pp.219-226,
2004.

Kai-Hsiang Yang received a B.A. degree in
Department of Mathematics from National Tai-
wan University and his Ph.D. degree in Depart-
ment of Computer Science and Information En-
gineering from National Taiwan University. He
is currently a Postdoctoral Fellow in the Com-
puter Systems and Communication Lab, Insti-
tute of Information Science, Academia Sinica.
His research interests include Web mining, Peer-
to-Peer computing, search engine technique,
network protocols and architecture, network se-

curity, and information retrieval.

2308

Chi-Jen Wu received the M.S. degrees
in Communication Engineering from National
Chung Cheng University, Taiwan in 2004. He is
currently a research assistant in the Institute of
Information Science, Academia Sinica. His re-
search interests include Overlay network, Peer-
to-Peer network and Ad hoc network.

Jan-Ming Ho received his Ph.D. in elec-
trical engineering and computer science from
Northwestern University in 1989. He received
his B.S. in electrical engineering from National
Cheng Kung University in 1978 and his M.S.
from the Institute of Electronics, National Chiao
Tung University in 1980. He joined the Insti-
tute of Information Science, Academia Sinica,
Taiwan, R.O.C. as a associate research fellow
in 1989, and was promoted to research fellow
in 1994. He was deputy director of the Insti-

tute from 2000 to 2003. He visited the IBM T.J. Watson Research Center
in the summers of 1987 and 1988, the Leonardo Fibonacci Institute for
the Foundations of Computer Science, Italy in summer 1992. He is Asso-
ciate Editor of IEEE Transaction on Multimedia. He is a member of IEEE
and ACM. He was Program Chair of Symposium on Real-time Media Sys-
tems, Taipei, 1994-1998, General Co-Chair of International Symposium
on Multi-Technology Information Processing, 1997 and will be General
Co-Chair of IEEE RTAS 2001. His research interests target the integration
of theory and application research, and include digital archive technology,
web services, information extraction and knowledge management, content
network and continuous video streaming, and combinatorial optimization.

IEICE TRANS. COMMUN., VOL.E89-B, NO.9 SEPTEMBER 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

