
IEICE TRANS. COMMUN., VOL.E90–B, NO.4 APRIL 2007
817

PAPER Special Section on Networks Software

Proof: A Novel DHT-Based Peer-to-Peer Search Engine

Kai-Hsiang YANG†a), Member and Jan-Ming HO†, Nonmember

SUMMARY In this paper we focus on building a large scale keyword
search service over structured Peer-to-Peer (P2P) networks. Current state-
of-the-art keyword search approaches for structured P2P systems are based
on inverted list intersection. However, the biggest challenge in those ap-
proaches is that when the indices are distributed over peers, a simple query
may cause a large amount of data to be transmitted over the network. We
propose in this paper a new P2P keyword search scheme, called “Proof,”
which aims to reduce the network traffic generated during the intersection
process. We applied three main ideas in Proof to reduce network traffic,
including (1) using a sorted query flow, (2) storing content summaries in
the inverted lists, and (3) setting a stop condition for the checking of con-
tent summaries. We also discuss the advantages and limitations of Proof,
and conducted extensive experiments to evaluate the search performance
and the quality of search results. Our simulation results showed that, com-
pared with previous solutions, Proof can dramatically reduce network traf-
fic while providing 100% precision and high recall of search results, at
some additional storage overhead.
key words: distributed search engine, inverted list, Pagerank, Peer-to-Peer

1. Introduction

Recent research has proposed several techniques for provid-
ing full text keyword search in structured P2P systems [6],
[8], [12], [13], [15], and significantly improved techniques
for routing queries in unstructured P2P networks [4], [5],
[10], [18]. To understand the performance of these systems,
Yang et al. [19] had provided a quantitative evaluation and
direct comparison of a structured P2P system [12] and an
unstructured P2P system with several optimizations [5] for
full text search. Their results show that all these systems
use roughly the same bandwidth to process queries, and the
structured systems provide the best response time (30 per-
cent better than a super-peer system). For a search engine,
the response time is the most important performance metric,
we then focus on the full text keyword search in structured
P2P systems.

Structured P2P systems implement a Distributed Hash
Table (DHT) to manage a global identifier (ID) space. A
DHT typically implements a greedy lookup protocol that
contacts O(log n) peers, we say in O(log n) hops, and re-
quires each peer to maintain a routing table of size O(log n).
However, these DHT-based systems do not support keyword
searching directly, while keyword searching can easily be
implemented by a straightforward method, called the “in-

Manuscript received July 31, 2006.
Manuscript revised October 30, 2006.
†The authors are with Institute of Information Science,

Academia Sinica, Taiwan, R.O.C.
a) E-mail: khyang@iis.sinica.edu.tw

DOI: 10.1093/ietcom/e90–b.4.817

verted list search scheme.” The system generates an inverted
list for each word, and stores it to the peer which is responsi-
ble for the word. For example, an inverted list of word ‘a’ (a
→ X, Y, Z) indicates that word ‘a’ appears in documents X,
Y, and Z, and it is stored to a peer responsible for the word
‘a.’ To evaluate a query with several words, the system has
to merge corresponding inverted lists to find the pages con-
taining those words. However, transmitting those inverted
lists generates a large amount of network traffic. Several
recent solutions [6], [12], [13], [15] are proposed to reduce
the network traffic generated during the intersection process,
however, it has been shown in [11] that the above solutions
are not feasible to perform large scale keyword search, be-
cause the generated network traffic still exceeds the network
capacity. Hence, it is still a promising challenge to provide
keyword search service over structured P2P systems.

In this paper, we propose a structured P2P keyword
search scheme, called “Proof,” which aims to reduce the
network traffic generated during the intersection process of
inverted lists. We apply three main ideas in Proof to reduce
network traffic, including the following. (1) A sorted query
flow is used to decide the order of peers for the intersection
process. The sorted query flow is the order of peers from
the smallest list size to the largest one, which can prevent
the larger lists from being transmitted over the network. (2)
We trade the storage for reducing network traffic. We store
Bloom filters [1] as the content summaries of web pages
in the inverted lists, so that the first peer can filter out im-
possible list items before transmitting. This technique can
effectively reduce a lot of network traffic. (3) We trade the
recall metric of results for further reducing network traffic.
A query in Proof is assumed to contain a required number of
results, say k, and based on the probability of false-positive
for checking the Bloom filters, we can stop the above check-
ing procedure in the first peer when we have a high proba-
bility that the top k results are already found. By this design,
computation time and network traffic for a single query can
be dramatically reduced. Besides, we also discuss the ad-
vantages and limitations of Proof, and conducted extensive
experiments to evaluate the search performance and qual-
ity of results. Our simulation results showed that, compared
with previous solutions, Proof can dramatically reduce net-
work traffic while providing 100% precision and high recall
of search results, at some additional storage overhead.

The main contribution of this work is that we proposed
a structured P2P keyword search scheme with three new de-
signs to reduce network traffic which is generated during the

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers



818
IEICE TRANS. COMMUN., VOL.E90–B, NO.4 APRIL 2007

intersection process of inverted lists. Compared with recent
solutions [6], [12], [13], [15], Proof is more feasible to per-
form large scale full text search service, because the network
traffic is dramatically reduced.

The remainder of this paper is organized as follows.
Section 2 briefly reviews current DHT-based P2P search
schemes and their limitations. Section 3 introduces the sys-
tem architecture of Proof. In Sect. 4, the index structures
and search algorithm are presented in detail. Section 5 de-
scribes our experimental methodology, and the experimental
results are presented in Sect. 6. Finally, our conclusions are
presented in Sect. 7.

2. Related Works and Basic Concepts

Previous works for providing full text search service in
DHT-based P2P systems can be classified into two models:
the inverted list model and the vector space model.

The inverted list model is using the inverted lists as
mentioned above. Tang et al. [15] use the T F−IDF methods
to choose some important keywords for each document, and
store them in inverted lists to support the keyword search.
However the size of inverted list become too huge. Reynolds
and Vahdat [12] adopted a technique to perform the inter-
section operation by only transmitting the Bloom filter of
inverted lists. However they do not explain how to choose
the proper size of the Bloom filter when the number of query
keywords is larger than 2. Karthikeyan et al. [13] sort the
inverted lists by Pagerank, and during the intersection op-
eration, each peer only transmits the top x% results. The
recall metric of results drops too much in this solution. Li
et al. [11] suggested combining several techniques to reduce
the cost of a distributed intersection, including caching, ap-
plying the Bloom filter, and document clustering.

For the vector space model, pSearch [16] implements
a vector space model approach on a CAN overlay network.
Both data and queries are represented by vectors and the
query operation is performed in a multi-dimensional Carte-
sian space. However this solution is not scalable [17] due to
the “dimensionality curse” phenomenon when the dimen-
sionality increases.

2.1 Basic Concepts

2.1.1 Pagerank

A ranking algorithm is essential to a search engine to pro-
vide more important web pages in the top of search results.
In this paper, we use Google’s pagerank algorithm [3] as
the ranking algorithm in Proof. The algorithm assigns each
web page a Pagerank value which represents the importance
of the page. In short, the PageRank value is a :vote;, by all
the other pages on the Web, about how important a page is.
A link to a page counts as a vote of support.

The intuition behind the pagerank algorithm is based
on the random surfer model. A user visiting a page is likely
to click on any of the links with equal probability and at

Fig. 1 Hashing word ‘a’ into the X’ Bloom filter.

some random point he decides to move to a new page. The
formal Pagerank formulation is defined as:

P(a) = (1 − d) + d ×
∑

∀ inlinks i

P(i)
C(i)
, (1)

where P(i) is the Pagerank of page i, which links to page
a; C(i) is the number of outbound links on page i; and d is
a factor set between 0 and 1. Note that the algorithm only
depends on the link structures between web pages. After the
computation converges, each web page is assigned a Pager-
ank value as its importance.

2.1.2 Bloom Filter

A Bloom filter [1] is a hash-based string that summarizes
a document, X = {a1, a2, . . . , an}, of n words, and provides
an efficient method to check whether a word exists in the
document. The concept, (illustrated in Fig. 1) is to allocate
a string, v, of m bits, initially all set to 0, and then choose
p independent hash functions, h1, h2, · · · , hp, each maps a
word to a value within the range 1, · · · ,m. For each word a ∈
X, the bits at positions h1(a), h2(a), · · · , hp(a) in v are set to 1.
(One bit might be set to 1 multiple times.) To check whether
a word, b, exists in the document X, we check the bits at
positions h1(b), h2(b), · · · , hp(b). If any one of them is 0, b is
certainly not in the document X. Otherwise, we conjecture
that b exists in the document X with a certain probability
that we might be wrong (we call it false positive).

The salient feature of the Bloom filter is that there is a
clear tradeoff between m and the probability of a false pos-
itive. By the analysis in [1], after hashing n words into a
Bloom filter of size m, the probability of a false positive can
be estimated as (1 − (1 − 1

m )pn)p, where p is the number of
hash functions, m is the size of Bloom filter, and n is the
number of hashed words.

In this paper, for a document or a query with n words,
the process to hash all n words into a Bloom filter is called
to “generate” a Bloom filter for the document or the query.

3. System Architecture

The Proof system, shown in Fig. 2, comprises a crawler, a



YANG and HO: PROOF: A NOVEL DHT-BASED PEER-TO-PEER SEARCH ENGINE
819

Fig. 2 The Proof system architecture, which comprises four elements:
crawler, database, index generator, and DHT-based P2P system.

database, an index generator, and a distributed DHT-based
P2P system. The crawler follows a crawling schedule to
collect web pages from the Internet, and processes them to
extract the hyperlink information and makes their indices.
At a system-defined time, an index generator is invoked to
produce new index structures and publish them to the DHT-
based P2P system.

In the following section, we focus on the DHT-based
P2P system, which stores index structures and evaluates
queries. A peer in the P2P system can be any cooperating
server or personal computer that has enough capability to
handle the search load. Actually, in a P2P system, any peer
can be a local entry point of the Proof, which means it can
accept queries from other computers and return the search
results to the user. Note that the system is independent of
the underlying P2P overlay network and routing protocol,
and we use a Chord model [14] as an example of the under-
lying P2P overlay network.

The formal model of the DHT-based P2P system is de-
fined as follows. Assume that the system contains N peers
and uses a consistent hash function, such as SHA-1 [7], to
assign an M-bit identifier to each peer. There is a total of
Ndoc documents in the system, and one vocabulary, T , which
is the set of all keywords in the documents. Each document
di is composed of several keywords t j ⊂ T . Given a query,
q, containing several query keywords, qt j ⊂ T , and a user-
specified result threshold, k, the search problem can be de-
fined as: finding the top k relevant documents that contain
all the query keywords, qt j, in the P2P system.

The solution to the search problem includes an index
structure and a search algorithm to evaluate queries. How-
ever, a good search scheme has to minimize user latency,
computation time and network traffic at an acceptable stor-
age cost, and also provide high quality of search results, i.e.
the precision and recall metrics.

Fig. 3 Summary Inverted List of keyword j.

4. Index Structure and Search Algorithm

4.1 Document Information

In Proof, each document X contains four kinds of data: a
document ID (id(X)), a Pagerank value (pagerank(X)), a
Bloom filter of size m bits (BF(X)), and a Bloom filter preci-
sion (pre(X)). Besides the document ID, which is assigned
by the system DHT, the meanings of the other three kinds of
data are as follows.

(1) Pagerank value. After the system applies the pager-
ank algorithm in Equation 1 on all web pages, each web
page is assigned a Pagerank value to represent its impor-
tance.

(2) Bloom filter. When a web page is crawled, Proof
will automatically generate a Bloom filter as its summary.

(3) Bloom filter precision. Base on the description in
Sect. 2.1.2, the probability of a false positive can be esti-
mated as (1 − (1 − 1

m )pn)p, where p is the number of hash
functions, m is the size of Bloom filter, and n is the number
of inserted elements. In Proof, we define the Bloom filter
precision as (1 - the probability of a false positive), to repre-
sent the probability of finding a true result.

4.2 Summary Inverted List

Basically, Proof applies a new index structure, called the
“Summary Inverted List” (SIL), which is extended from the
basic inverted list. Each item in SIL stores the four data of
a document. Figure 3 shows an example where a document,
X, contains the word j, then the SIL of word j will have
a list item, say item u, to represent the document X, and
the item u contains data about the document X, including
a document ID (id(X)), a Pagerank value (pagerank(X) =
0.532), a Bloom filter (BF(X)) and a precision value of the
Bloom filter (pre(X) = 0.85). In addition, Proof sorts all
items in a SIL by their Pagerank values, and a SIL of word
j is stored in the peer which is responsible for word j over
the structured P2P network.

4.3 Important Ideas in Proof

In this section, we present the three main ideas applied in
Proof to reduce network traffic during the intersection pro-
cess.



820
IEICE TRANS. COMMUN., VOL.E90–B, NO.4 APRIL 2007

4.3.1 Sorted Query Flow

The first idea in Proof is using a sorted query flow to decide
the order of peers for the intersection process of inverted
lists. The sorted query flow chooses the order of peers from
the shortest SIL to the longest one.

Let us consider an example: assume that a query con-
tains three query words qt1, qt2, and qt3, and their sum-
mary inverted lists (SILs) are stored in peers P1, P2 and P3

respectively, and assume that |S IL1 | � |S IL2 | � |S IL3 |,
where |S IL1 | means the size of SIL of word qt1. If the sys-
tem follows the original order of words (P1 → P2 → P3)
to process the intersection, the generated network traffic is
|S IL1| + |S IL1 ∩ S IL2| + |S IL1 ∩ S IL2 ∩ S IL3|, where ∩
means the intersection of SILs. Generally, |S IL1| is much
larger than |S IL1 ∩ S IL2| and |S IL1 ∩ S IL2 ∩ S IL3|. Hence,
if we apply the sorted query flow (P3 → P2 → P1) to pro-
cess the intersection, it is clear to see why the sorted query
flow can reduce network traffic, because the network traffic
becomes |S IL3| + |S IL3 ∩ S IL2| + |S IL3 ∩ S IL2 ∩ S IL1 |,
where |S IL3 | is much smaller than |S IL1|.

4.3.2 Content Summary Filtering

The second idea in Proof is storing Bloom filters as the con-
tent summaries of web pages in SILs. Remember that the
Bloom filters can provide us to check whether a given word
exists in a web page (in Sect. 2.1.2), so based on the content
summaries in SILs, the first processing peer can filter out
impossible list items before transmitting.

Let us consider the same example in Sect. 4.3.1 when
we already applied the sorted query flow (P3 → P2 → P1)
to process the intersection. If Peer P3 can check each item
in S IL3, and filters out all impossible items before trans-
mitting, assume the size of filtered list, say |S IL′3|, is much
smaller than |S IL3|, so the generated network traffic will be
reduced to |S IL′3| + |S IL′3 ∩ S IL2| + |S IL′3 ∩ S IL2 ∩ S IL1 |.
That is the second idea used in Proof, and please notice that
the size of filtered list, |S IL′3 |, depends on the precision of
checking Bloom filters.

4.3.3 Stop Condition of Filtering

The third idea in Proof is to set a stop condition for checking
Bloom filters in the first processing peer. Because a query
in Proof is assume to have a result threshold k, and all items
in SILs are sorted by their Pagerank values, we can stop the
checking process when we have a high probability that all
the top k results are already found by the checking. Re-
member that the Bloom filter precision in SIL is defined as
(1 - the probability of a false positive) in Sect. 4.1, so that
we can calculate the expected number of results, denoted by
ENresult, by summing all the Bloom filter precision of pos-
sible results during the checking process. Hence, we then
set the stop condition as a checking threshold, denoted by
Tchecking, and the checking procedure stops when ENresult

reaches the checking threshold Tchecking.
However, it is not easy to decide the value of Tchecking,

because checking Bloom filters has a probability of a false
positive, which means some of possible results are not true
results, and they will be filtered out in the following intersec-
tion process. Hence, if we set a small Tchecking, it is possible
that we can not get k results for a query, which means the
recall metric maybe drops. To avoid the effect, we set the
checking threshold Tchecking to the value k + Θ, where Θ is
the assurance number to adapt the recall metric. Basically,
we trade the recall metric for further reducing network traf-
fic.

4.4 Search Algorithm

We now formally present the search process, which com-
prises two steps: a query flow arrangement and a query eval-
uation.

[Query flow arrangement]. For a query Q, the re-
quester peer first sends out the “length request packets” to all
peers which are responsible for the SILs of query words. Af-
ter all the lengths of SILs are received, the requester peer de-
termines the query flow from the shortest SIL to the longest
one.

[Query evaluation]. The query process can be divided
into the operation in the first processing peer, called the
MQPP, and other peers.

(1) MQPP: the goal of the MQPP is to find out suf-
ficient possible results by checking Bloom filters in SILs.
For a query Q with several query terms qt j and a result
threshold, k, the MQPP first generates a Bloom filter for the
query by hashing all query terms to the filter, as mentioned
in Sect. 2.1.2. We use BF(Q) to denote the query’s Bloom
filter. The checking procedure checks each item in SIL by
a bit-and (BitAnd) operation. For an item i, if the condition
BitAnd(BF(item i), BF(Q)) == BF(Q) holds, item i is re-
garded as a possible result and then selected from the SIL.
After the checking procedure stops, those selected possible
results are sent to the next peer as a “new” ResultList.

In addition, as mentioned in Sect. 4.3.3, the MQPP
sets a stop condition for the checking procedure. The ex-
pected number of results, ENresult, is defined as the sum of
all Bloom filter precision of selected results, and the check-
ing procedure stops when the ENresult reaches the checking
threshold, Tchecking, which is set to the value k + Θ, where
Θ is the assurance number. Algorithm 1 shows the pseudo
code of search algorithm in the MQPP.

(2) Other peers: excluding the MQPP, each peer in the
query flow (which is supposed to own a SIL of a query term)
will receive a result list from its previous peer, called “result
list,” and its goal is to perform the intersection of the re-
ceived result list and its SIL. After the intersection, the new
list is sent to the next peer as a “new” result list.

4.4.1 Advantages and Limitations

We design the Proof system for the following three intuitive



YANG and HO: PROOF: A NOVEL DHT-BASED PEER-TO-PEER SEARCH ENGINE
821

Algorithm 1 Search Algorithm in MQPP
1: procedure MQPPSearch(Q, k, Θ)

Q: a query
k: a result threshold
Θ: an assurance number

2: Tchecking ← k + Θ
3: ENresult ← 0
4: generate query Bloom filter, BF(Q)
5: for all item i in S IL do
6: if BitAnd(BF(i),BF(Q)) == BF(Q) then
7: add item i to ResultList
8: assign ENresult ← ENresult + pre(i)
9: end if

10: if ENresult ≥ Tchecking then
11: stop checking procedure
12: send the ResultList to the next peer
13: end if
14: end for
15: end procedure

advantages. (1) The query flow arrangement chooses the
shortest inverted list as the beginning of an intersection op-
eration, which causes fewer results to be transmitted over
the P2P network. This yields a great benefit in terms of
network load and computation time. (2) The MQPP per-
forms a Bloom filter checking procedure to filter out impos-
sible items from the SIL, so that only a few possible results
are transmitted over the P2P network. (3) The MQPP sets
a stop condition for the Bloom filter checking procedure.
When the stop condition is reached, the MQPP immediately
stops the procedure, which reduces the computation time in
MQPP. In addition, because all items in SIL are sorted by
Pagerank values, the more important items are checked early
then the less important ones. However, if the false positive
of checking Bloom filters occurred too much, the checking
procedure may not get enough k results, so that the recall
metric maybe drops. On the other hand, after all the inter-
section process, all the found results are true results, which
means the precision of search results can be guaranteed.

In fact, Proof cannot achieve 100% recall structurally,
because it also concerns other merits, such as latency, net-
work traffic, and computation time simultaneously. There-
fore, Proof is obviously unfitted to some kinds of searches
which need very high recall value.

5. Experimental Methodology

5.1 Data Sets

In our experiments, we used four kinds of data sets from the
TREC corpus: (1) FT: the Financial Times Limited (1991,
1992, 1993, 1994), (2) CR: Congressional Record of the
103rd Congress (1993), (3) FBIS: Foreign Broadcast In-
formation Service (1996), and (4) LATIMES: Los Angeles
Times (1989, 1990). Table 1 lists the data set’s statistics,
including the min, max, average, and standard deviations of
the number of different words in a document. The FT data
set contained the largest number of documents (210,158),
and the average number of words in a document in FT was
126.43. For all four data sets, the average number of words
in a document was less than 200. Besides, we use the “ti-

Table 1 TREC data sets.
Data set Doc Min Max Average Standard

Number Deviation

FT 210158 2 3092 126.43 99.73
CR 27922 1 5501 193.47 335.04

FBIS 130471 7 6109 140.47 137.28
LATIMES 131896 3 5375 170.03 130.25

Fig. 4 Query evaluation in the RV search scheme.

tle” field of TREC topics 1-600 as queries, and each query
contained 3.8 query words on average.

5.2 Comparison of Search Schemes

We developed a simulator to compare the performance of
Proof and the following three P2P search schemes.

(1) Basic inverted list search scheme (Basic). As men-
tioned in the introduction, the inverted list search scheme
is the most basic way to implement keyword searching
on structured P2P networks. For example, given a query
Q = {a, b, c}, the search scheme follows the original order
of words to intersect their inverted lists. The entire inverted
list of term ‘a’ is transmitted to the peer having the inverted
list of term ‘b,’ and the intersected results are transmitted to
the peer having the inverted list of term ‘c,’ and then all final
results are returned to the user. Note that although it con-
sumes a lot of computation time and network bandwidth,
the result of this scheme is always correct, so we take the
results in this scheme as the answers in our experiments.

(2) SSB search scheme (SSB). This search scheme was
proposed by Sankaralingam, Sethumadhavan, and Browne
[13]. A Pagerank value of a web page is computed and
stored into an inverted list, and all inverted lists are sorted
by the Pagerank of list items before query evaluation. The
intersection process also follows the original order of words
that a user inputs, and each peer only transmits the top x%
of results to the next peer. The parameter x affects the trans-
mitted data size and the precision of the final results. In our
experiment, we set up x=30 (SSB-30), 60 (SSB-60), and 90
(SSB-90) as different search schemes.

(3) RV search scheme (RV). The RV search scheme
was proposed by Reynolds and Vahdat [12]. Figure 4 shows
the query process for a query with three query keywords.
The intersection process also follows the original order of
words that a user inputs, and comprises two phases: in the
first phase, each peer sends a Bloom filter of inverted list



822
IEICE TRANS. COMMUN., VOL.E90–B, NO.4 APRIL 2007

to next peer, and in the second phase, each peer checks the
results by a received Bloom filter.

5.3 Performance Metrics

We measured the network traffic load, computation time,
and search quality of each search scheme by the following
metrics:

(1) Load. We define Load as the number of transmitted
results, which is the most important factor affecting network
transmission time.

(2) Computation Time (CT). Computation time is the
total time for peers to perform the intersection operation.
In our experiments, each search scheme was run in the same
environment so that we could measure the computation time
fairly.

(3) Precision and Recall of Results. For a query with
a result threshold, k, we define the answer set, R, as the top
k final results in the Basic search scheme. Assume that any
search scheme returns a search set, A, and let |Ra| be the
number of results at the intersection of sets R and A. The
recall and precision are defined as follows. Recall = |Ra|

|R| ,
and Precision = |Ra|

|A| .

5.4 Simulation Process

We set up the simulation parameters shown in Table 2 be-
fore running any simulation for each experiment. These 9
parameters come from what we need to run a simulation.
First, for the system, we have to know (1) the number of
documents and (2) the number of peers. Second, for the four
kinds of data for each document, we have to decide the size:
(3) size of a document ID, (4) Bloom filter size, (5) size of a
Pagerank value, and (6) size of a bloom filter precision. The
rest three parameters are needed for the stop condition of the
checking procedure, including (7) the result threshold, k, (8)
assurance number, Θ, and (9) the checking threshold, k+Θ.

The simulator first generates all the SILs and dis-
tributes them to peers via the consistent hashing algorithm
[9], and then simulates each search scheme to evaluate
queries. In our simulator, all the indices are stored in the
main memory; hence, all the operations in peers are mem-
ory operations.

Table 2 Simulation parameters.

System Parameters Notation Default

Number of Documents Ndoc FT data set
Number of Peers Npeer 500
Size of a document ID S ID 128 bits
Bloom Filter Size m 600 bits
Size of a Pagerank value S pagerank 8 bytes
Size of a Bloom filter Precision S pre 8 bytes
Result Threshold k 50
Assurance Number Θ 25
Checking Threshold Tchecking k + Θ

6. Experimental Results

We now report the experimental results, and as the results
for each data sets are quite similar, we only present the re-
sults of the FT data set, which was the largest. We first
study the effect of different query flows, and then compare
the search performance of different search schemes in terms
of network load, computation time, precision and recall. Af-
ter that, we then study the effect when the number of peers
and documents increases. Finally, for the parameters used in
Proof, we evaluate the effect of the Bloom filter’s size and
the checking threshold.

6.1 Effect of Query Flow

The goal of first experiment is to verify the effect of the
sorted query flow on the Load metric. When a user inputs a
query, the “original query flow” is defined as the input order
of query terms, and the “sorted query flow” is the order of
terms from the shortest inverted list to the longest one. We
applied these two query flows to each scheme, and the re-
sults are shown in Table 3. According to the traffic ratio, the
sorted query flow only generates near 40% of the original
network traffic Load in both the Basic and SSB schemes,
68% in the RV scheme, and 78.39% in Proof. The reason
why the traffic ratio can not be as small as that in other
schemes is that, Proof has a stop condition to limit the num-
ber of transmitted results. According to this result, we can
understand why Proof applies the query flow arrangement
before the query evaluation, and the results prove that the
sorted query flow does achieve a better search performance.

Because all these three search schemes only use the
“original query flow,” and we already understand the effect
of the query flow. For better understand the effect of other
designs in Proof, we then apply the “sorted query flow” to all
search schemes in the following experiments for a fair per-
formance comparison (without the effect of the query flow).

6.2 Search Performance Comparison

The goal of this experiment is to compare the search perfor-
mance of each search scheme. We ran the simulation 100
times, and the average performance results are presented
in Table 4. For the Load metric, it is clear that the Ba-
sic search scheme has the largest Load (1118.18), the Load

Table 3 Load under different query flow.

Number of Transmitted Result Traffic Ratio
Scheme Original query Sorted query

flow (o) flow (s) (s/o) %

Basic 3989.44 1573.90 39.45%
SSB-30 1149.14 442.98 38.55%
SSB-60 2336.26 909.02 38.91%
SSB-90 3568.96 1403.17 39.32%
RV 1046.97 714.52 68.25%
Proof 122.35 95.91 78.39%



YANG and HO: PROOF: A NOVEL DHT-BASED PEER-TO-PEER SEARCH ENGINE
823

Table 4 Search performance.

schemes Load CT (sec) Precision Recall

Basic 1118.18 10.6 100% 100%
SSB-30 331.94 9.9 92.59% 23.64%
SSB-60 664.38 10.3 93.19% 47.36%
SSB-90 1004.46 10.5 97.82% 88.97%

RV 722.87 21.9 100% 100%
Proof 93.08 5.18(1.08+4.1) 100% 90.09%

in SSB-x search scheme is x% of the Load in the Basic
search scheme, and most importantly, the Load in Proof is
the smallest (93.08), which is only 8.32% of the Load in the
Basic search scheme.

As for computation time (CT), the CT in the RV search
scheme is longest (21.9 sec.), and the CT in Proof is only
5.18 seconds (1.08 sec. in MQPP and 4.1 sec. in other
peers), which is 48.86% of the time in the Basic search
scheme. This result confirms that Proof can reduce the com-
putation time. According to the Load and CT in Proof, it is
obvious that the user latency in Proof is shortest.

Recall that the answer set of each query is defined as
the top k results in the Basic search scheme, so the precision
and recall in the Basic search scheme are 100%. In the SSB-
x scheme, the precision slightly drops as x decreases, but
the recall sharply drops to 23.64% when x = 30. This shows
that many results can not be retrieved if only the top x%
of results are transmitted. In Proof, the precision is 100%,
which is the same as that in the Basic search scheme, and
the recall is 90.09%, which is also higher than that in the
SSB-x search scheme. The recall drops because too many
false-positive results occur, so that Proof may not be able to
retrieve k results before the checking procedure stops.

Overall, Proof can greatly reduce Load and computa-
tion time and provide 100% precision and a high recall.

6.3 Effect of Number of Peers

In this experiment, we studied variation of the Load when
the number of peers increases. Recall that each inverted
list is stored in a peer, for a given query, when two suc-
cessive query terms are mapped to the same peer, no any re-
sult needs to be transmitted; hence, the Load will be lower.
When the number of peers is small, the probability of two
successive query terms being mapped to the same peer is
high; therefore, Load is smaller than when there is a large
number of peers.

We ran the simulation 50 times for each different set-
ting of the number of peers, Npeer, (=10, 100, 1,000, 10,000,
and 100,000). Figure 5 depicts the average Load for dif-
ferent numbers of peers. Clearly, when the number of
peers increases exponentially, the Load slightly increases
and rapidly converges to a value. In this result, the Load
in each search scheme converges when the number of peers
is larger than 100. Most importantly, the Load in Proof is
the smallest and remains fairly stable when the number of
peers continually increases.

Fig. 5 Load with different numbers of peers.

Fig. 6 Load with different numbers of documents.

Fig. 7 Recall with different numbers of documents.

6.4 Effect of Number of Documents

After analyzing the effect of the number of peers, we now
study variation of the Load when the number of docu-
ments increases. We can predict that, when the number of
documents increases, all inverted lists become longer and
the Load increases. We ran the simulation 50 times for
each number of documents, Ndoc, (=10,000, 20,000, 40,000,
80,000, 160,000), and the documents were randomly chosen
from the FT data set.

Figures 6 and 7 show the variation of Load and recall
with each number of documents. The Load in the Basic and
SSB-x schemes linearly increases with the number of docu-
ments, and the Load in the RV search scheme is similar to
the Load in the SSB-30 search scheme. However, the Load
in Proof is always the same. The main reason is because of
the stop condition in MQPP, the Load are not affected by the
size of SILs. For the recall metric, the recall in the Basic and
RV schemes is always 100%, and the recall in SSB-x search



824
IEICE TRANS. COMMUN., VOL.E90–B, NO.4 APRIL 2007

Fig. 8 Load at different Bloom filter size.

Table 5 Storage cost at different Bloom filter size (n=126.4, k=2).

m(bits) m/n Bloom filter precision Storage Cost
Proof/Basic

400 3.16 78.01% 5.12
600 4.75 88.16% 6.69
800 6.33 92.65% 8.25
1000 7.91 95.01% 9.81
1200 9.49 96.39% 11.38

scheme is x%. In Proof, the recall decreases very slowly as
the number of documents increases; it is still 90% when the
number of documents reaches 160,000. The reason for the
decrease in recall is that more false-positive results occur as
the number of documents increases, so that the query pro-
cess can not retrieve k results before the stop condition is
activated.

6.5 Effect of the Bloom Filter Size

The goal of this experiment was to study the effect of the
Bloom filter size, m, in Proof. We set up different Bloom
filter sizes, m, (= 400, 600, 800, 1,000, and 1,200 bits). Ac-
cording to the results shown in Fig. 8, Load slowly decreases
as m increases. When a larger filter is used, the filter’s pre-
cision improves, so that few false-positive results occur in
MQPP; hence, the Load decreases. Table 5 lists the Bloom
filter precision and storage cost for each m. The Bloom fil-
ter precision = 78% when m = 400, and rapidly increases
to 88.16% when m = 600. The last column in the table is
the ratio of the total storage size in Proof to that in the Ba-
sic search scheme. Here we used 16 bytes for a document
ID, 8 bytes for a Pagerank value and a Bloom filter preci-
sion. Assume that we can accept the storage cost within
7 times of that in the Basic search scheme, we can choose
(m = 600) to achieve 88% Bloom filter precision under this
storage constrain.

7. Conclusion

This paper was motivated by the need for a robust P2P
search engine that can provide better search performance
and shorter user latency. The main contribution of our work
is that we propose a new P2P search scheme, called “Proof,”
which substantially reduces network traffic during a query
process by three designs in Proof. Most importantly, Proof
is easy to implement and independent of the underlying P2P

overlay network and routing protocol.
As well as developing a P2P full-text search scheme,

which we are now doing, there are several promising direc-
tions for future research. In particular, we will consider the
load balance issue. Note that the distribution of words fol-
lows a Zipf-like distribution [2]; hence, the distribution of
inverted lists is unbalanced under consistent hashing. Be-
sides, the data consistency control, replications, and recov-
ery mechanisms are also critical to making P2P systems
more reliable. We believe that more research in these areas
would definitely be worthwhile.

References

[1] B.H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol.13, no.7, pp.422–426, 1970.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” INFOCOM,
vol.1, pp.126–134, 1999.

[3] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine,” Computer Networks and ISDN Systems, vol.30,
no.1–7, pp.107–117, 1998.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like p2p systems scalable,” ACM SIGCOMM
2003, pp.407–418, Aug. 2003.

[5] B.F. Cooper, “An optimal overlay topology for routing peer-to-peer
searches,” ACM/IFIP/USENIX 6th International Middleware Con-
ference, pp.82–101, 2005.

[6] O. Gnawali, A keyword set search system for peer-to-peer networks,
Master’s Thesis, Massachusetts Institute of Technology, June 2002.

[7] National Institute of Standards and Technology, Secure hash stan-
dard, FIPS 180-1 Standard in U.S. Department of Commerce/NIST,
April 1995. http://www.itl.nist.gov/fipspubs/fip180-1.htm

[8] Y.-J. Joung, C.-T. Fang, and L.-W. Yang, “Keyword search in dht-
based peer-to-peer networks,” Proc. 25th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS’05), pp.339–348,
Washington, DC, USA, 2005.

[9] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy, “Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web,”
ACM Symposium on Theory of Computing, pp.654–663, May 1997.

[10] A. Kumar, J. Xu, and E. Zegura, “Efficient and scalable query
routing for unstructured peer-to-peer networks,” INFOCOM 2005,
pp.1162–1173, March 2005.

[11] J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and R.
Morris, “On the feasibility of peer-to-peer web indexing and search,”
2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),
pp.207–215, Berkeley, CA, USA, Feb. 2003.

[12] P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword search-
ing,” Proc. International Middleware Conference, pp.21–40, June
2003.

[13] K. Sankaralingam, S. Sethumadhavan, and J.C. Browne, “Dis-
tributed Pagerank for P2P Systems,” Proc. 12th International Sym-
posium on High Performance Distributed Computing, pp.58–68,
June 2003.

[14] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” Proc. 2001 conference on applications, technologies, archi-
tectures, and protocols for computer communications, pp.149–160,
2001.

[15] C. Tang and S. Dwarkadas, “Hybrid global-local indexing for effi-
cient peer-to-peer information retrieval,” Proc. Symposium on Net-
worked Systems Design and Implementation (NSDI), pp.211–224,
June 2004.

[16] C. Tang, Z. Xu, and M. Mahalingam, “pSearch: Information re-



YANG and HO: PROOF: A NOVEL DHT-BASED PEER-TO-PEER SEARCH ENGINE
825

trieval in structured overlays,” ACM HotNets-I, pp.89–94, Oct.
2002.

[17] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and per-
formance study for similarity-search methods in high-dimensional
spaces,” VLDB’98: Proc. 24rd International Conference on Very
Large Data Bases, pp.194–205, San Francisco, CA, USA, 1998.

[18] K.-H. Yang, C.-J. Wu, and J.-M. Ho, “AntSearch: An ant search al-
gorithm in unstructured peer-to-peer networks,” IEICE Trans. Com-
mun., vol.E89-B, no.9, pp.2300–2308, Sept. 2006.

[19] Y. Yang, R. Dunlap, M. Rexroad, and B.F. Cooper, “Performance of
full text search in structured and unstructured peer-to-peer systems,”
INFOCOM 2006, April 2006.

Kai-Hsiang Yang received a B.A. degree in
Department of Mathematics from National Tai-
wan University and his Ph.D. degree in Depart-
ment of Computer Science and Information En-
gineering from National Taiwan University. He
is currently a Postdoctoral Fellow in the Com-
puter Systems and Communication Lab, Insti-
tute of Information Science, Academia Sinica.
His research interests include Web mining, Peer-
to-Peer computing, search engine technique,
network protocols and architecture, network se-

curity, and information retrieval.

Jan-Ming Ho received his Ph.D. in elec-
trical engineering and computer science from
Northwestern University in 1989. He received
his B.S. in electrical engineering from National
Cheng Kung University in 1978 and his M.S.
from the Institute of Electronics, National Chiao
Tung University in 1980. He joined the Insti-
tute of Information Science, Academia Sinica,
Taiwan, R.O.C as a associate research fellow in
1989, and was promoted to research fellow in
1994. He was deputy director of the Institute

from 2000 to 2003. He visited the IBM T. J. Watson Research Center
in the summers of 1987 and 1988, the Leonardo Fibonacci Institute for
the Foundations of Computer Science, Italy in summer 1992. He is Asso-
ciate Editor of IEEE Transaction on Multimedia. He is a member of IEEE
and ACM. He was Program Chair of Symposium on Real-time Media Sys-
tems, Taipei, 1994–1998, General Co-Chair of International Symposium
on Multi-Technology Information Processing, 1997 and will be General
Co-Chair of IEEE RTAS 2001. His research interests target the integration
of theory and application research, and include digital archive technology,
web services, information extraction and knowledge management, content
network and continuous video streaming, and combinatorial optimization.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


