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When Simple Hash Functions Suffice
Kai-Min Chung; Michael Mitzenmacher; Salil Vadhan

Abstract

In this chapter, we describe a semi-random data model under which simple, ex-

plicit families of hash functions, such as those that are 2-universal or O(1)-wise

independent, perform in a way that is nearly indistinguishable from idealized ran-

dom hashing, where each data item is mapped independently and uniformly to the

range. Specifically, we show that it suffices for the data to come from a “block

source,” whereby each new data item has some “entropy” given the previous ones.

This provides a possible explanation for the observation that simple hash functions,

including 2-universal hash functions, often perform as predicted by analysis for the

idealized model of truly random hash functions, despite generally having noticeably

weaker worst-case guarantees.

1.1 Introduction

Hashing is at the core of many fundamental algorithms and data structures, in-

cluding all varieties of hash tables, Bloom filters and their many variants, summary

algorithms for data streams, and many others. Traditionally, applications of hash-

ing are analyzed as if the hash function is a truly random function (a.k.a. “random

oracle”) mapping each data item independently and uniformly to the range of the

hash function. However, this idealized model is arguably unrealistic, because a truly

random function mapping {0, 1}n to {0, 1}m requires an exponential (in n) number

of bits to describe.

For this reason, a long line of theoretical work has sought to provide rigorous

bounds on performance when explicit families of hash functions are used, e.g. fam-

ilies whose description and computational complexity are polynomial in n and m.

The first examples used 2-universal hash families, which have the property that for

every two distinct inputs x 6= x′ ∈ {0, 1}n, if we choose a random hash function H

from the family, the probability that x and x′ collide under H (i.e. H(x) = H(x′))

is at most 1/2m. There are 2-universal families where each hash function has a
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description length that is linear (in n) and can be evaluated in nearly linear time,

and the 2-universal property can be shown to suffice for a number of applications

of hashing. A stronger property sometimes used is s-wise independence, where for

every s distinct inputs x1, . . . , xs ∈ {0, 1}n, the hash values H(x1), . . . ,H(xs) are

uniform and independent in {0, 1}m. However, achieving s-wise independence would

require the description length and the evaluation time to be at least linear in s ·m.

While many beautiful results of this type have been obtained, they are not always

as strong as we would like. In some cases, the types of hash functions analyzed

can be implemented very efficiently (e.g. universal or O(1)-wise independent hash

functions), but the performance guarantees are noticeably weaker than for ideal

hashing. In other cases, the performance guarantees are (essentially) optimal, but

the hash functions are more complex and expensive (e.g. with a super-linear time

or space requirement). For example, if at most T items are going to be hashed,

then a T -wise independent hash function will have precisely the same behavior

as an ideal hash function. But a T -wise independent hash function mapping to

{0, 1}m requires at least T · m bits to represent, which is often too large. For

some applications, it has been shown that less independence, such as O(log T )-wise

independence, suffices, but such functions are still substantially less efficient than

2-universal hash functions.

In practice, however, the performance of standard universal hashing often seems

to match what is predicted for ideal hashing. Thus, it may not always be necessary

to use the more complex hash functions for which this kind of performance can

be proven. As in many other examples in this book, this gap between theory and

practice may be due to worst-case analysis. Indeed, in some cases, it can be proven

that there exist sequences of data items for which universal hashing does not provide

optimal performance. But these bad sequences may be pathological cases that are

unlikely to arise in practice. That is, the strong performance of universal hash

functions in practice may arise from a combination of the randomness of the hash

function and the randomness of the data.

Of course, doing an average-case analysis, whereby each data item is indepen-

dently and uniformly distributed in {0, 1}n, is also very unrealistic (not to mention

that it trivializes many applications). In this chapter, we describe an intermediate

model, previously studied in the literature on “randomness extractors,” that may

be an appropriate data model for some hashing applications. Under the assumption

that the data fits this model, we will see that relatively weak hash functions achieve

essentially the same performance as ideal hash functions.

1.1.1 The Model

We will model the data as coming from a random source in which the data items can

be far from uniform and have arbitrary correlations, provided that each (new) data

item is sufficiently unpredictable given the previous items. This is formalized by the
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notion of a block source, where we require that the i-th item (block) Xi has at least

some k bits of ”entropy” conditioned on the previous items (blocks) X1, . . . , Xi−1.

There are various choices for the entropy measure that can be used here; min-

entropy is used most commonly in the literature on randomness extractors, but

most of the results presented here hold even for the less stringent measure of Rényi

entropy. (See Section 1.2.3 for the formal definitions.)

Block sources seem to be a plausible model for many real-life data sources where

we believe that there are is some intrinsic randomness in each data item, provided

the entropy k required per-block is not too large. However, in some settings, the

data may have structure that violates the block-source property, in which case the

results of this chapter will not apply. See Section 1.1.4 for further discussion about

the model.

1.1.2 The Results

Here we give a high-level overview of the results presented in this chapter; see

Sections 1.2 and 1.3 for the formal treatment of the definitions and results.

It turns out that standard results in the literature on “randomness extractors”1

already imply that universal hashing performs nearly as well ideal hashing, provided

the data items have enough entropy. Specifically, if we have T data items coming

from a block source (X1, . . . , XT ) where each data item has (Rényi) entropy at least

m+ 2 log(T/ε) (all logs are base 2 in this chapter) and H is a random 2-universal

hash function mapping to {0, 1}m, then (H(X1), . . . ,H(XT )) has statistical dis-

tance at most ε from T uniform and independent elements of {0, 1}m. Thus, any

event that would occur with some probability p under ideal hashing now occurs

with probability p± ε. This allows us to automatically translate existing results for

ideal hashing into results for universal hashing in the block-source model.

In many hashing applications, it is possible to improve on the above analysis

and reduce the amount of entropy required from the data items. Assuming our

hash function has a description size o(mT ), then we must have at least (1− o(1))m

bits of entropy per item for the hashing to “behave like” ideal hashing (because

the entropy of (H(X1), . . . ,H(XT )) is at most the sum of the entropies of H and

the Xi’s). The standard analysis mentioned above requires an additional 2 log(T/ε)

bits of entropy per block. In the randomness extraction literature, the additional

entropy required is typically not significant because log(T/ε) is much smaller than

m. However, it can be significant in our applications. For example, a typical setting

is hashing T = Θ(M) items into 2m = M bins. Here m+2 log(T/ε) ≥ 3m−O(1) and

thus the standard analysis requires 3 times more entropy than the lower bound of

(1−o(1))m. (The bounds obtained for the specific applications mentioned below are

1 See Section 1.2.4 for a brief introduction to and formal definition of randomness extractors.
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even larger, sometimes due to the need for a subconstant ε = o(1) and sometimes

due to the fact that several independent hash values are needed for each item.)

By a finer analysis, the required entropy per block for (H(X1), . . . ,H(XT )) to

be ε-close to uniform in statistical distance can be reduced from m + 2 log(T/ε)

to m + log T + 2 log(1/ε), which is known to be tight. The entropy required can

be reduced even further for some applications by measuring the quality of the

output differently (not using statistical distance) or by using 4-wise independent

hash functions (which also have very fast implementations).

1.1.3 Applications

Consider the standard method of chained hashing, when T items are hashed into T

buckets by a single random hash function. When the hash function is an idealized

truly random function, the maximum load of any bucket is known to be (1 +

o(1)) · (log T/ log log T ) with high probability. In contrast, for a natural family of

2-universal hash functions, it is possible for an adversary to choose a set of T

items so that the maximum load is always Ω(T 1/2). The results of this chapter in

turn show that 2-universal hashing achieves the same performance as ideal hashing

asymptotically, provided that the data comes from a block source with roughly

2 log T bits of (Rényi) entropy per item. Similar results for other applications of

hashing, such as “linear probing,” “balanced allocations,” and “Bloom filters,” are

described in Sections 1.6 and 1.7.

1.1.4 Perspective

The block source model we consider in this chapter is very much in the same spirit

as the other semi-random models covered in this book, in that an adversary can pick

a worst-case input distribution from a constrained family of distributions (namely,

ones with enough conditional entropy per data item). In fact, the semi-random

graph models discussed in Chapter ?? were also inspired by a model of “semi-

random sources” in the randomness extractor literature, which amount to block

sources where each block consists of one bit and inspired the later, more general

notion of block sources we study. Moreover, the block source model itself (with

respect to max probability) is identical to the class of distributions considered for

“diffuse adversaries” in the online paging problem in Chapter ??.

In terms of the goals for the analysis of algorithms laid out in Chapter ??, the

motivation for the model in the current chapter falls squarely under “performance

prediction.” Indeed, the goal is to understand when an instantiation of a hashing al-

gorithm with an explicit and efficient family of hash functions will perform similarly

to its idealized analysis with truly random functions. The design of an algorithm

that optimizes the idealized performance is taken as a given, and the only freedom

is in the choice of hash family to instantiate the algorithm.
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The block source model seems relatively uncontroversial from the “natural scien-

tist” perspective, where the goal is to explain why previous experiments have not

witnessed the gap between universal hashing and idealized analysis predicted by

the worst-case theory. Indeed, those experiments may have used input distributions

that are block sources or interact with the hash functions in a similar way.

From the “engineering” perspective, where the goal is to select a hash family to

achieve good performance in a new application, more care is warranted in judging

whether the data distribution is likely to fit the block source model. Even if each

data item has sufficient entropy on its own, correlations between data items can

make the conditional entropies very small or even zero. An extreme example is when

the items are consecutive elements of an interval, i.e. xi+1 = xi + 1. If the initial

data item x1 has high entropy, so will all of the other items xi, but the conditional

entropy of xi given x1, . . . , xi−1 will be zero. Indeed, such data distributions do

sometimes arise in practice, and practical 2-universal hashing families have been

found to have poor performance (e.g. when used in linear probing) on such data

distributions. Unfortunately, determining whether a distribution is close to a block

source is difficult in general; it requires a number of samples that is exponential in

the number of blocks (Exercise 1.5).

For this reason, an interesting direction for future work is to identify other families

of data distributions (beyond just the block-source model) where simple families

of hash functions can be shown to behave like idealized hash functions for a wide

class of hashing applications. When that can’t be done, there may be no alternative

other than to turn to more complex hash families, such as ω(1)-wise independence

or cryptographic hash functions.

We remark that the cryptography literature also grapples with a similar issue

around the implementation of cryptographic protocols that utilize hashing. It is

often easier to provide the security of such protocols by adopting the “random

oracle model,” where the hash function is modelled as a truly random function

that all parties (honest or adversarial) can query as an oracle. But security in the

random oracle model does not in general imply security when the hash function is

implemented with any explicit polynomial-time instantiation. Thus, there is a large

body of work on trying to identify classes of cryptographic protocols and realistic,

non-idealized properties of hash families such that the security in the random oracle

model is preserved under instantiation (assuming that the hash family actually has

the specified properties).

The cryptographic setting is usually much more challenging than the algorith-

mic one, because an adversary can typically influence the inputs fed to the hash

function based on the description of the hash function itself, or at least based on

prior observations of input-output behavior. In contrast, even in the worst-case

analysis of hashing algorithms, we typically assume that the hash function is cho-

sen randomly and independently of the data items. This assumption should be

carefully scrutinized in applications of hashing algorithms (especially when used in
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a security context), and if it does not hold, then cryptographic hash functions or

“pseudorandom functions” may be a safer, albeit more expensive, choice.

1.2 Preliminaries

1.2.1 Notation

[N ] denotes the set {0, . . . , N − 1}. All logs are base 2. For a random variable X

and an event E, X|E denotes X conditioned on E. The support of X is supp(X) =

{x : Pr[X = x] > 0}. For a finite set S, US denotes a random variable uniformly

distributed on S.

1.2.2 Hashing

LetH be a family (multiset) of hash functions h : [N ]→ [M ] and let H be uniformly

distributed over H. We use h ← H to denote that h is sampled according to the

distribution H. We say that H is a truly random family if H is the set all functions

mapping [N ] to [M ], i.e. the N random variables {H(x)}x∈[N ] are independent and

uniformly distributed over [M ]. For s ∈ N, H is s-wise independent (a.k.a. strongly

s-universal) if for every sequence of distinct elements x1, . . . , xs ∈ [N ], the random

variables H(x1), . . . ,H(xs) are independent and uniformly distributed over [M ]. H
is s-universal if for every sequence of distinct elements x1, . . . , xs ∈ [N ], we have

Pr[H(x1) = · · · = H(xs)] ≤ 1/Ms. The description size of H ∈ H is the number of

bits to describe H, which is simply log |H|.
A standard example of a 2-universal family for a universe [N ] being hashed to

the range [M ] can be obtained by choosing a prime p ≥ max{N,M} and using the

family

ha,b(x) = ((ax+ b) mod p) mod M.

Here a and b are integers chosen independently and uniformly at random from

{1, . . . , p−1} and {0, 1, . . . , p−1}, respectively. We leave it as Exercise 1.2 to show

that for x 6= y, the probability that ha,b(x) = ha,b(y) is at most 1/M . A standard

example of an s-wise independent family where the domain and range are the same

finite field F is the family of hash functions

ha0,a1,...,as−1
(x) = a0 + a1x+ a2x

2 + . . .+ ak−1x
s−1. (1.1)

Here choosing a hash function from the family corresponds to choosing the ai’s

independently and uniformly at random from F; that is, the hash function is a

random polynomial of degree at most s − 1. Again, we leave it as Exercise 1.3 to

show that for a hash function chosen randomly from this family, the hashed values

for any s elements of F are distributed uniformly and independently over F. To
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obtain a family where the range is smaller than the domain, we can use a field F
of size pk for a prime p and integer k > 1, pick any positive integer ` < k, and

compose the hash functions in Eq. (1.1) with a fixed mapping g : F → [p`], all of

whose preimages are of size F/p` (e.g. g(y) = y mod p`, after interpreting y as an

element of [pk]).

1.2.3 Block Sources

We view the data items as being random variables distributed over a finite set

of size N , which we identify with [N ]. We use the following quantities to measure

the amount of randomness in a data item. For a random variable X, the max

probability of X is mp(X) = maxx Pr[X = x]. The collision probability of X is

cp(X) =
∑
x Pr[X = x]2. Measuring these quantities is equivalent to measuring the

min-entropy

H∞(X) = min
x

log(1/Pr[X = x]) = log(1/mp(X))

and the Rényi entropy

H2(X) = log(1/Pr[X = X ′]) = log(1/cp(X)),

where X ′ is an i.i.d. copy of X. (These entropy measures are from the family of

Rényi q-entropies, defined for positive and finite q 6= 1 as

Hq(X) =
1

1− q
log

(∑
x

(Pr[X = x])q

)
,

with H∞(X) obtained by taking the limit as q → ∞, and Shannon entropy by

taking the limit as q → 1.) If X is supported on a set of size K, then mp(X) ≥
cp(X) ≥ 1/K (i.e. H∞(X) ≤ H2(X) ≤ logK), with equality if and only if X is

uniform on its support. Hence, assuming X has at least k bits of Rényi entropy is

strictly weaker than assuming X has at least k bits of min-entropy, and therefore

using Rényi entropy makes the positive results stronger. On the other hand, it

also holds that mp(X) ≤ cp(X)1/2 (i.e. H∞(X) ≥ H2(X)/2; see Exercise 1.1), so

min-entropy and Rényi entropy are always within a factor of 2 of each other.

We model a sequence of data items as a sequence (X1, . . . , XT ) of correlated ran-

dom variables where each item is guaranteed to have some entropy even conditioned

on the previous items.

Definition 1.1 (Block Sources) A sequence of random variables (X1, . . . , XT )

taking values in [N ]T is a block source with collision probability p per block (respec-

tively, max probability p per block) if for every i ∈ [T ] and every (x1, . . . , xi−1) ∈
supp(X1, ..., Xi−1), we have cp(Xi|X1=x1,...,Xi−1=xi−1) ≤ p (respectively,

mp(Xi|X1=x1,...,Xi−1=xi−1
) ≤ p).
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When max probability is used as the measure of entropy, then this is a standard

model of sources used in the randomness extractor literature. We will mainly use

the collision probability formulation as the entropy measure, since it makes the

statements more general.

Definition 1.2 (X1, . . . , XT ) is a block K-source if it is a block source with

collision probability at most p = 1/K per block.

1.2.4 Randomness Extractors

Before obtaining our results on block sources, we need results showing that hash-

ing a single item leads to it being nearly uniformly distributed, which we will then

generalize. A randomness extractor can be viewed as a family of hash functions

with the property that for any random variable X with enough entropy, if we pick

a random hash function h from the family, then h(X) is “close” to being uniformly

distributed on the range of the hash function. Randomness extractors are a central

object in the theory of pseudorandomness and have many applications in theoret-

ical computer science. Thus there is a large body of work on the construction of

randomness extractors. A major emphasis in this line of work is constructing ex-

tractors where it takes extremely few (e.g. a logarithmic number of) random bits

to choose a hash function from the family. This parameter is less crucial for us,

so instead our emphasis is on using simple and very efficient hash functions (e.g.

universal hash functions) and minimizing the amount of entropy needed from the

source X. To do this, we will measure the quality of a hash family in ways that are

tailored to our application, and thus we do not necessarily work with the standard

definitions of extractors.

In requiring that the hashed value h(X) be ‘close’ to uniform, the standard

definition of an extractor uses the most natural measure of ‘closeness’. Specifically,

for random variables X and Y , taking values in [N ], their statistical distance is

defined as

∆(X,Y ) = max
S⊆[N ]

|Pr[X ∈ S]− Pr[Y ∈ S]|.

X and Y are called ε-close (resp., ε-far) if ∆(X,Y ) ≤ ε (resp., ∆(X,Y ) ≥ ε).
The classic Leftover Hash Lemma shows that universal hash functions are ran-

domness extractors with respect to statistical distance.

Lemma 1.3 (The Leftover Hash Lemma) Let H : [N ] → [M ] be a random hash

function from a 2-universal family H. For every random variable X taking values

in [N ] with cp(X) ≤ 1/K, we have

cp((H,H(X))) ≤ 1

|H|
·
(

1

M
+

1

K

)
,
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and thus (H,H(X)) is (1/2) ·
√
M/K-close to (H,U[M ]).

Notice that the above lemma says that the joint distribution of (H,H(X)) is

ε-close to uniform (for ε = (1/2) ·
√
M/K); a family of hash functions achieving

this property is referred to as a “strong” randomness extractor. Up to some loss in

the parameter ε (which we will later want to save), this strong extraction property

is equivalent to saying that with high probability over h← H, the random variable

h(X) is close to uniform.

Proof Let (H ′, X ′) be an i.i.d. copy of (H,X). The bound on the collision proba-

bility follows by the following calculation.

cp(H,H(X)) = Pr[H = H ′ ∧H(X) = H ′(X ′)]

= Pr[H = H ′] · Pr[H(X) = H(X ′)]

≤ (1/|H|) · (Pr[X = X ′] + Pr[H(X) = H(X ′)|X 6= X ′])

≤ 1

|H|
·
(

1

M
+

1

K

)
.

The bound on the statistical distance follows directly by the second statement

of the following lemma (we state the more general first statement since it will be

useful later).

Lemma 1.4 If X takes values in [M ] and cp(X) ≤ 1/M + 1/K, then:

1 For every function f : [M ]→ R,

|E[f(X)]− µ| ≤ σ ·
√
M/K,

where µ is the expectation of f(U[M ]) and σ is its standard deviation. In par-

ticular, if f takes values in the interval [a, b], then

|E[f(X)]− µ| ≤
√

(µ− a) · (b− µ) ·
√
M/K.

2 X is (1/2) ·
√
M/K-close to U[M ].
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Proof By the premise of the lemma,

|E[f(X)]− µ| =

∣∣∣∣∣∣
∑
x∈[M ]

(f(x)− µ) · (Pr[X = x]− 1/M)

∣∣∣∣∣∣
≤
√ ∑
x∈[M ]

(f(x)− µ)2 ·
√ ∑
x∈[M ]

(Pr[X = x]− 1/M)2 (Cauchy-Schwarz)

=
√
M ·Var[f(U[M ])] ·

√ ∑
x∈[M ]

(Pr[X = x]2 − 2 Pr[X = x]/M + 1/M2)

=
√
M · σ ·

√
cp(X)− 2/M + 1/M

≤ σ ·
√
M/K.

The “in particular” follows from the fact that σ[Y ] ≤
√

(µ− a) · (b− µ) for every

random variable Y taking values in [a, b] and having expectation µ. (Intuitively,

the variance is maximized if Y takes on only the extreme values a and b with

appropriate probability masses to make the expectation µ. For a proof: σ[Y ]2 =

E[(Y − a)2]− (µ− a)2 ≤ (b− a) · (µ− a)− (µ− a)2 = (µ− a) · (b− µ).)

Item (2) follows by noting that the statistical distance between X and U[M ] is

the maximum of |E[f(X)]−E[f(U[M ])]| over Boolean functions f , since a Boolean

function can be viewed as an indicator/characteristic function for a subset S in the

definition of statistical distance. Hence, by Item (1), the statistical distance is at

most
√
µ(f) · (1− µ(f)) ·

√
M/K ≤ (1/2) ·

√
M/K.

1.3 Hashing Block Sources

In this section, we show that when the data is modeled as a block source with

sufficient entropy per block, the performance of using 2-universal hash functions

is close to that of ideal hashing. More precisely, note that in ideal hashing, the

distribution of the hashed values (H(x1), . . . ,H(xT )) is simply a uniform distribu-

tion over [M ]T . The following theorem states that when the data is a block source

(X1, . . . , XT ) with sufficient entropy per block and H is 2-universal, the distribution

of the hashed values (H(X1), . . . ,H(XT )) is close to uniform in statistical distance.

Theorem 1.5 Let H : [N ]→ [M ] be a random hash function from a 2-universal

family H. For every block K-source (X1, . . . , XT ), the random variable (H,H(X1), . . . ,H(XT ))

is (T/2) ·
√
M/K-close to (H,U[M ]T ).

Proof The theorem follows by applying the Leftover Hash Lemma (Lemma 1.3)

to each block of the source and summing the statistical distance over the T blocks.
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Specifically, since (X1, . . . , XT ) is a block K-source, the Leftover Hash Lemma im-

plies that for every x<i = (x1, . . . , xi−1) ∈ [M ]i−1, the distribution (H,H(Xi)|X<i=x<i
)

is (1/2) ·
√
M/K-close to (H,U[M ]).

Define hybrid distributions D1, . . . , DT+1 by

Di =
(
H,H(X1), . . . ,H(Xi−1), U

(i)
[M ], . . . , U

(T )
[M ]

)
for i ∈ [T + 1].

Note that the above statement implies that ∆(Di, Di+1) ≤ (1/2) ·
√
M/K for

every i ∈ [T ] (since the statement holds for every x<i ∈ [M ]i−1). Also note that

D1 = (H,U[M ]T ) and DT+1 = (H,H(X1), . . . ,H(XT )). Since statistical distance

satisfies the triangle inequality,

∆(D1, DT+1) ≤
T∑
i=1

∆(Di, Di+1) ≤ (T/2) ·
√
M/K.

Assuming K ≥ MT 2/(4ε2), Theorem 1.5 implies that the distribution of the

hashed values (H(X1), . . . ,H(XT )) is ε-close to uniform. Thus, any event that

would occur with some probability p under ideal hashing now occurs with proba-

bility p± ε. This allows us to readily translate existing results for ideal hashing into

results for universal hashing in the block data source model.

A tight version of Theorem 1.5 is known, which improves the linear dependency

in T to
√
T :

Theorem 1.6 Let H : [N ]→ [M ] be a random hash function from a 2-universal

family H. For every block K-source (X1, . . . , XT ), the random variable (H,H(X1),

. . . , H(XT )) is (
√
MT/K)-close to (H,U[M ]T ).

By Theorem 1.6, it suffices to assume K ≥ MT/ε2 to conclude that the hashed

values are ε-close to uniform. Below we discuss the implication of Theorem 1.6 to

chained hashing as an example.

The proof of Theorem 1.6 is quite involved, switching carefully between different

distance notions to measure the growth of the distance to the uniform distribution

over the T blocks. Thus we omit its proof here.

1.4 Application: Chained Hashing

We first briefly recall the chained hashing algorithm and its results under ideal

hashing. A hash table using chained hashing stores a set x = {x1, . . . , xT } ∈ [N ]T

in an array of M buckets. Let h be a hash function mapping [N ] to [M ]. We place

each item xi in the bucket h(xi). The load of a bucket when the process terminates

is the number of items in it.
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Definition 1.7 Given h : [N ] → [M ] and a sequence x = {x1, . . . , xT } of data

items from [N ] stored via chained hashing using h, we define the maximum load

MaxLoadCH(x, h) to be the maximum load among the buckets after all data items

have been placed.

It is known that under ideal hashing, when M = T , the expected maximum load

is log T/log log T asymptotically. This bound also holds with high probability. More

precisely, we have:

Theorem 1.8 Let H be a truly random hash function mapping [N ] to [T ]. For

every sequence x ∈ [N ]T of distinct data items, we have

Pr

[
MaxLoadCH(x,H) ≤ (1 + o(1)) · log T

log log T

]
= 1− o(1),

where the o(1) terms tend to zero as T →∞.

The calculation underlying this theorem requires that the hash function be

Ω(log T/ log log T )-wise independent. Indeed, Exercise 1.4 shows that there are 2-

universal families and input sets x where the maximum load is always at least
√
T .

Nevertheless, suppose we model the data as a block source and use 2-universal

hashing, Theorem 1.6 allows us to derive the conclusion of Theorem 1.8 assuming

the data has sufficient entropy per block.

Theorem 1.9 Let H be chosen at random from a 2-universal hash family H
mapping [N ] to [T ]. For every block K-source X taking values in [N ]T with K =

ω(T 2), we have

Pr

[
MaxLoadCH(X,H) ≤ (1 + o(1)) · log T

log log T

]
= 1− o(1),

where the o(1) terms tend to zero as T →∞.

Proof Set M = T . Note that the value of MaxLoadCH(x, h) can be determined

from the hashed sequence (h(x1), . . . , h(xT )) ∈ [M ]T alone, and does not otherwise

depend on the data sequence x or the hash function h. Thus for a function λ : N →
N , we can let S ⊆ [M ]T be the set of all sequences of hashed values that produce

an allocation with a max load greater than λ(T ). By Theorem 1.8, we can take

λ(T ) = (1 + o(1)) · (log T )/(log log T ) so that we have:

Pr[U[M ]T ∈ S] = Pr [MaxLoadCH(x, I) > λ(T )] = o(1),

where I is a truly random hash function mapping [N ] to [M ] = [T ] and x is an

arbitrary sequence of distinct data items.

We are interested in the quantity:

Pr[MaxLoadCH(X,H) > λ(T )] = Pr[(H(X1), . . . ,H(XT )) ∈ S],

where H is a random hash function from a 2-universal family. Given K = ω(T 2),



16

we set ε =
√
MT/K = o(1). By Theorem 1.6, (H(X1), . . . ,H(XT )) is ε-close to

the uniform distribution. Thus, we have

Pr[(H(X1), . . . ,H(XT )) ∈ S] ≤ Pr[U[M ]T ∈ S] + ε

= o(1).

1.5 Optimizing Block Source Extraction

We have seen that, for some applications, when the data comes from a block

source with sufficient entropy per block, 2-universal hashing performs nearly as

well as ideal hashing. We might naturally ask, how much entropy do we need? The

answer can depend on the needs of the application scenario, as well as on the specific

hashing algorithm we use and its analysis. With our analysis thus far, the required

entropy can range from very reasonable to unrealistic.

In this section, we discuss some general approaches to reduce the required entropy.

A main observation is that instead of working with the stringent notion of statistical

distance, for several applications it suffices to ensure that the collection of hashed

values (H(X1), . . . ,H(XT )) has (or is statistically close to having) sufficiently small

collision probability, say within an O(1) factor of that of the uniform distribution.

Theorem 1.10 below provides a result of this form with smaller required entropy

from the block source, which reduces required entropy for some applications (see

Section 1.6).

Theorem 1.10 Let H : [N ]→ [M ] be a random hash function from a 2-universal

family H. For every block K-source (X1, . . . , XT ) and every ε > 0, the random

variable (H, Ȳ ) = (H,H(X1), . . . ,H(XT )) is ε-close to a distribution (H, Z̄) with

collision probability

cp(H, Z̄) ≤ 1

|H| ·MT
·
(

1 +
M

εK

)T
.

In particular, if K ≥MT/ε, then (H, Z̄) has collision probability at most

1

|H| ·MT
·
(

1 +
2MT

εK

)
.

Note that the factor 1/(|H| ·MT ) is the collision probability of the uniform dis-

tribution (H,U[M ]T ) and the factors (1 + (M/εK))T and (1 + (2MT/εK)) quantify

the blow-up in collision probability as compared to ideal hashing. Also note that

comparing to Theorem 1.6, the key savings is in the dependency on ε. Specifi-

cally, to achieve statistical distance ε, K only needs to be Ω(MT/ε) as opposed
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to Ω(MT/ε2). Thus, this is particularly useful in applications where ε = o(1) is

required in the analysis.

We omit the proof of Theorem 1.10 here. Roughly, to prove Theorem 1.10, one

first shows that a certain average form of the (conditional) collision probability

for hashed blocks is small with high probability, using the Leftover Hash Lemma

(Lemma 1.3) together with a Markov argument. Then, the theorem follows by

showing that the distribution (H, Z̄) can be obtained by carefully modifying the

distribution of (H, Ȳ ) based on the property established in the first step.

We can further improve the bound by using 4-wise independent hash functions,

stated in the following theorem, where the dependency on ε is further improved. At

a high level, the improvement comes from the fact that 4-wise independent hashing

allows us to replace the Markov argument by Chebyshev’s inequality in the proof.

Theorem 1.11 Let H : [N ] → [M ] be a random hash function from a 4-wise

independent family H. For every block K-source (X1, . . . , XT ) and every ε > 0,

the random variable (H, Ȳ ) = (H,H(X1), . . . ,H(XT )) is ε-close to a distribution

(H, Z̄) with collision probability

cp(H, Z̄) ≤ 1

|H| ·MT

(
1 +

M

K
+

√
2M

εK2

)T
.

In particular, if K ≥MT+
√

2MT 2/ε, then (H, Z̄) has collision probability at most

(1 + γ)/(|H| ·MT ), for γ = 2 · (MT +
√

2MT 2/ε)/K.

1.6 Application: Linear Probing

In this section, we illustrate that Theorems 1.10 and 1.11 can be used to give a

better analysis for some applications than using Theorem 1.6. We first mention that

when applied to the “high-probability” statement in chained hashing, Theorem 1.10

and 1.11 do not yield significant improvement over Theorem 1.6. On the other hand,

for applications where we only have bounds on expectations, applying Theorem 1.10

and 1.11 can reduce the required entropy. As we will see in the linear probing

example below, this is because small ε = o(1) is required in the analysis.

We start with a brief review of linear probing (also covered in Chapter ??). A

hash table using linear probing stores a sequence x = (x1, . . . , xT ) of data items

from [N ] using M memory locations. Given a hash function h : [N ]→ [M ], we place

the data items x1, . . . , xT sequentially as follows. The data item xi first attempts

placement at h(xi), and if this location is already filled, locations (h(xi)+1) mod M ,

(h(xi) + 2) mod M , and so on are tried until an empty location is found. The ratio

γ = T/M is referred to as the load of the table. The efficiency of linear probing

is measured by the insertion time for a new data item as a function of the load.

(Other measures, such as the average time to search for items already in the table,
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are also often studied, and the results here can be generalized to these measures as

well.)

Definition 1.12 Given h : [N ] → [M ], a set x = {x1, . . . , xT−1} of data items

from [N ] stored via linear probing using h, and an extra data item y /∈ x̄, we define

the insertion time TimeLP(h, x, y) to be the value of j such that y is placed at

location h(y) + (j − 1) mod M .

It is well-known that with ideal hashing (i.e., hashing using truly random hash

functions), the expected insertion time can be bounded quite tightly as a function

of the load.

Theorem 1.13 Let H be a truly random hash function mapping [N ] to [M ]. For

every sequence x ∈ [N ]T−1 and y /∈ x, we have E[TimeLP(H,x, y)] ≤ 1/(1 − γ)2,

where γ = T/M is the load.

It is known that the expected lookup time can be bounded in terms of γ (inde-

pendent of T ) using only O(1)-wise independence. Specifically, with 5-wise indepen-

dence, the expected time for an insertion is O(1/(1− γ)2.5) for any sequence x. On

the other hand, it is also known that there are examples of sequences x and pairwise

independent hash families such that the expected time for a lookup is logarithmic

in T (even though the load γ is independent of T ).

Now, suppose we consider data items coming from a blockK-source (X1, . . . , XT−1, XT )

where the item Y = XT to be inserted is the last block. An immediate application

of Theorem 1.6, using just a 2-universal hash family, gives that if K ≥ MT/ε2,

the resulting distribution of the element hashes is ε-close to uniform. The effect of

the ε statistical distance on the expected insertion time is at most εT , because the

maximum insertion time is T . That is, if we let EU be the expected time for an

insertion when using a truly random hash function, and EP be the expected time

for an insertion using pairwise independent hash functions, we have

EP ≤ EU + εT.

A natural choice is ε = o(1/T ), so that the εT term is o(1), giving that K needs to

be ω(MT 3) = ω(M4) in the standard case where T = γM for a constant γ ∈ (0, 1)

(which we assume henceforth). An alternative interpretation is that with probability

1− ε, our hash table behaves exactly as though a truly random hash function was

used. In some applications, constant ε may be sufficient, in which case K = ω(M2)

suffices.

Better results can be obtained by applying Lemma 1.4, in conjunction with Theo-

rem 1.10. In particular, for linear probing, the standard deviation σ of the insertion

time is known to be O(1/(1−γ)2). With a 2-universal family, as long as K ≥MT/ε,

from Theorem 1.10 the resulting hash values are ε-close to a block source with colli-

sion probability at most (1 + 2MT/(εK))/MT . We can now apply Lemma 1.4 with
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this bound on the collision probability to bound the expected insertion time as

EP ≤ EU + εT + σ

√
2MT

εK
.

Choosing ε = o(1/T ) gives that EP and EU are the same up to lower order terms

when K is ω(M3). Theorem 1.11 gives a further improvement; for K ≥ MT +√
2MT 2

ε , we have

EP ≤ EU + εT + σ

√√√√2MT +
√

2MT 2

ε

K
.

Choosing ε = o(1/T ) now allows for K to be only ω(M2).

In other words, the Rényi entropy needs only to be 2 log(M) + ω(1) bits when

using 4-wise independent hash functions, and 3 log(M) + ω(1) bits for 2-universal

hash functions. We formalize the result for the case of 2-universal hash functions

as follows:

Theorem 1.14 Let H be chosen at random from a 2-universal hash family H
mapping [N ] to [M ]. For every block K-source (X,Y ) taking values in [N ]T with

K ≥ MT/ε, we have E[TimeLP(H,X, Y )] ≤ 1/(1 − γ)2 + εT + σ
√

2MT
εK . Here

γ = T/M is the load and σ = O(1/(1 − γ)2) is the standard deviation in the

insertion time in the case of truly random hash functions.

1.7 Other Applications

In this section, we survey the application of the methods in this chapter to a couple

of other hashing-based algorithms.

With the balanced allocation paradigm, it is known that when T items are hashed

to T buckets, with each item being sequentially placed in the least loaded of d choices

(for d ≥ 2), the maximum load is log log T/ log d+O(1) with high probability. Note

that going from d = 1 to d = 2 yields an exponential saving in the maximum load

from O(log T/ log log T ) to O(log log T ). Using the methods from this chapter, it

can be shown that the same result holds when the hash function is chosen from

a 2-universal hash family, provided the data items come from a block source with

roughly (d+ 1) log T bits of entropy per data item.

Bloom filters are data structures for approximately storing sets in which mem-

bership tests can result in false positives with some bounded probability. It can be

shown that there is a constant gap in the false positive probability for worst-case

data when O(1)-wise independent hash functions are used instead of truly random

hash functions. On the other hand, if the data comes from a block source with

roughly 3 logM bits of (Rényi) entropy per item, where M is the size of the Bloom
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Type of Hash Family Required Entropy

Linear Probing

2-universal hashing 3 log T

4-wise independence 2 log T

Chained Hashing

2-universal hashing 2 log T

Balanced Allocations with d Choices

2-universal hashing (d+ 1) log T

Bloom Filters

2-universal hashing 3 log T

Table 1.1 Each entry denotes the (Rényi) entropy required per item to ensure that

the performance of the given application is “close” to the performance when using

truly random hash functions. In all cases, the bounds omit additive terms that

depend on how close a performance is desired, and we restrict to the (standard)

case that the size of the hash table is linear in the number of items being hashed.

That is, m = log T +O(1).

filter, then the false positive probability with 2-universal hashing asymptotically

matches that of ideal hashing.

A summary of required (Rényi) entropy per item for the above applications can

be found in Table 1.1.

1.8 Bibliographic Notes

The material in this chapter is drawn primarily from Chung et al. (2013).

Surveys of algorithmic applications of hashing are given by Knuth (1998), Broder

and Mitzenmacher (2005), and Muthukrishnan (2005). Universal and s-wise inde-

pendent hashing were introduced in Carter and Wegman (1979) and Wegman and

Carter (1981), respectively. Analysis of O(log T )-wise independent hashing of T

items can be found in Schmidt and Siegel (1990); Pagh and Rodler (2004). Fur-

ther coverage of universal and s-wise independent families can be found in many

standard texts, e.g. Mitzenmacher and Upfal (2017) and Vadhan (2011). The anal-

ysis of maximum load under chained hashing with idealized hash functions (e.g.,

Theorem 1.8) was done by Gonnet (1981) and Raab and Steger (1998). Worst-case
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analysis of chained hashing under 2-universal hash families (including Exercise 1.4)

was done by Alon et al. (1999). The expected insertion time for linear probing un-

der idealized hash functions (i.e. Theorem 1.13) was analyzed by Knuth (1998), and

its variance can be found in Gonnet and Baeza-Yates (1991). Worst-case analysis

of linear probing under O(1)-wise independence was done by Pagh et al. (2009)

and Patrascu and Thorup (2010), with experiments (and fast implementations of

4-wise independent hashing) in Thorup and Zhang (2012). The balanced allocation

paradigm is due to Azar et al. (2000) and Bloom filters are due to Bloom (1970).

The fact that the performance of standard universal hashing often matches what

is predicted for ideal hashing was experimentally observed in (Ramakrishna, 1989;

Broder and Mitzenmacher, 2001; Dharmapurikar et al., 2004; Pagh and Rodler,

2004; Ramakrishna, 1988; Ramakrishna et al., 1997).

Surveys on randomness extractors are given by Nisan and Ta-Shma (1999),

Shaltiel (2002), and Vadhan (2011). Block sources were introduced by Chor and

Goldreich (1988) (under the name “probability-bounded sources”), generalizing the

model of “semi-random sources” introduced by Santha and Vazirani (1986). The

Leftover Hash Lemma (Lemma 1.3) is due to Bennett et al. (1988) Impagliazzo

et al. (1989), with the proof we present being attributed to Rackoff (Impagliazzo

and Zuckerman, 1989). The analysis of universal hashing and randomness extrac-

tion on block sources given by Theorem 1.5 follows Chor and Goldreich (1988)

and Zuckerman (1996). Semi-random models for graphs were introduced by Blum

and Spencer (1995) and diffuse adversaries for online paging by Koutsoupias and

Papadimitriou (2000).

The Random Oracle Model in cryptography was introduced by Fiat and Shamir

(1987) and Bellare and Rogaway (1993). The fact that security may not be preserved

when instantiating the random oracle with explicit hash functions was demonstrated

by Canetti et al. (2004). Efforts to find classes of protocols and properties of hash

families that allow for secure instantiation can be found in Bellare et al. (2013) and

the references therein.
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Exercises

1.1 Prove H∞(X) ≥ H2(X)/2 and find a distribution X such that the inequality

is (almost) tight. (Hint: consider X that takes a fix value with a constant

probability, say 1/2, and is uniform for the rest of the probability mass.)

1.2 Prove that the family of hash functions of the form ha,b(x) = ((ax + b) mod

p) mod M is a 2-universal family mapping [N ] to [M ] for p ≥ max{N,M},
a ∈ {1, . . . , p− 1}, and b ∈ {0, . . . , p− 1}.

1.3 Prove that for a finite field F and positive integer s, the family of functions of

the form

ha0,a1,...,as−1
(x) = a0 + a1x+ a2x

2 + . . .+ ak−1x
s−1

is an s-wise independent family. (Hint: for every s distinct values x1, . . . , xs ∈
F and every y1, . . . , ys ∈ F, there is a unique polynomial h of degree at most

s such that h(xi) = yi for all i.)

1.4 Let F be a finite field of size that is a perfect square, and let F0 ⊆ F be its

subfield of size
√
|F|. Consider the family H of hash functions mapping F×F

to F given by ha,b(x, y) = ax+ by, where a, b vary over all of F.

1. Show that H is a 2-universal family.

2. Let γ be a fixed element of F− F0, and consider the set

S =

{(
1

u+ γ
,

v

u+ γ

)
: u, v ∈ F0

}
.

Observe that |S| = |F0|2 = |F|. Show that for every a, b ∈ F, we have

MaxLoadCH(S, ha,b) ≥ |F0| =
√
|F|.

(Hint: when b = 0, consider the subset of S where u = 0. if b 6= 0, then

argue that there is a c ∈ F such that c/b and (γc − a)/b are both in F0,

and consider the subset of S where v = (c/b)u+ (γc− a)/b.)

1.5 Suppose that there is an algorithm A that takes as input s iid samples

X(1), . . . , X(s) from an unknown distribution X on [N ]T and has the following

properties:

• if X is the uniform distribution on [N ]T , then A(X(1), . . . , X(s)) accepts

with probability at least 2/3, and

• if X has statistical distance at least 1/2 from every block source with colli-

sion probability at most 1/4 per block, then A(X(1), . . . , X(s)) accepts with

probability at most 1/3.
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Prove that the sample complexity s of A must be at least Ω(N (T−1)/2).

(Hint: consider X = (X1, . . . , XT ) where X1, . . . , XT−1 are uniform and in-

dependent, and XT = f(X1, . . . , XT−1) for a randomly chosen function f :

[N ]T−1 → [N ], and consider what must occur in the s samples for A to dis-

tinguish X from the uniform distribution on [N ]T .)
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