
Efficient Parallel Repetition Theorems with
Applications to Security Amplification

A dissertation presented

by

Kai-Min Chung

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

March 2011

c©2011 - Kai-Min Chung

All rights reserved.

Thesis advisor Author
Salil P. Vadhan Kai-Min Chung

Efficient Parallel Repetition Theorems with
Applications to Security Amplification

Abstract

This thesis focuses on establishing efficient parallel repetition theorems for com-
putationally sound protocols, which assert that under parallel repetition, the com-
putational soundness error of interactive protocols decreases at an exponential rate,
and ideally, behaves as if the repetitions are completely independent. For example,
suppose a protocol 〈P,V〉 has soundness error δ, then its n-fold parallel repetition
〈Pn,Vn〉, where Vn (called direct-product verifier) accepts iff all n subverifiers accept,
should have soundness error δn.

The soundness error captures the probability of breaking a cryptographic protocol
and/or the probability of convincing a party of a false assertion. Parallel repetition
is a simple and desirable way to amplify soundness since it preserves the round com-
plexity. However, existing negative examples show that this does not hold for all
interactive protocols. Therefore, the question is, for what classes of protocols do
parallel repetition theorems hold?

We prove new parallel repetition theorems for several classes of protocols such as
public-coin protocols, three-message protocols, and a more general class of “simulat-
able” protocols. For some settings such as public-coin protocols with direct product
verifiers, we obtain tight results that match information-theoretic bounds. In addi-
tion, we will discuss strength and limitations of different reduction ideas. We hope
that the discussion can make the current progress more transparent, and lead to
better understanding of parallel repetition.

The reductions used for proving parallel repetition theorems have several appli-
cations, in particular, to security amplification. We will also present our work on
improving the efficient of security amplification for cryptographic primitives such as
commitment schemes, signature schemes, message authentication codes, CAPTCHAs,
etc.

iii

Contents

Title Page . i
Abstract . iii
Table of Contents . iv
Citations to Previously Published Work vii
Acknowledgments . viii

1 Introduction 1
1.1 Parallel Repetition for Computationally Sound Protocols 4

1.1.1 Parallel Repetition May not Decrease Computational Sound-
ness Error . 5

1.1.2 Efficient Parallel Repetition Theorems for
Computationally Sound Protocols 6

1.2 Applications to Security Amplification 12
1.3 Roadmap . 14

2 Definitions and Preliminaries 16
2.1 Computationally Sound Protocols . 16
2.2 Parallel Repetition of Protocols . 17
2.3 Preliminaries on Black-Box Reductions 19
2.4 Additional Notation and Conventions 23

3 Efficient Direct Product Theorems 24
3.1 Efficient Direct Product Theorem for

Three-Message Public-Coin Protocols 24
3.1.1 Analysis of the Ideal Strategy P∗ideal 26
3.1.2 Analysis of the Prover Strategy P∗ 27
3.1.3 Discussion . 29

3.2 Efficient Direct Product Theorem for
Public-Coin Protocols . 31
3.2.1 Reduction Prover Strategies 32
3.2.2 Our Tight Analysis to the Rejection Sampling Strategy 36
3.2.3 Discussion . 47

iv

Contents v

3.3 Efficient Direct Product Theorem for
Three-Message Protocols . 48
3.3.1 Correlation Reduction for Direct Product Verifiers 50
3.3.2 Reduction Prover Strategy P∗ 53
3.3.3 Analysis of the Prover Strategy P∗ 53
3.3.4 Historical Notes and Discussion 58

3.4 Efficient Direct Product Theorem for
Computationally Simulatable Protocols 60
3.4.1 Definition of Simulatability and Theorem Statement 60
3.4.2 Reduction Prover Strategy . 64
3.4.3 Correlation Reduction . 66
3.4.4 Rejection Sampling . 68
3.4.5 Analysis of Perfectified Rejection Sampling Strategy P

∗(OV)
rej . . 70

3.4.6 Relating the Success Probability of P∗rej and P
∗(OV)
rej 79

3.4.7 Proof of Theorem 3.16 . 81
3.4.8 Discussion . 82

3.5 Making Any Protocol Computationally Simulatable 85
3.5.1 Fully Homomorphic Encryption Schemes 86
3.5.2 The Transformation . 88
3.5.3 Analysis of Our Transformation 89

4 Efficient Chernoff-type and Threshold/Monotone Repetition Theo-
rems 94
4.1 Chernoff-type Theorem from Direct Product Theorem 94

4.1.1 Discussion . 100
4.2 Efficient Threshold Repetition Theorem for

Three-Message Protocols . 102
4.2.1 Correlation Reduction for Threshold Verifiers 106
4.2.2 Reduction Prover Strategy P∗ 108
4.2.3 Discussion . 113

4.3 Efficient Parallel Repetition Theorem for
Constant-round Public-Coin Protocols 114
4.3.1 Optimal Prover Strategies P∗opt 117
4.3.2 Recursive Sampling Strategy P∗rec 120

5 Applications to Security Amplification for Cryptographic Primitives127
5.1 Security Amplification for Commitment Schemes 128

5.1.1 Preliminaries and Theorem Statement 131
5.1.2 Two-Phase Puzzles Systems 134
5.1.3 Outline of Our Construction 137
5.1.4 Efficient Security Amplification in the Known-Security Setting 141
5.1.5 Security Amplification for String Commitment Schemes 147

Contents vi

5.2 Security Amplification for Dynamic Weakly Verifiable Puzzles 151
5.2.1 Dynamic Weakly Verifiable Puzzle Systems 151
5.2.2 Outline of the Analysis of Dodis et al. [7] 154
5.2.3 Our Improvement . 156

Bibliography 158

Citations to Previously Published Work

The research presented in the thesis is extended from two conference papers [3, 4].
The paper “Parallel Repetition Theorems for Interactive Arguments” [3] pub-

lished in TCC 2010 consists of parallel repetition theorems for public-coin protocols
and computationally simulatable protocols presented in Chapter 3 and 4, except for
Section 3.3 and 4.2.

The paper “Efficient String-Commitment from Weak Bit-Commitment” published
in Asiacrypt 2010 consists of parallel repetition theorems for three-message protocols
presented in Section 3.3 and 4.2 and security amplification applications presented in
Chapter 5.

vii

Acknowledgments

First of all, I would like to deeply thank my advisor, Salil Vadhan, for his invaluable
guidance throughout the past five years that leads me toward being an independent
researcher. He always encourages me to pursue my own research interests and direc-
tions. The interaction with Salil are vivid demonstration of his way of doing research,
presenting research, thinking about research, as well as his passionate on research,
which greatly fostered me in the past, and will continue to guide me in the future —
this thesis could not have been done without his insights throughout every stage of
the work.

For several years, I have had the good fortune to work with Feng-Hao Liu, who
collaborates with me on all work in the thesis and many other projects in cryptography
and shares firm friendship with me. I also owe special thanks to Yael Tauman Kalai,
who is not only my committee member, but also my collaborator for research on
delegating computation. I have benefited a great amount from her creativity and
passionate in the fascinating field of cryptography. I would also like to thanks to all
my other collaborators: Sherman S.M. Chow, Zhenming Liu, Chi-Jen Lu, Michael
Mitzenmacher, Omer Reingold, Bo-Yin Yang, Ching-Hua Yu, and Colin Jia Zheng.
Research is always more fun when discussing with people, and it has been a pleasure
to work with them in during my Ph.D. period. In particular, the numerous interesting
discussions with Zhenming Liu and Colin Jia Zheng in our office are precious memories
to me. I want to say yet another special thanks to Chuna-Heng Hsiao, who helped
me presenting my research by listening my practice talks with endless patience.

I would also like to express my gratitude to Chih-Jen Lin and Hsueh-I Lu, both
of who were my undergraduate advisors at National Taiwan University and guided
my very first step to do research.

Of course, there are many more people who have contributed to the development
and education of my Ph.D., including, and certainly not limited to, my thesis commit-
tee Salil Vadhan, Yael Tauman Kalai, Michael Mitzenmacher, and Les Valiant, many
teachers and academic staffs at Harvard, my officemates Yan-Cheng Chang, Eleni
Drinea, Alex Healy Stephan Holzer, Shaili Jain, Adam Kirsch, Varun Kanade, Zhen-
ming Liu, Loizos Michael, Shien Jin Ong, Jonathan Pines, Justin Thaler, Jonathan
Ullman, and Colin Jia Zheng in Maxwell Dworkin, Brendan Juba at MIT, Wei-Chun
Kao, Grant Schoenebeck, Alexandre Stauffer, and Madhur Tulsiani during the visit
at Berkeley, Huijia Lin, Rafael Pass,and Wei-lung Dustin Tseng during the time at
Cornell, and all my Taiwanese friends at Harvard and other places (too many to list).
Thank you to all!

The final thank is reserved to my parents Yao-Ting Chung and Pao-Tsai Liao,
brother Po-Han Chung, and girl friend Yun-Ru Chen, whose unreserved support
continues to flow more generously than I deserve.

This research was supported by US-Israel BSF grant 2006060 and NSF grant
CNS-0831289.

viii

Chapter 1

Introduction

Soundness is a fundamental property required by many (two-party) interactive
protocols studied in complexity theory and cryptography, such as interactive proofs,
interactive arguments, proofs of knowledge, puzzle systems, and many two-party cryp-
tographic primitives. In an interactive protocol, two parties receive some common in-
puts and perhaps some private inputs, toss some random coins, and interact with each
other following some prescribed protocol to exchange a certain number of messages.
At the end of the interaction, both parties may or may not generate some outputs. In
most models, either explicitly or implicitly, a party (referred to as a prover P) wants
to convince the other party (referred to as a verifier V) to accept, and V will either to
accept or reject at the end of the interaction. In this case, we always require certain
types of soundness property, which asserts that when the verifier V is supposed to
reject, V will only accept with bounded (error) probability, even when he interacts
with a certain class of adversarial cheating provers P∗. Such an upper bound on the
error probability of V is called the soundness error of the protocol.

For example, in an interactive proof or interactive argument, the prover P proves
to the verifier V the membership of an input x in a certain language L, and we require
the following completeness and soundness properties to be satisfied. The completeness
property says that if both parties follows the prescribed protocol honestly, then for
every x ∈ L, the verifier V will accept with high probability, whereas the soundness
property, as mentioned, guarantees that when x /∈ L, the verifier V, even when
interacting with a certain class of adversarial cheating provers P∗, will reject with
high probability.

As a second example, in (bit-)commitment schemes, a sender S interacts with R
to commits to a bit b ∈ {0, 1} in the commit stage, and later in the decommit stage,
reveals the bit b to the receiver R. The security of commitment schemes consists
of the hiding property, which says that the receiver R cannot learn any information
about the committed bit b from the commit stage, and the binding property, which
says that the sender S cannot decommit to both 0 and 1 in the decommit stage. Both
properties can be viewed as the soundness of certain interactive protocols. For the

1

Chapter 1: Introduction 2

hiding property, the receiver R plays the role of the prover, who sends to the sender S
his guess b′ to the committed bit b after the commit stage, and the sender S plays the
role of the verifier, who accepts if the guess b′ is correct. For the binding property, the
sender S is the prover, who runs the commit stage first and then runs the decommit
stage twice to decommit to both 0 and 1. The receiver R, who plays the role of the
verifier, accepts iff he accepts both decommitments.

As usual in complexity theory and cryptography, two versions of the soundness
property, statistical soundness and computational soundness, are considered. Sta-
tistical soundness requires the upper bound on V’s error probability (to accept in-
correctly) to hold against computationally unbounded adversarial provers, whereas
computational soundness only requires the soundness to hold against efficient adver-
sarial provers (e.g., ones that run in probabilistic polynomial time). Computational
soundness is a weaker requirement than statistical soundness. However, in many set-
tings, requiring only computational soundness allows us to improve the efficiency (e.g.,
in round complexity or communication complexity), or obtain additional properties
(e.g., soundness against “reset attacks”) that are impossible to be achieved together
with statistical soundness. We focus on computational soundness in this thesis.

Ideally, we would like the soundness error to be as small as possible. However, in
many settings, our starting point is a protocol with somewhat large soundness error.
For example, to design an interactive proof for a language L, it may be easier to first
design a protocol with soundness error 1/2. This leads to the question of soundness
amplification: Is there a way to decrease the soundness error of a given protocol?

A natural approach to soundness amplification is by repetition, which can be done
either sequentially (i.e., each repetition is executed one by one) or in parallel (i.e.,
all repetitions are executed in parallel). Parallel repetition is more desirable, since
it preserves the round complexity of the protocol. At the end of all repetitions,
the verifier may decide to accept if all subverifiers accept (called a direct product
verifier), if more than a certain threshold number of subverifiers accept (called a
threshold verifier), or according to some other monotone combining functions (called
a monotone verifier).

Intuitively, if no prover strategy can convince a verifier with probability greater
than 1/2, and we repeat the protocol n times, then it should be the case that no prover
strategy can convince all n subverifiers with probability greater than 1/2n. Similarly,
there should also be no prover strategy that can convince at least 0.6n subverifiers
with probability greater than e−Ω(n). This is indeed the case when we amplify sound-
ness for non-interactive randomized algorithms by repetition, since the n executions
are independent. However, for interactive protocols, although the n subverifiers are
independent, an adversarial prover has the chance to correlate his messages among
different repetitions, especially when the repetitions are done in parallel. Therefore,
for interactive protocols, whether parallel repetition decreases soundness error, and
more generally whether the soundness error behaves the same as for independent
events under parallel repetition, becomes a subtle non-trivial question. When we

Chapter 1: Introduction 3

can prove that it is the case, such statements are referred to as parallel repetition
theorems.

Soundness amplification is very related to security amplification and hardness
amplification in cryptography and complexity theory. In fact, the three terms are
sometimes interchangeable. Soundness is a kind of security property, so soundness
amplification can be viewed as an instance of security amplification. On the other
hand, the security of many cryptographic primitives can be cast in terms of a security
game played between two parties, which then can be viewed as the soundness prop-
erty of certain corresponding interactive protocols. Thus, results on soundness am-
plification for computationally sound protocols have several applications to security
amplification for cryptographic primitives. Also, computational soundness amounts
to hardness for any computationally efficient prover P∗ to make the verifier accept.
Hence, amplifying computationally soundness can be viewed as amplifying an inter-
active version of computational hardness.

Parallel repetition is a natural and simple approach to these amplification tasks
and can be implemented in many settings. Indeed, parallel repetition has been studied
for interactive proofs, interactive arguments, probabilistic checkable proofs (PCPs),
amplifying hard functions, security amplification for puzzle systems and other cryp-
tographic primitives, and more.

In this thesis, we will focus on parallel repetition for computationally sound proto-
cols. It is known that for statistical soundness, under parallel repetition, the statistical
soundness error behaves as if the repetitions are completely independent. However,
for computational soundness, as we will discuss in next section, parallel repetition
does not decrease the soundness error for general computationally sound protocols,
so we need to consider restricted classes of protocols. It turns out that how par-
allel repetition affects computational soundness for interactive protocols is a subtle
question. The answers are sensitive to the settings (classes of protocols and types of
parallel verifiers) and involve constructing and analyzing subtly different reduction
algorithms with different ideas.

We prove new parallel repetition theorems for several classes of computationally
sound protocols such as public-coin protocols, three-message protocols, and a more
general class of “computationally simulatable” protocols. For some settings, such
as public-coin protocols with direct product verifiers, we obtain tight results that
match information-theoretic bounds. In addition, we will discuss the strength and
limitations of different reduction ideas. We hope that the discussion can make the
current progress more transparent, and lead to a better understanding of parallel
repetition.

Parallel repetition theorems for computationally sound protocols, as well as the
reduction algorithms used in the proof, have applications to several other questions,
and in particular, to security amplification for cryptographic primitives. Later in the
introduction, we will discuss more about the applications and our work on improving
the efficiency of security amplification for cryptographic primitives, such as commit-

Chapter 1: Introduction 4

ment schemes, signature schemes, message authentication codes, and CAPTCHAs.

1.1 Parallel Repetition for Computationally Sound

Protocols

In this section, we discuss the question of how parallel repetition affects compu-
tational soundness of interactive protocols. We introduce some notation to facilitate
the discussion.

Let 〈P,V〉 be an interactive protocol. We use 〈Pn,Vn,k〉 to denote the n-fold
parallel repetition of 〈P,V〉, where Vn,k accepts iff at least k out n subverifiers accept.
The parallel verifier Vn,k is called the threshold verifier, and the special case Vn,n is
called the direct product verifier.

Our original motivation is soundness amplification, for which is natural to con-
sider threshold and direct product verifiers. However, it is also interesting to see how
soundness error behaves under parallel repetition with more general types of combin-
ing functions. For a boolean function g : {0, 1}n,→ {0, 1}, let 〈Pn,Vn,g〉 denote the
n-fold parallel repetition of 〈P,V〉 such that Vn,g accepts iff g(d1, . . . , dn) = 1, where
di’s are the decisions bits of the n subverifiers. We call Vn,g the (parallel) verifier with
combining function g.

The general question to ask is, how does the computational soundness error of
〈Pn,Vn,g〉 relate to that of 〈P,V〉? Intuitively, we expect the soundness error to
behave as if the decisions are independent events. Namely, if 〈P,V〉 has soundness
error δ, then 〈Pn,Vn,g〉 should have soundness error Pr[g(X1, . . . , Xn) = 1], where
the Xi’s are independent random bits with Pr[Xi = 1] = δ. Note that such upper
bounds on the soundness error are optimal, since if there exists a single instance
prover strategy P∗ that can make V accept with probability δ, then a parallel prover
strategy Pn∗, who runs independent copies of P∗ for each repetition, can make Vn,g

accept with probability exactly Pr[g(X1, . . . , Xn) = 1]. Also note that since soundness
error refers to an upper bound on the acceptance probability, it only makes sense to
consider monotone function g.

As mentioned, the subtlety is that an adversarial prover has a chance of correlat-
ing his answers among repetitions, and hence, the soundness error may not behave
like independent events. It is known that the behavior of statistical soundness un-
der parallel repetition matches the case of independent events [12], and so does that
of computational soundness under sequential repetition, at least for direct product
verifiers [6]. However, the situation for computational soundness under parallel rep-
etition is much more complicated. To see why the problem is non-trivial, we first
discuss the negative results of Bellare, Impagliazzo, and Naor [1], and Pietrzak and
Wikström [31], which state that parallel repetition (with a direct product verifier)
does not decrease the computational soundness error for some protocols.

Chapter 1: Introduction 5

1.1.1 Parallel Repetition May not Decrease Computational
Soundness Error

In this section, we informally present the negative examples of Bellare, Impagli-
azzo, and Naor [1], and Pietrzak and Wikström [31] to illustrate why the computa-
tional soundness error may not behave the same as independent events under parallel
repetition. The discussion in this section is meant to be informal and uses physical
analogues to avoid technical details. For a formal treatment, we refer the reader to
[31].

Let us consider the interactive protocol described in Figure 1.1: In the first round,
both parties write down a random bit on a sheet of paper, put the paper in a box, lock
the box, and send the locked box to each other. In the second round, both parties
send their keys to each other, and the verifier opens the prover’s box and accepts iff
the two bits are distinct. Assuming that one cannot break the box B without the
key k, when a prover selects his bit b′, he does not know V’s bit b. Hence, any prover
strategy P∗ can only guess a bit b′ 6= b with proability 1/2, and the protocol has
soundness error 1/2.

However, when we run the protocol twice in parallel, the simple prover strategy
P2∗ described in Figure 1.1 can make both subverifiers accept simultaneously with
probability 1/2. Indeed, noting that P2∗ simply swaps the boxes and keys of the two
subverifiers, it is not hard to see that both subverifiers accept when b1 6= b2, which
happens with probability 1/2. Therefore, the 2-fold parallel repetition 〈P2,V2,2〉 has
soundness error at least 1/2, as opposed to 1/4.

Figure 1.1 gives an example protocol where two-fold parallel repetition does not
decrease the soundness error at all. Note that in the example, P2∗ correlates the
two repetitions by letting the two subverifiers V1 and V2 play against each other, so
the two repetitions are not independent in the interaction 〈P2∗,V2,2〉. The physical
boxes and keys used in the protocol can be implemented by using “non-malleable”
commitment schemes.

The protocol in Figure 1.1 is a vanilla version of the negative examples in [1, 31],
but already contains the main idea in these examples. Bellare, Impagliazzo, and
Naor [1] extends the idea to show that for every n ∈ N, there exists a four-message
protocol 〈Pn,Vn〉 such that its n-fold parallel repetition 〈Pnn,Vn,nn 〉 has essentially the
same soundness error as 〈Pn,Vn〉. Pietrzak and Wikström [31] strengthened the result
of Bellare et al. by showing that there exists a single eight-message protocol 〈P,V〉
with constant soundness error such that the n-fold parallel repetition 〈Pn,Vn,n〉 has
soundness error Ω(1) for every n ∈ N. These negative results hold under crypto-
graphic assumptions such as the existence of non-interactive non-malleable commit-
ment schemes.

The negative results indicate that parallel repetition theorems are unlikely to hold
for general protocols or even the class of protocols consisting of four-message proto-
cols. However, it does not rule out the possibility that parallel repetition theorems

Chapter 1: Introduction 6

Don’t Do It Twice in Parallel 〈P,V〉:

1. V writes down a random bit b ∈R {0, 1} on a sheet of paper, puts the paper
in a box B, locks the box B using a key k, and send the locked box B to P.

2. P writes down another random bit b′ ∈R {0, 1} on a sheet of paper, puts
the paper in his box B′, locks the box B′ using his key k′, and send the
locked box B′ to V.

3. V sends his key k to P.

4. P sends his key k′ to V.

5. V opens the box B′ using key k′ and accepts if the bit b 6= b′.

Prover Strategy P2∗ for V2,2 = (V1,V2):

1. P2∗ receives boxes B1 from V1 and B2 from V2.

2. P2∗ sends B2 to V1 and B1 to V2.

3. P2∗ receives keys k1 from V1 and k2 from V2.

4. P2∗ sends k2 to V1 and k1 to V2.

/* Both V1 and V2 accept when b1 6= b2. */

Figure 1.1: A vanilla version of the negative examples in [1, 31].

hold for other restricted classes of protocols, such as three-message protocols and
public-coin protocols. Indeed, it turns out that parallel repetition theorems hold
for both three-message protocols and public-coin protocols, and some more general
classes of protocols. We proceed to discuss positive results in the next section.

1.1.2 Efficient Parallel Repetition Theorems for
Computationally Sound Protocols

In this section, we present our new parallel repetition theorems for different classes
of computationally sound protocols, as well as other known positive results.

Recall that the general question is whether the soundness error, under parallel rep-
etition with a certain combining function g, behaves as if the decisions are independent
events. Namely, if a protocol 〈P,V〉 has soundness error δ and g : {0, 1}n → {0, 1} is
a boolean function, does its n-fold parallel repetition 〈Pn,Vn,g〉 have soundness error
Pr[g(X1, . . . , Xn) = 1], where Xi’s are independent bits with Pr[Xi = 1] = δ?

Chapter 1: Introduction 7

As discussed, soundness error Pr[g(X1, . . . , Xn) = 1] for 〈Pn,Vn,g〉 is the best we
can hope for and it only makes sense to consider monotone combining functions.
Furthermore, it is unlikely to hold for all protocols, and we need to restrict the class
of protocols to obtain positive results.

For the purpose of soundness amplification, it is natural to consider the direct
product verifier Vn,n or the threshold verifier Vn,k with sufficiently large threshold k
(e.g., k = (1 + γ) · δn, where δ is the soundness error of the original protocol and γ
is a constant). Parallel repetition theorems for these cases are called direct product
theorems and Chernoff-type theorems, respectively. On the other hand, parallel rep-
etition with more general classes of combining functions are also interesting in their
own right and have useful applications (e.g., for security amplification of commitment
schemes [22]).

Before describing our contributions, we first discuss how parallel repetition theo-
rems are proved. As usual in dealing with computational hardness, parallel repetition
theorems are proved via efficient reductions. Namely, we construct a reduction pro-
cedure that converts a parallel prover strategy Pn∗ for Vn,g to a single-instance prover
strategy P∗ for V. The reduction needs to preserve the efficiency, and when Pn∗ suc-
ceeds with good probability (say, δn for the direct product verifier Vn,n), the reduced
P∗ needs to succeed with large enough probability (say, δ) to obtain a contradiction.
Finally, the reductions usually have an additional black-box property, which means
that the only way P∗ uses Pn∗ is to run Pn∗ with many different inputs.

All known parallel repetition theorems for computationally sound protocols are
proved by efficient black-box reductions described above, and we refer to them as
efficient parallel repetition theorems. However, both the reduction algorithms and
their analyses for different settings are subtly different and require different ideas.

To get a sense about why the reductions have to be different for different settings,
let us consider three-message protocols (protocols that consists of only three messages
exchange) and public-coin protocols (protocols where the verifier’s messages are just
independent uniformly random strings). In both classes of protocols, the prover is
able to simulate the verifier’s messages without knowing the verifier’s coin tosses. This
contrasts with the negative example in Figure 1.1, where the verifier’s second message
is very hard to generate for the prover (unless he can generate a key just from the box).
For public-coin protocols, an additional advantage is that the verifier’s decision is
publicly verifiable by the prover, but a challenge is that public-coin protocols may have
many rounds of interactions. In contrast, three-message protocols are less interactive,
but the prover cannot predict the verifier’s decision from the transcript due to the
lack of information about the verifier’s coins. Therefore, the reduction algorithms
in the two settings have to exploit different advantages and the analyses are very
different.

We will discuss in more detail the differences among the different settings in Sec-
tion 3.1.3 after presenting a proof of parallel repetition theorem for a basic setting.

Chapter 1: Introduction 8

Our contributions are as follows.1

A Tight Direct Product Theorem for Public-coin Protocols. We prove that
parallel repetition with direct product verifiers decreases the soundness error of public-
coin protocols from δ to δn, matching the information-theoretic bound. This is some-
what surprising since all previous reductions and analyses pay a price in the number
m of rounds of the protocol in some ways. We prove the theorem by giving a tight
analysis of the reduction prover strategy of Hast̊ad, Pass, Pietrzak, and Wikström
[19], who gave a suboptimal analysis showing that the soundness error decreases from

(1 − α) to e−Ω(α2n/m). Independently, Wikström [36] also improved the analysis of
Hast̊ad et al. [19] and showed that the soundness error decreases from (1 − α) to

e−Ω(α2n), which is not tight in comparison to (1− α)n = e−Ω(αn).

A Chernoff-type Theorem for Public-coin Protocols. We prove a Chernoff-
type theorem for public-coin protocols with an almost matching bound to the standard
Chernoff bound. More precisely, if a public-coin protocol 〈P,V〉 has soundness error δ,
then the parallel protocol 〈Pn,Vn,k〉 with k = (1 + γ)δn has soundness error e−γ

2δn/3,
for constants δ, γ ∈ (0, 1). As in the direct product case, the previous bound of Hast̊ad
et al. [19] has undesirable dependency on the number m of rounds. Independently,
Wikström [36] proved a slightly worse bound of e−γ

2δ2n/4. We prove our bound by
a generic reduction showing that for any class of protocols, a good enough direct
product theorem implies a Chernoff-type theorem.

A Tight “Monotone” Repetition Theorem for Constant-round Public-coin
Protocols. We show that for the special case of constant-round public-coin proto-
cols, tight parallel repetition theorems hold for the most general class of monotone
combining functions (referred to as a monotone repetition theorem). Namely, under
parallel repetition with any monotone combining function, the soundness error be-
haves as if the repetition are completely independent. More precisely, if a constant-
round public-coin protocol 〈P,V〉 has soundness error δ, then the parallel protocol
〈Pn,Vn,g〉 has soundness error Pr[g(X1, . . . , Xn) = 1], where X ′is are i.i.d. binary ran-
dom variable with Pr[Xi = 1] = δ. This generalizes the previous tight direct product
theorem of Pass and Venkitasubramaniam [30].

A “Threshold” Repetition Theorem for Three-message Protocols. We prove
a parallel repetition theorem for three-message (private-coin) protocols with thresh-
old verifiers (referred to as a threshold repetition theorem) that almost matches the
information-theoretic bound. More precisely, if a three-message protocol 〈P,V〉 has

1In the discussion below, we omit the necessary negligible slackness in the bounds for the sake of
clarity.

Chapter 1: Introduction 9

soundness error δ, then the parallel protocol 〈Pn,Vn,k〉 has soundness error Pr[
∑

iXi ≥
k], where X ′is are i.i.d. binary random variable with Pr[Xi = 1] = (δ + α), where
α is an arbitrarily small constant. Our bound for the Chernoff-type case (i.e.,
k ≥ (1 + γ)δn) is tight, i.e., the constant slackness α can be omitted. This general-
izes and improves a previous Chernoff-type theorem [24] and (tight) direct-product
theorem [1, 2]. Independent of our work, Holenstein and Schoenebeck [22] proved
a stronger result of tight monotone repetition theorem for three-message protocols.
Both our work and the work of Holenstein and Schoenebeck [22] generalize the re-
duction algorithm of Canetti, Halevi, and Steiner [2] in the same way. Holenstein
and Schoenebeck obtain a stronger result by a better analysis of the same reduction
algorithm.

A Direct Product Theorem for “Computationally Simulatable” Protocols.
We prove a direct product theorem for a more general class of “computationally
simulatable” protocols, which contains both three-message protocols and public-coin
protocols as special cases. We show that for computationally simulatable protocols,
parallel repetition with direct product verifiers decreases the soundness error from δ
to δn/2, almost matching the information-theoretic bound.

Informally, a protocol is simulatable if the verifier’s messages (but not necessarily
his decision) can be simulated with a certain quality by the prover, who does not
have the verifier’s coins. Computational simulatability means that the verifier’s mes-
sages can be simulated in a computationally indistinguishable way against a certain
class of efficient distinguishers. This property was first considered by Hast̊ad, Pass,
Pietrzak, and Wikström [19]. We generalize their definition to contain a larger class
of protocols and improve their bound (which depends on the number m of rounds).
Our generalization of the definition is important for an application that we discuss
later.

A Chernoff-type Theorem for Computationally Simulatable Protocols. We
prove a Chernoff-type theorem for computationally simulatable protocols, which gives
similar bounds to the standard Chernoff bound but requires a higher threshold. More
precisely, if a computationally simulatable protocol 〈P,V〉 has soundness error δ, then

the parallel protocol 〈Pn,Vn,k〉 with k = (1 + γ)
√
δn has soundness error e−Ω(γ2

√
δn).

Note that we require the threshold to be greater than
√
δn instead of δn. Our bound

is incomparable to the bounds of Hast̊ad, Pass, Pietrzak, and Wikström [19] and their
later improvement in [20]. Their bound says that for k = (1 + γ)δn, the soundness
error of 〈Pn,Vn,k〉 is e−Ω(γ2δ2n/m), which has undesirable dependency on the number
m of rounds, but only requires the threshold to be k > δn. Our bound is obtained by
the generic reduction we mentioned earlier together with our direct product theorem.

Recall that the negative results of Bellare et al. [1] and Pietrzak and Wikström [31]

Chapter 1: Introduction 10

say that parallel repetition does not decrease the soundness error for all computation-
ally sound protocols. Haitner [16] suggested an approach to get around the negative
results and amplify the soundness for any protocol in a round-preserving way. His
idea is to slightly modify the protocol so that parallel repetition decreases the sound-
ness error of the modified protocol. Of course, for this to be useful, it is desirable
to maintain the structure, in particular, the soundness and round complexity, of the
original protocol. Following Haitner [16], we propose such a modification.

A Transformation to Make Any Protocols Computationally Simulatable.
We propose a way to modify any protocol slightly to make it computationally sim-
ulatable. The idea, inspired by Gennaro, Gentry, and Parno [10], is to carry out
the interaction under encryption. Specifically, we let both parties run the original
protocol under a fully homomorphic encryption with the verifier’s key. Fully homo-
morphic encryption schemes were recently constructed by Gentry [11], and these en-
cryption schemes allow a prover to homomorphically compute an encrypted response
to an encrypted verifier’s message without knowing the underlying message. This
clearly preserves the round complexity, and we show that running a protocol under
encryption (if done properly) preserves the soundness of the protocol and makes it
computationally simulatable. It follows that parallel repetition (with direct product
or Chernoff-type verifiers) decreases the soundness error of the modified protocol at
an exponential rate.

For completeness, we survey related work on parallel repetition theorems for com-
putationally sound protocols below.

Related Work. Haitner [16] proposed a different way to modify interactive proto-
cols to make parallel repetition work. In his modification, the verifier terminates and
accepts the interaction with a certain probability in every round. Haitner showed
that the modified “random-termination” protocol has comparable soundness to the
original protocol, and parallel repetition (with direct product verifiers) decreases the
soundness error at an exponential rate. Later on, Hast̊ad, Pass, Wikström, and
Pietrzak [20] observed that Haitner’s modification makes protocols “weakly simulat-
able” in the sense that conditioned on a noticeable probability event, the verifier’s
messages can be simulated perfectly. Hast̊ad et al. [20] also proved Chernoff-type
theorem for the general class of weakly simulatable protocols, which generalizes the
direct product theorem of Haitner [16] with quantitatively better bounds.

We remark that both results are incomparable to our results on computationally
simulatable protocols and running protocols under encryption. The definitions of the
computationally simulatable and weakly simulatable properties are incomparable.
Weak simulatability only requires simulating the interaction conditioned on some
noticeable event, but requires the simulation to be statistically close. In contrast,

Chapter 1: Introduction 11

Direct Product Chernoff-type Threshold Monotone
Vn,n Vn,k, large k Vn,k, any k Vn,g

O(1)-round — — — Thm 4.12
Public-coin I.T.

General Thm 3.2 Thm 4.2 (k = (1 + γ)δn) open open

Public-coin I.T.: ε ≤ δn ε ≤ e−γ
2δn/3

Three- — — Thm 4.7 [22]
message I.T.
Comp. Thm 3.16 Thm 4.3 (k = (1 + γ)

√
δn) open open

Simulatable ε ≤ δn/2 ε ≤ e−Ω(γ2
√
δn)

[20] (k = (1 + γ)δn)

ε ≤ e−Ω(γ2δ2n/m)

β-weakly [20] (δ = 1− α) [20] (k = (1 + γ)δn) open open

Simulatable ε ≤ e−Ω(α2β2n/m2) ε ≤ e−Ω(β2γ2δ2n/m2)

Table 1.1: Summary of the best known results on parallel repetition theorems for
computationally sound protocols. In the table, “I.T.” means the bounds match the
information-theoretic bounds, and “—” means it is covered by more general settings.
The soundness error of the original protocol and its parallel repetition are denoted
by δ and ε, respectively.

computational simulatability requires simulating the whole interaction in a compu-
tationally indistinguishable way. Our modification gives better bounds (δ 7→ δn/2 for
the direct product case) but requires the existence of fully homomorphic encryption
schemes. In contrast, the modification of Haitner is unconditional, but the (improved)
bound of [20] ((1−α) 7→ e−Ω(α2n/m4) for the direct product case) is worse and depends
on the number m of rounds.

A summary of parallel repetition theorems for computationally sound protocol can
be found in Table 1.1. As indicated in the table, the settings of threshold verifiers and
monotone verifiers remain open for super-constant round protocols. It seems harder
to prove parallel repetition theorems when the soundness error is actually degraded
as opposed to amplified, for example in the case of threshold verifier with small
threshold. The currently known black-box reduction techniques seem to not apply to
these settings. There are also questions of improving bounds for parallel repetition
theorems for protocols with simulatable verifiers. For example, can the dependency on
the number m of rounds for the setting of weakly simulatable protocols be removed?

Chapter 1: Introduction 12

1.2 Applications to Security Amplification

In this section, we discuss applications of efficient parallel repetition theorems
for computationally sound protocols, as well as our contributions to improving the
efficiency of security amplification for cryptographic primitives.

As mentioned, computational soundness of interactive protocols can be used to
capture the security property of many cryptographic primitives. For the primitives
whose security are captured by three-message/public-coin/simulatable protocols, par-
allel repetition theorems immediately give a way to amplify the security of the primi-
tives. For example, the security of one-way functions can be viewed as a two-message
protocol where the verifier V samples a random input x and sends f(x) to P, and to
make V accept, P needs to return some pre-image x′ ∈ f−1(f(x)). Similarly, weakly
verifiable puzzle systems of [2], where a puzzle generator generates a puzzle for a
solver to solve, are essentially two-message interactive protocols. Parallel repetition
theorems for three-message protocols imply security amplification for these primitives.

Another straightforward application is to error reduction of interactive arguments.
Interactive arguments are simply interactive proofs with computational soundness,
where the prover proves to the verifier that an input x is in a certain language L. Given
an interactive argument 〈P,V〉 with constant completeness and soundness, we can
apply parallel repetition with a threshold verifier of proper threshold to amplify both
the completeness and soundness properties, provided that a Chernoff-type theorem
holds for the given protocol 〈P,V〉.

However, in many other cases, the security properties of primitives is more inter-
active and is not captured by the class of protocols where parallel repetition theorems
are available. Nevertheless, the security property may have additional structure so
that the black-box reduction algorithms used to prove parallel repetition theorems for
computationally sound protocols can be implemented in the corresponding settings.
We present two applications of this type below.

Security Amplification for Commitment Schemes. Commitment schemes are
interactive protocols that are digital analogue of safes, where Alice can put a value
inside the safe and send it to Bob without leaking any information about the value
(hiding property), and later on, Alice can only open the safe in one way to reveal
a unique value to Bob (binding property). The goal of security amplification is to
turn a weak bit-commitment scheme Com0, where both properties can be broken with
bounded but, say, constant probability, to a fully secure one, where both properties
can be broken with only a negligible probability. Security amplification for commit-
ment schemes require more complicated construction than simple parallel repetition,
but understanding the hardness of, say, breaking the binding property of at least k
out of n calls to Com0, is useful to analyze the constructions.

We construct a black-box transformation that amplifies a weak commitment scheme
Com0 with constant security to a fully secure one, using only ω(log s) black-box calls

Chapter 1: Introduction 13

to Com0, where s is a security parameter. Furthermore, our resulting scheme is a
string-commitment scheme that commits to a Ω(log s)-bit string. This improves the
efficiency over the previous work of Halevi and Rabin [17], which requires ω(log2 s)
black-box calls to securely commit a single bit. The key of our improvement is to
use error-correcting codes and randomness extractors to amplify both the hiding and
binding property simultaneously as opposed to separately in [17].

To analyze our transformation, we prove a Chernoff-type theorem for repetition
of weak commitment schemes. Noting that the commit stage of Com0 may consist
of multiple rounds, it can be shown that to amplify the security, the calls to Com0

needs to be done sequentially as opposed to in parallel (by generalizing the negative
examples of Bellare et al. [1]). However, even if the calls to Com0 are sequential
in the commit stage, all calls to Com0 are decommitted in parallel in the reveal
stage. This can be viewed as a special type of “two-phase repetition,” where the first
phase is sequential and the second phase is parallel. It turns out that the black-box
reduction for proving parallel repetition theorems for three-message protocols can be
implemented in this setting to prove corresponding parallel repetition theorems.

Security Amplification for Dynamic Weakly Verifiable Puzzle Systems and
Related Primitives. Dodis, Impagliazzo, Jaiswal, and Kabanets [7] defined “dy-
namic weakly verifiable puzzle systems” to capture the security properties of several
cryptographic primitives such as message authentication codes (MACs), signature
schemes (SIGs), and pseudorandom functions (PRFs). They proved a Chernoff-type
theorem for the puzzle systems and used it to prove security amplification for the
corresponding primitives.

We improve the bound of the Chernoff-type theorem of Dodis et al. [7] to al-
most match the corresponding information-theoretic bound, and hence improve the
efficiency of security amplification for the related primitives. Our improvement is
obtained by observing that the reduction for proving parallel repetition theorems for
three-message protocols can be implemented and used to improve the main step of
the analysis of Dodis et al. [7].

We remark that the security of these primitives can also be captured as the sound-
ness of certain interactive protocols. For example, consider the chosen message attack
(CMA) security for MACs. The security can be viewed as an interaction between an
adversary and a user, who has the secret key. The interaction has a unspecified poly-
nomial number of rounds where the user tags the messages sent by the adversary, and
at the end of interaction, the user accepts if the adversary sends a fresh message with
a valid tag in his last message. However, this protocol is not simulatable so parallel
repetition theorems are not directly applicable. Nevertheless, when we model the
security more carefully as dynamic weakly verifiable puzzle systems, the additional
structure allows us to prove parallel repetition theorems for this model.

Chapter 1: Introduction 14

In addition to security amplification, we present one more simple application be-
low.

Sequential Repetition for Computationally Sound Protocols. While it is
believed that computational soundness behaves well under sequential repetition, it
seems that only a direct product theorem is found in literature [6]. We observe that
the black-box reduction for proving parallel repetition theorems for three-message
protocols can be implemented for sequential repetition of any interactive protocols.
It follows that the proof also gives a tight sequential repetition theorem for compu-
tationally sound protocols with any monotone combining functions.

1.3 Roadmap

We outline the remaining of the thesis in this section. After definitions and prelim-
inaries in Chapter 2, we will present a series of black-box reductions to prove parallel
repetition theorems for different settings in Chapter 3—4. We will start with direct
product theorems for different classes of protocols, and then generalize to the set-
ting of Chernoff-type and threshold/monotone verifiers. We will compare all known
reductions and discuss their strengths and limitations. In Chapter 5, we present ap-
plications to security amplification of cryptographic primitives mentioned above. A
more detailed outline is as follows.

Definitions and Preliminaries. In this chapter, we present necessary definitions
of computationally sound protocols and parallel repetitions, as well as some prelimi-
nary on black-box reductions.

Efficient Direct Product Theorems. In this chapter, we focus on proving direct
product theorems for different classes of protocols. We start with a basic setting of
three-message public-coin protocols, where the reduction is essentially the same as
that of Yao’s security amplification for one-way functions [38]. We present this to
illustrate the general framework of black-box reductions. We then prove the direct
product theorems for public-coin protocols, three-message protocols, and computa-
tionally simulatable protocols. We will also present our generic transformation of
running a protocol under encryption that makes any protocol computationally simu-
latable.

Efficient Chrenoff-type and Threshold/Monotone Repetition Theorems.
In this chapter, we prove parallel repetition theorems for other combining functions.
We first present a generic reduction showing that a good enough direct product the-
orem implies Chernoff-type theorems, and use it to obtain Chernoff-type theorem for
public-coin protocols and computationally simulatable protocols. We then generalize

Chapter 1: Introduction 15

the reduction for three-message protocols from the case of direct product verifiers
to the case of threshold verifiers. We present the better analysis of Holenstein and
Schoenebeck [22] since it gives better parameters. We present it for threshold verifiers
as opposed to the more general case of any monotone combining function since we
feel that the threshold case is more intuitive. Finally, we prove a monotone repetition
theorem for constant-round public-coin protocols.

Applications to Security Amplification. In this chapter, we present applica-
tions of parallel repetition theorems to security amplification for cryptographic prim-
itives as discussed in Section 1.2 above. As mentioned, the security property of
commitment schemes, message authentication codes, digital signatures, and pseudo-
random functions can be captured by variants of “puzzle systems.” We will show that
the reductions for proving parallel repetition theorems for interactive protocols can
be used to prove corresponding repetition theorems for puzzle systems, which pro-
vide useful tools to analyze the security amplification constructions for corresponding
primitives. Specifically, we propose new constructions to improve the efficiency of se-
curity amplification for commitment schemes, and improve the Chernoff-type theorem
of Dodis et al. [7] for dynamic weakly verifiable puzzle systems.

Chapter 2

Definitions and Preliminaries

In this chapter, we present the necessary definitions of computationally sound
protocols for studying parallel repetition theorems in later sections. Along the way,
we also introduce some notations, conventions, as well as preliminaries.

2.1 Computationally Sound Protocols

We consider the following general setting of two-party protocols 〈P,V〉. We refer
to the two parties the prover P and the verifier V, which are both PPT (probabilistic
polynomial time) algorithms. Before the interaction, both parties receive a common
input x from some domain Λ ⊂ {0, 1}∗, which can be, for example, the input for
which V wants to decide the membership to some language L, the messages from
previous interaction with perhaps some other parties, or some public keys. We assume
without loss of generality that a security parameter 1s is encoded in the input x
with |x| = sO(1) and the complexity of both parties are measured by this security
parameter s. In the interaction, P and V exchange a fixed number of messages (which
may depend on the security parameter), each of which has a predefined length. At
the end of the interaction, V decides either to accept (output 1) or reject (output 0)
the interaction based on his view, which consists of the common input, the transcript
of the interaction, and his random coins. The interaction is denoted by 〈P,V〉(x),
and Pr[〈P,V〉(x) = 1] is the probability that the verifier accepts at the end of the
interaction, where the probability is over the randomness of both the prover strategy
and the verifier strategy.

The soundness of a protocol is an upper bound on the probability that the verifier
V accepts an input x that he is supposed not to accept when V interacts with a
certain class of prover strategies. For example, when the protocol is used to decide
membership to some language L (i.e., the setting of interactive proofs/arguments),
the soundness refers to the (error) probability that the verifier accepts an input x /∈
L when interacts with a certain class of cheating prover strategies P∗. When the

16

Chapter 2: Definitions and Preliminaries 17

soundness holds against all cheating prover strategies, it is called statistical soundness.
We will focus on computational soundness, where the soundness only holds against
any efficient PPT cheating prover strategy P∗. Note that soundness is a property of
the verifier V. A formal definition of computational soundness is as follows.

Definition 2.1 (Computational Soundness) Let V be a PPT verifier for an in-
teractive protocol 〈P,V〉 with domain Λ, and ε : Λ → [0, 1] an efficiently computable
function. The protocol has computational soundness ε if for every PPT prover
strategy P∗, for sufficiently large s, and for every common input x ∈ Λ with security
parameter s, we have

Pr[〈P∗,V〉(x) = 1] ≤ ε(x),

where the probability is over the randomness of both strategies P∗ and V.

The ε in the above definition is called the soundness error of the protocol, and
we call Pr[〈P∗,V〉(x) = 1] the success probability of P∗ in convincing V. We remark
that the choice of PPT as the notion of efficiency is not essential, and our results
of parallel repetition theorems have analogues to other time bounds as well as for
concrete security.

The above definition of computational soundness can be used to capture the sound-
ness/security property of cryptographic primitives. When we set the domain Λ = L̄,
the complement of a language L, the definition captures the standard soundness prop-
erty of interactive arguments. On the other hand, as explained in the introduction,
both the hiding and binding properties of commitment schemes can be captured as
the soundness of certain interactive protocols.

A protocol 〈P,V〉 is public-coin if V’s messages are independent random coins.
We say that 〈P,V〉 is a c-message protocol if the total number of messages sent by
P and V is c. For three-message protocols, P’s first message is denoted by w, V’s
first message is denoted by v, and P’s second message is denoted by p. Note that the
prover always sends the first message, since otherwise, the verifier would send the last
message, which cannot affect his decision. On the other hand, one round means two
messages exchanged. When we say that 〈P,V〉 is a m-round protocol, we mean 〈P,V〉
consists of 2m messages and we assume (w.l.o.g.) that the verifier V sends the first
message. The vierifer V’s (resp., the prover P’s) messages are denoted by v1, . . . , vm
(resp., p1, . . . , pm).

2.2 Parallel Repetition of Protocols

We proceed to consider parallel repetition of a protocol 〈P,V〉. Informally, in a
n-fold parallel repetition 〈Pn,Vn〉, both parties run n copies of the original protocol
in parallel. For example, suppose 〈P,V〉 is a three-message protocol, then in the
parallel protocol 〈Pn,Vn〉, Pn first sends n messages (w1, . . . , wn) to Vn, then Vn

Chapter 2: Definitions and Preliminaries 18

sends (v1, . . . , vn) to Pn, and finally Pn sends (p1, . . . , pn) to Vn. At the end of the
interaction, each subverifier of Vn makes a decision based on the corresponding copy
of the interaction, and the parallel verifier Vn can decide to accept/reject based on
the n subverifiers’ decisions in different ways. For example, the parallel verifier may
accept only when all subverifiers accept, or when at least k out of n subverifiers
accept. Since a verifier strategy is sufficient to specify a protocol, we define parallel
repetition of protocols by defining parallel verifiers.

Definition 2.2 (Parallel Verifiers) Let V be a PPT verifier for an interactive pro-
tocol 〈P,V〉 with domain Λ. Let n : N → N and g : {0, 1}n → {0, 1} be efficiently
computable. We define an n-fold parallel verifier with combining function g,
denoted by Vn,g, to be the following PPT verifier for an interactive protocol 〈Pn,Vn,g〉
with the same domain Λ.

Vn,g = (V1, . . . ,Vn; g) consists of n copies Vi of the original verifier V, each of
which has its own independent random tape. Upon receiving a common input x ∈ Λ,
Vn,g interacts with a prover Pn by running the n subverifiers Vi in parallel. At the
end of the interaction, each subverifier Vi outputs a decision bit di, and the decision
of the parallel verifier Vn,g is g(d1, . . . , dn).

When the combining function g is a monotone function, we also refer to Vn,g as a
monotone verifier. We also define the following three special cases of parallel verifiers.

• Threshold verifiers. A threshold verifier Vn,k accepts iff k out of n subverifiers
accept. This corresponds to the case where g is a threshold function with
threshold k.

• Direct product verifiers. This is a special case of the threshold verifiers with
k = n. Namely, a direct product verifier Vn,n accepts iff all the subverifiers Vi’s
accept. The corresponding g is the AND function.

• Chernoff-type verifiers. This is a special case of the threshold verifiers with
sufficiently large threshold k. If the original protocol 〈P,V〉 has soundness error δ
and the threshold k ≥ (1+γ)·δn for some constant γ > 0, then the corresponding
threshold verifier Vn,k is also called a Chernoff-type verifier.

We are interested in how the soundness property behaves under parallel repetition
with different types of parallel verifiers. Ideally, we would like to show that the
behavior of the soundness error matches the information-theoretic analogue. Namely,
if a protocol 〈P,V〉 has soundness error δ, then the parallel protocol 〈Pn,Vn,g〉 has
soundness error Pr[g(d1, . . . , dn) = 1], where the di’s are independent random bits
with Pr[di = 1] = δ. In particular, for the direct product and Chernoff-type verifiers,
we hope that the soundness error decreases in an exponential rate in the number of
repetition n, and ideally to δn and e−Ω(γ2δn), respectively.

Chapter 2: Definitions and Preliminaries 19

We refer to such upper bounds on the soundness error of parallel protocols 〈Pn,Vn,g〉
as parallel repetition theorems in general, and direct product theorems, Chernoff-type
theorems, threshold repetition theorems, and monotone repetition theorems for proto-
cols with corresponding type of parallel verifiers.

As discussed in the introduction, the above stated bounds are optimal and can
only hold for monotone verifiers. Also, assuming standard cryptographic assumptions,
it is known that parallel repetition (with direct product verifiers) does not decrease
the soundness error for general interactive protocols [1, 31]. The focus of this thesis
is on the positive side, where we study parallel repetition theorems for natural classes
of protocols with different types of parallel verifiers. All parallel repetition theorems
studied in this thesis are proved by black-box reductions, which give stronger results
and may be useful for other settings. We discuss black-box reductions in the next
section.

2.3 Preliminaries on Black-Box Reductions

In this section, we present some preliminaries on proving parallel repetition the-
orems by black-box reductions. Let us take a direct product theorem for public-coin
protocols as an example. In this example, our goal is to show:

“If a public-coin protocol 〈P,V〉 has soundness error δ, then its n-fold parallel
repetition 〈Pn,Vn,n〉 has soundness error δn.”

As usual in cryptography, we prove such a statement by proving its contrapositive:
“If there exists a PPT parallel strategy Pn∗ that can convince Vn,n with probability

at least δn, then there exists a PPT single instance prover strategy P∗ that can succeed
with probability at least δ in convincing V.”

Specifically, we give a reduction procedure that exploits the given parallel strategy
Pn∗ to construct a single instance prover strategy P∗ with good success probability.
Furthermore, as it is often the case in cryptography, the reduction prover strategy P∗

we constructed has the additional property that P∗ only uses the parallel strategy Pn∗

in a black-box way. Namely, the only way that P∗ uses Pn∗ is to run Pn∗ with many
different inputs (and coins) specified by P∗. Such a reduction is called a black-box
reduction.

As we discussed in the introduction, black-box reductions are desirable as they give
a stronger and more general result. Also, sometimes the same reduction algorithm
can be implemented in different models and give unified proof for results in different
settings.

On the other hand, at least on the intuitive level, it seems that P∗ needs to run in
time at least Ω(1/δn). This is because that it is possible for Pn∗ to convince Vn,n with
probability δn, but fail to convince any subverifiers with the remaining probability
1−δn (e.g., Pn∗ aborts with probability 1−δn). Since P∗ does not know the structure
of Pn∗, it seems that P∗ needs to sample at least Ω(1/δn) times to obtain useful

Chapter 2: Definitions and Preliminaries 20

information from Pn∗. Indeed, all known reduction prover strategies P∗ for parallel
repetition theorems use various sampling techniques to exploit the parallel prover Pn∗,
and have runtime polynomial in the inverse of the success probability of Pn∗. Since
the reduction prover strategy P∗ needs to be efficient for obtaining contradiction,
black-box reductions can only prove that the soundness error decreases to 1/poly(s)
for any polynomial poly(s) (when efficiency is interpreted as PPT).

As an example, we state the following theorem, which is proved in Section 3.2
by a black-box reduction. The theorem says that given a parallel prover Pn∗ with
success probability ε, we can obtain a single instance prover strategy P∗ with success
probability at least roughly ε1/n.

Theorem 2.3 (same as Theorem 3.2) Let V ∈ PPT be a public-coin verifier.
There exists a prover strategy P∗ such that for every common input x ∈ {0, 1}∗,
every n ∈ N, every ε, ξ ∈ (0, 1), and every parallel prover strategy Pn∗,

1. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε⇒

Pr[〈P∗(Pn∗)(n, ε, ξ),V〉(x) = 1] ≥ ε1/n · (1− ξ).

2. P∗(·)(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).

Note that in the above theorem, there is a slackness parameter ξ that trades off the
closeness to the ideal success probability ε1/n with the runtime of P∗. Also note that
the runtime of P∗ is allowed to be polynomial in both ε−1 and ξ−1. This is sufficient to
give the desired upper bound on the soundness error of the parallel protocol 〈Pn,Vn,n〉
up to a negligible additive term, as we show in the following corollary. We remark
that similar corollaries of parallel repetition theorems (may be with slightly different
form of slackness parameters) in later chapters can be proved in very similar ways.
We omit the proofs of similar corollaries to avoid repetitive arguments.

Corollary 2.4 Let 〈P,V〉 be a public-coin protocol with input domain Λ, δ : Λ →
[0, 1] and n : N → N efficiently computable functions with n ≤ poly(s). If 〈P,V〉
has soundness error δ, then its n-fold parallel repetition with direct product verifier
〈Pn,Vn,n〉 has soundness error δn + ngl, where ngl denotes a negligible function in the
security parameter s.

Proof. We prove it by contradiciton. Suppose the conclusion is not true, then there
exists a PPT parallel prover Pn∗ and a noticeable η such that for infinitely many
s ∈ N, there exists some x with security parametmer s such that

Pr[〈Pn∗,Vn,n〉(x) = 1] > δn(x) + η(s).

Consider the reduction prover strategy P∗ defined in Theorem 2.3 with parameters
ε = δn + η and ξ = η/n. By Theorem 2.3, P∗ runs in time poly(|x|, n, δn + η, η/n) =
poly(s) and for every x that satisfies the above inequality, we have

Pr[〈P∗,V〉(x) = 1] ≥ (δn + η)1/n · (1− ξ) > δ,

Chapter 2: Definitions and Preliminaries 21

which contradicts to the fact that 〈P,V〉 has soundness error δ.
In Section 3.2, we actually prove the above Theorem 2.3 assuming that the parallel

prover strategy Pn∗ is deterministic. However, this assumption can be made without
loss of generality as we argue below. Intuitively, if a randomized parallel prover Pn∗

strategy has success probability ε, then by an averaging argument, there must exist
some coins r such that Pn∗(r) (i.e., Pn∗ with the fixed coins r) can also succeed with
probability at least ε. Furthermore, we can use sampling to find some coins r such
that Pn∗(r) can succeed with probability at least roughly ε, and this is sufficient since
we can exploit the slackness parameter ξ. We formalize the above discussion in the
following two lemmas. We emphasize that the proofs of the following two lemmas are
general and can be applied to any interactive protocol.

Lemma 2.5 There exists an efficient transformation Derand such that for every PPT
verifier V, (randomized) PPT prover strategy P∗, common input x ∈ {0, 1}∗, parame-
ters ε, ξ, α ∈ (0, 1), Derand on the above input outputs a deterministic prover strategy
P̃∗ such that if Pr[〈P∗,V〉(x) = 1] ≥ ε, then with probability (1−α) over the random-
ness of Derand,

Pr[〈P̃∗,V〉(x) = 1] ≥ ε · (1− ξ).
Furthermore, both Derand and the output P̃∗ can be implemented with oracle access
to P∗ with runtime poly(|x|, ε−1, ξ−1, log(1/α)) and poly(|x|), respectively.

Proof. Let r denote the coins used by P∗. By a Markov argument, Prr[〈P∗(r),V〉(x) =
1] ≥ ε implies that with probability at least εξ over the coins r,

Pr[〈P∗(r),V〉(x) = 1] ≥ ε · (1− ξ).

Hence, P∗ with fixed such coins r is a desired deterministic prover strategy. Intuitively,
we can find such coins r by sampling, and checking candidate coins r by estimating the
success probability Pr[〈P∗(r),V〉(x) = 1] also using sampling. Formally, a description
of Derand can be found in Figure 2.1. The parameters are adjusted to accommodate
the sampling errors.

We proceed to analyze Derand. Define a set of good coins r by defining

Good = {r : Pr[〈P∗(r),V〉(x) = 1] ≥ ε · (1− ξ/4)}.

By a Markov argument, we have Pr[r ∈ Good] ≥ (εξ/4). Now, observe that the
constants in M1,M2 can be chosen so that the following holds.

• With probability at least (1− α/2) over the M1 random samples of coins r, at
least one sample of r is good. We say that the sampling fails if no good r is
found.

• In estimating p̂(r) for coins r, with probability at least (1 − α/(2M1)) over
the M2 random samples of simulation 〈P∗(r),V〉(x), the estimator p̂(r) satisfies
|p̂(r)− p(r)| ≤ (εξ/4). We say that the sampling fails if |p̂(r)− p(r)| > (εξ/4).

Chapter 2: Definitions and Preliminaries 22

Derand(Pn∗, n, ε, ξ, α)
/* Implicitly, there is a PPT verifier V and an input x as part of the input. */

Repeat the following at most M1 = O
(

1
εξ
· log 1

α

)
times.

• Sample uniformly random coins r and estimate the success probabil-

ity of P∗(r) (i.e., P∗ with the fixed coins r), denoted by p(r)
def
=

Pr[〈P∗(r),V〉(x) = 1], as follows: Simulate the interaction 〈P∗(r),V〉(x) for

M2 = O
(

1
ε2ξ2
· log 1

εξα

)
times (with fresh randomness for V), and compute

an estimator p̂(r) = (number of accept interactions)/M2.

• If p̂(r) ≥ ε · (1− ξ/2), then output P̃∗
def
= P∗(r).

Return P̃∗
def
= P∗(r) for some arbitrary coins r (or simply aborts).

Figure 2.1: Correlation reduction for direction product verifiers.

Note that Derand performs the first type sampling once, and the second type
sampling at most M1 times. By a union bound, with probability at least (1−α) over
the randomness of Derand, no sampling fails. Now, we argue that when no sampling
fails, Derand outputs a deterministic P̃∗ with

Pr[〈P̃∗,V〉(x) = 1] ≥ ε · (1− ξ).

We first observe that Derand can find a sample of coins r in M1 samples such that
Derand outputs P̃∗ = P∗(r) for the coins r. This is because there exists a sample of
good coins r ∈ Good, and the corresponding estimator satisfies

p̂(r) ≥ p(r)− (εξ/4) ≥ ε · (1− ξ/4)− (εξ/4) = ε · (1− ξ/2).

Also, when Derand outputs P̃∗ = P∗(r) for one of M1 samples of r, we have

Pr[〈P̃∗,V〉(x) = 1] = p(r) ≥ p̂(r)− (εξ/4) ≥ ε · (1− ξ/2)− (εξ/4) > ε · (1− ξ).

Finally, it is easy to see by inspection that both Derand and the output P̃∗ can be
implemented with oracle access to P∗ with runtime poly(|x|, ε−1, ξ−1, log(1/α)) and
poly(|x|), respectively, provided that the oracle access to P∗ is allowed to specify the
random coins r used by P∗.

The next lemma says that by Lemma 2.5, we can assume without loss of generality
that in proving Theorem 2.3, the given parallel prover strategy Pn∗ is deterministic.
We remark that it is not hard to modify the proof of the following lemma to show that
in proving parallel repetition theorems in later chapters, the parallel prover Pn∗ can
also be assumed to be deterministic without loss of generality. We omit the proofs of
these similar statements to avoid repetitive arguments.

Chapter 2: Definitions and Preliminaries 23

Lemma 2.6 If Theorem 2.3 holds for the special case where the parallel prover Pn∗

is deterministic, then Theorem 2.3 also holds for the general case with randomized
Pn∗.

Proof. Let P∗det be the reduction prover strategy of the deterministic-version of
Theorem 2.3 assumed in the lemma. The desired reduction prover strategy P∗ simply
compose P∗det with the Derand defined in Lemma 2.5 with proper chosen slackness ξ.
Specifically, P∗(P

n∗)(x, n, ε, ξ) is defined as follows.

• Apply Derand to Pn∗ with parameters ξ set to ξ/3 and α set to (εξ/3) to obtain
a deterministic prover strategy P̃n∗.

• Run P∗det with oracle P̃n∗ and parameters ε set to ε · (1− ξ/3) and ξ set to ξ/3.

It is easy to check by inspection that P∗(·)(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1)
given oracle access to Pn∗(x). Now, suppose for given parameters x, n, ε, ξ and a ran-
domized prover strategy Pn∗,

Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε.

Then with probability at least (1− (εξ/3)), the P̃n∗ returned by Derand satisfies

Pr[〈P̃n∗,Vn,n〉(x) = 1] ≥ ε · (1− ξ/3).

Let us call this event Good. When the event Good happens, we have

Pr[〈P∗(P̃
n∗)

det (n, ε·(1−ξ/3), ξ/3),V〉(x) = 1] ≥ (ε · (1− ξ/3))1/n·(1−ξ/3) ≥ ε·(1−(2ξ/3)).

Finally, we have

Pr[〈P∗(n, ε, ξ),V〉(x) = 1] ≥ Pr[〈P∗(n, ε, ξ),V〉(x) = 1|Good]− Pr[¬Good]

≥ ε · (1− (2ξ/3))− (εξ/3)

= ε · (1− ξ),

as desired.

2.4 Additional Notation and Conventions

In this section. we introduce some more notations and conventions that is used
throughout this thesis.

For an n-tuple of messages ~v = (v1, . . . , vn), we will often single out a coordinate
i ∈ [n] and refer to the remaining n − 1 coordinates “−i.” Namely, we write ~v =
(vi, ~v−i). Similarly, we write a parallel verifier Vn,n = (Vi,V−i).

Recall that the verifier’s messages of a m-round protocol 〈P,V〉 are denoted by
v1, . . . , vm. We will use v[`] = (v1, . . . , v`) to denote the first ` messages. Similarly,
for its parallel repetition Vn,n, we write ~v[`] = (~v1, . . . , ~v`), v[`],i = (v1,i, . . . , v`,i), and
~v[`],−i = (~v1,−i, . . . , ~v`,−i).

Chapter 3

Efficient Direct Product Theorems

3.1 Efficient Direct Product Theorem for

Three-Message Public-Coin Protocols

In this section, as a warm up, we first present an efficient direct product the-
orem for the simplest case of three-message public-coin protocols, which says that
n-fold parallel repetition reduces soundness error from δ to δn +ngl for three-message
public-coin protocols. We prove it by constructing a black-box reduction that con-
verts a parallel prover strategy Pn∗ with success probability ε to a single instance
prover strategy P∗ with success probability close to ε1/n. The reduction is essentially
a classical reduction of Yao [38] for proving security amplification for one-way func-
tions. The reductions for the more general classes of protocols we study later can be
viewed as different generalizations of this classical reduction. We present the classical
reduction in the setting of three-message public-coin protocols to illustrate the com-
mon intuition and framework of these reductions. Formally, we prove the following
theorem.

Theorem 3.1 Let V ∈ PPT be a three-message public-coin verifier. There exists a
prover strategy P∗ such that for every common input x ∈ {0, 1}∗, every n ∈ N, every
ε, ξ ∈ (0, 1), and every parallel prover strategy Pn∗,

1. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε⇒

Pr[〈P∗(Pn∗)(n, ε, ξ),V〉(x) = 1] ≥ ε1/n · (1− ξ).

2. P∗(·)(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).

Recall that for three-message protocols, we use w, v, p to denote the three mes-
sages of the protocol, and the messages of the n-fold parallel protocol are denoted by
~w = (w1, . . . , wn), ~v = (v1, . . . , vn), and ~p = (p1, . . . , pn). As mentioned, by Lemma

24

Chapter 3: Efficient Direct Product Theorems 25

2.5, 2.6, we can assume without loss of generality that our starting point is a deter-
ministic parallel prover strategy Pn∗ with success probability at least ε. Since Pn∗

is deterministic, ~w is fixed and the outcome of 〈Pn∗,Vn,n〉(x) is determined by Vn,n’s
message ~v. For convenience, we write ~p = Pn∗(~v), and we say “Pn∗(~v) convinces Vi”
if the i-th subverifier Vi accepts in 〈Pn∗,Vn,n〉(x) when Vn,n’s message is ~v.

Our goal is to construct a single instance prover P∗ with success probability arbi-
trarily close to ε1/n. To exploit Pn∗ to convince V, a natural idea is to let P∗ interact
with V by simulating the interaction between Pn∗ and Vn,n internally. For this, P∗

selects a coordinate i ∈ [n] of Vn,n for the external verifier V to play, and P∗ simulates
the remaining n − 1 subverifiers of Vn,n and the parallel prover Pn∗ by itself. Since
the protocol is three-message and public-coin, simulating a subverifier Vj is amount
to select a random message vj for Vj.

In more detail, P∗ first runs Pn∗ to obtain ~w, and sends wi to V. Upon receiving the
external verifier’s message v, P∗ views v as vi, and selects (in a way to be determined
below) the remaining n− 1 messages ~v−i = (v1, . . . , vi−1, vi+1, . . . , vn) for the internal
verifier Vn,n. Then P∗ runs Pn∗ to generate the response ~p = Pn∗(~v), and sends pi to
V. To make V accept, the task of P∗ is to find messages ~v−i such that Pn∗(vi, ~v−i)
convinces Vi.

We can think of the above framework as a game played between P∗ and V, where
P∗ takes the first move to select a coordinate i ∈ [n], then V plays a random move v,
and then P∗ takes the last move to select messages ~v−i. In sum, the game consists of
three moves (i, vi, ~v−i).

For this simple setting of three-message public-coin protocols, the following naive
reduction strategy works: P∗ first selects the coordinate i uniformly at random, and
upon receiving v from V, P∗ randomly samples as many copies of ~v−i as he can to
find a good ~v−i such that Pn∗(vi, ~v−i) convinces Vi. If any such ~v−i is found, P∗ sends
the corresponding pi to V and succeeds. Otherwise, P∗ simply gives up and fails. In
other words, P∗ selects a random first move i, and finds a good second move ~v−i by
sampling. A formal description of the strategy P∗ can be found in Figure 3.1.

We need to show that P∗ is a good strategy. Namely, we need to show that if Pn∗

succeeds with probability at least ε, then P∗ can succeed with probability at least
ε1/n · (1− ξ).

Recall that P∗ uses sampling to find ~v−i. Sampling is a natural approach for P∗

to exploit Pn∗ via block-box access. Indeed, the reduction prover strategies for the
more general settings discussed later all consist of more involved sampling processes
to find good prover messages from Pn∗. However, since P∗ needs to be efficient, P∗

can only make a polynomially bounded number of samples and there are inevitable
sampling errors.

It is instructive to consider an ideal version P∗ideal of P∗ where P∗ideal can make
unbounded number of samples (alternatively, do exhaustive search), and hence has
no sampling errors. In fact, the analysis of the ideal version is usually a lot simpler
and consists of clearer intuition. The hard part of the analysis usually lies in showing

Chapter 3: Efficient Direct Product Theorems 26

Prover Strategy P∗(x, n, ε, ξ)
/* P∗ interacts with V and is given oracle access to Pn∗. */

• P∗ selects a coordinate i ∈R [n] uniformly at random, runs Pn∗ to generate ~w,
and sends wi to V.

• Upon receiving vi = v from V, P∗ repeats the following at most M =

O
(
n
εξ · log 1

εξ

)
times.

– P∗ generates random messages ~v−i = (v1, . . . , vi−1, vi+1, . . . , vn). Then P∗

checks if Pn∗(vi, ~v−i) convinces Vi. Namely, P∗ computes ~p = Pn∗(vi, ~v−i)
and checks if Vi(wi, vi, pi) = 1 (i.e., the i-th subverifier accepts). If so, P∗

sends pi to V and terminates.

• If all the M attempts fail, P∗ sends ⊥ to V (or simply aborts).

Figure 3.1: Reduction prover strategy P∗ for three-message public-coin protocols.

that the sampling error does not change the success probability too much. A formal
description of P∗ideal can be found in Figure 3.2.

3.1.1 Analysis of the Ideal Strategy P∗ideal

We proceed to analyze the ideal strategy P∗ideal. We shall show that if Pn∗ has
success probability at least ε, then P∗ideal has success probability at least ε1/n. Note
that no slackness ξ is needed for the ideal strategy.

Fix a coordinate i ∈ [n] that P∗ideal selects in his first move and consider V’s
message v = vi. Observe that P∗ideal can succeed on exactly the vi’s such that there
exist messages ~v−i such that Pn∗(vi, ~v−i) convinces Vi. Let

Goodi = {vi : ∃~v−i s.t. Pn∗(vi, ~v−i) convinces Vi}

We have

Pr[〈P∗ideal,V〉(x) = 1] =
1

n

n∑
i=1

Pr[vi ∈ Goodi].

Also note that for Pn∗ to convince Vn,n on ~v = (v1, . . . , vn), Pn∗ needs to convince
every subverifier Vi. It follows by definition that for such ~v, vi ∈ Goodi for every
i ∈ [n]. Hence, we have

Pr[〈Pn∗,Vn,n〉(x) = 1] ≤ Pr
~v

[∀i ∈ [n] vi ∈ Goodi] =
n∏
i=1

Pr[vi ∈ Goodi].

Chapter 3: Efficient Direct Product Theorems 27

Prover Strategy P∗ideal(x, n, ε, ξ)
/* P∗ideal may not be efficient. */

• P∗ideal selects a coordinate i ∈R [n] uniformly at random, runs Pn∗ to generate ~w,
and sends wi to V.

• Upon receiving vi = v from V, P∗ideal repeats the following until seeing all possible
~v−i’s.

– P∗ideal generates random messages ~v−i = (v1, . . . , vi−1, vi+1, . . . , vn). Then
P∗ideal checks if Pn∗(vi, ~v−i) convinces Vi. Namely, P∗ideal computes ~p =
Pn∗(vi, ~v−i) and checks if Vi(wi, vi, pi) = 1 (i.e., the i-th subverifier accepts).
If so, P∗ideal sends pi to V and terminates.

• If no such ~v−i exists, P∗ideal sends ⊥ to V (or simply aborts).

Figure 3.2: Ideal version P∗ideal of P∗ for three-message public-coin protocols.

Finally, putting it together and applying the Arithmetic-Mean-Geometric-Mean In-
equality complete the analysis of the ideal strategy.

Pr[〈P∗ideal,V〉(x) = 1] =
1

n

n∑
i=1

Pr[vi ∈ Goodi]

≥

(
n∏
i=1

Pr[vi ∈ Goodi]

)1/n

≥ (Pr[〈Pn∗,Vn,n〉(x) = 1])1/n

≥ ε1/n.

3.1.2 Analysis of the Prover Strategy P∗

We continue to analyze the actual (non-ideal) prover strategy P∗. We shall show
that if Pn∗ has success probability at least ε, then P∗ has success probability at least
ε1/n · (1− ξ).

Again, fix a coordinate i ∈ [n] that P∗ideal selects in his first move and consider V’s
message v = vi. In comparison to P∗ideal, the issue for P∗ is that if there are too few
~v−i such that Pn∗(vi, ~v−i) convinces Vi, P

∗ cannot find such ~v−i by sampling. We need
to show that this sampling error cannot decrease the success probability too much.
We remark that we cannot show that the success probability of P∗ is close to that of
P∗ideal. Indeed, it is possible that the success probability of P∗ideal is 1, but the success
probability of P∗ remains small. Instead, we generalize the previous analysis for P∗ideal
to show a lower bound on the success probability of P∗.

Chapter 3: Efficient Direct Product Theorems 28

As before, we define a good set Goodi of vi such that P∗ can convince V (with
high probability) when P∗ selects coordinate i ∈ [n] and V’s message is vi. In Figure
3.1, the parameter M is set so that if Pr~v−i

[Pn∗(vi, ~vi) convinces Vi] ≥ (εξ/2n), then
P∗ can find such ~v−i with probability at least 1− (εξ/2). Indeed, the probability that
P∗ fails to find such a ~v−i when Pr~v−i[P

n∗(vi, ~vi) convinces Vi] ≥ (εξ/2n) is at most

(1− (εξ/2n))M ≤ (εξ/2) for properly chosen constant in M = O
(
n
εξ
· log 1

εξ

)
. Hence,

for every i ∈ [n], we define the good set Goodi as follows.

Goodi =

{
vi : Pr

~v−i

[Pn∗(vi, ~vi) convinces Vi] ≥ (εξ/2n)

}
.

It follows that

Pr[〈P∗,V〉(x) = 1] ≥ 1

n

n∑
i=1

Pr[vi ∈ Goodi]·
(

1− εξ

2

)
≥ 1

n

(
n∑
i=1

Pr[vi ∈ Goodi]

)
− εξ

2
.

On the other hand, we can upper bound the success probability of Pn∗ as follows.

Pr[〈Pn∗,Vn,n〉(x) = 1]

≤ Pr
~v

[∀i vi ∈ Goodi] + Pr
~v

[(∃i vi /∈ Goodi) ∧ (〈Pn∗,Vn,n〉(x) = 1)]

≤
n∏
i=1

Pr[vi ∈ Goodi] +
n∑
i=1

Pr[(vi /∈ Goodi) ∧ (〈Pn∗,Vn,n〉(x) = 1)]

≤
n∏
i=1

Pr[vi ∈ Goodi] + n · εξ
2n

=
n∏
i=1

Pr[vi ∈ Goodi] +
εξ

2
,

where the third inequality follows by the fact that if vi /∈ Goodi, then we have
Pr~v−i

[Pn∗(vi, ~vi) convinces Vi] < (εξ/2n).
Again, putting it together and applying the Arithmetic-Mean-Geometric-Mean

Chapter 3: Efficient Direct Product Theorems 29

Inequality complete the analysis of the prover strategy P∗.

Pr[〈P∗ideal,V〉(x) = 1]

≥ 1

n

(
n∑
i=1

Pr[vi ∈ Goodi]

)
− εξ

2

≥

(
n∏
i=1

Pr[vi ∈ Goodi]

)1/n

− εξ

2

≥
(

Pr[〈Pn∗,Vn,n〉(x) = 1]− εξ

2

)1/n

− εξ

2

≥
(
ε ·
(

1− ξ

2

))1/n

− εξ

2

≥ ε1/n · (1− ξ).

Comments on the reduction prover strategy. We remark that a few natural
variants of the reduction prover strategy P∗ also work for the simple three-message
public-coin setting. First, in the above reduction, P∗ selects a uniformly random
coordinate i ∈ [n] in which to embed V. It is natural to consider a strengthened P̃∗

who tries find the best coordinate i. For example, P̃∗ can use sampling to estimate
the success probability of P∗ when P∗ selects coordinate i, and always select the best
coordinate i in which to embed V. Such a P̃∗ clearly does no worse than P∗. Although
in this setting, we do not need the strengthening as P∗ is already optimal, carefully
selecting the coordinate i ∈ [n] can be useful in other settings. We will discuss more
on this in the next section.

On the other hand, it is very natural for P∗ to find a ~v−i such that Pn∗(vi, ~v−i)
convinces (only) Vi, as we presented above. However, it also works for P∗ to find
a ~v−i such that Pn∗(vi, ~v−i) convinces Vn,n, i.e., every subverifier. It is not hard
to check that exactly the same analysis (with “Pn∗(vi, ~v−i) convinces Vi” replaced
by “Pn∗(vi, ~v−i) convinces Vn,n”) goes through. Both strategies can be viewed as
“rejection sampling” strategies, where P∗ keeps sampling and rejecting until certain
desired outcomes (Pn∗(vi, ~v−i) convinces Vi/V

n,n) happen. Again, this observation is
useful in other settings we study later.

3.1.3 Discussion

As mentioned, the above proof demonstrates the common framework for proving
efficient parallel repetition theorems for more general settings. In all settings, the
starting point is a deterministic parallel prover strategy Pn∗. All the reduction prover
strategies P∗ interact with V by simulating the parallel interaction 〈Pn∗,Vn〉 inter-
nally with V playing one coordinate of Vn, which can be viewed as a game played

Chapter 3: Efficient Direct Product Theorems 30

between P∗ and V. The challenge is to design strategies to win the game with good
probability, which requires designing clever sampling processes to exploit Pn∗ to find
good responses. To analyze such sampling strategies, it is helpful to first consider the
ideal version where there are no sampling errors, and then show that sampling errors
do not lower the success probability too much.

The setting of direct product theorem for three-message public-coin protocols is
simpler for a few reasons:

• Protocols consisting of only three messages are less interactive. The prover only
needs to response to one verifier’s challenge as opposed to committing an answer
to the first challenge without knowing the future challenges. Furthermore, there
is no issue for generating the parallel verifier’s messages in simulating the parallel
interaction. In contrast, the second message of the parallel verifier may be hard
to generate for general private-coin protocols with more than three messages.
For example, consider a protocol where the first message of V is an encryption
c = Enck(m) of some message m under V’s secret key k, and the second message
is the underlying message m. Generating the second message of V based on his
first message amounts to decrypt the ciphertext without the secret key k.

In fact, the ability to simulate the external verfier’s message by a prover is the
key property for parallel repetition to decrease the soundness of a protocol. As
mentioned in the introduction, we can prove parallel repetition theorems for
protocols with “simulatable” verifiers [3, 20], and in contrast, under standard
cryptographic assumptions, we know couterexamples of four-message protocols,
where the prover cannot generate the verifier’s second message, such that par-
allel repetition does not decrease the soundness error at all [1, 31].

• The public-coin verifier consists of no secrets, which allows the prover to com-
pute the verifier’s decision from the transcript. In contrast, for three-message
private-coin protocols, the verifier’s decision may depend on the private coins of
the verifier, and so the decision is not computable by the prover. In this case,
P∗ needs to decide whether to forward Pn∗’s message to V base on the decision
of the n − 1 internal subverifiers (where P∗ knows the coins). In fact, the re-
duction prover strategy P∗ for proving optimal parallel repetition theorem for
three-message protocols is significantly different from the naive reduction pre-
sented in this section. In particular, P∗ carefully finds a coordinate i ∈ [n] in
which to embed V, as opposed to a random coordinate used here.

The public-coin property also allows the prover the simulate the verifier’s mes-
sages easily even if the protocol has more than three rounds.

• The direct product verifier Vn,n accepts only when all subverifiers accept, which
makes all coordinates symmetric. Note that even for the case of a threshold

Chapter 3: Efficient Direct Product Theorems 31

verifier Vn,k, the parallel prover Pn∗ may always convince the first k subverifiers,
which breaks the symmetry among coordinates.

In particular, note that in the above reduction, it suffices for P∗ to select a
random coordinate i ∈ [n] in which to embed V. To obtain an optimal parallel
repetition theorem for the case of threshold verifiers Vn,k, P∗ cannot let V play
a uniformly random coordinate of Vn,k. For example, when k = 1, a parallel
prover Pn∗ may always convince the first subverifier but fail on the remaining
subverifiers. In this case, Pr[〈Pn∗,Vn,1〉 = 1] = 1, but if a reduction prover
strategy P∗ selects a random coordinate i ∈ [n] in which to embed V, then P∗ can
succeed with probability at most 1/n. Nevertheless, when k is sufficiently large
(i.e., the Chernoff-type case), letting V play a random coordinate is sufficient to
obtain an asymptotically tight Chernoff-type theorem, although it is not exactly
optimal even for k = n− 1.

Overall, proving parallel repetition theorems for different settings require subtly
different sampling strategies. We know optimal strategies for several settings, but
there are settings where the known strategies are known to be suboptimal. It would
be interesting to prove tighter results for these settings by designing better prover
strategies. We will discuss the limitations of the suboptimal strategies when we come
to the corresponding settings in subsequent sections.

3.2 Efficient Direct Product Theorem for

Public-Coin Protocols

In this section, we present a tight efficient direct product theorem for public-
coin protocols (with an arbitrary number of rounds), which says that n-fold parallel
repetition reduces soundness error from δ to δn + ngl for any public-coin protocol.
Again, this is proved by using a black-box reduction.

Our contribution is a tight analysis for a reduction strategy of Hast̊ad, Pass,
Pietrzak, and Wikström [19] showing that if a parallel prover strategy Pn∗ has success
probability ε, then the reduction strategy can success with probability at least roughly
ε1/n. The original analysis of Hast̊ad et al. only showed that n-fold parallel repetition

reduces soundness error from (1 − α) to e−Ω((α2n)/m) + ngl, which has undesirable
dependency on the number of rounds m. Independent of our work, Wikström also
improved the bound of Hast̊ad et al. [19] by generalizing their analysis. Wikström
removed dependency on m and proved soundness error decreases from (1 − α) to
e−Ω(α2n), which is still not tight in comparison to (1− α)n = e−Ω(αn).1

We first state the theorem and introduce some notations, and discuss known
reduction prover strategies and our contributions in the below section.

1We mention that [19] and [36] have been merged to a single paper [20].

Chapter 3: Efficient Direct Product Theorems 32

Theorem 3.2 Let V ∈ PPT be a public-coin verifier. There exists a prover strategy
P∗ such that for every common input x ∈ {0, 1}∗, every n ∈ N, every ε, ξ ∈ (0, 1),
and every parallel prover strategy Pn∗,

1. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε

⇒ Pr[〈P∗(Pn∗)(n, ε, ξ),V〉(x) = 1] ≥ ε1/n · (1− ξ).

2. P∗(·)(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).

We assume without loss of generality that the verifier speaks first, and we de-
note the verifier V’s (resp., the prover P’s) messages by v1, . . . , vm (resp., p1, . . . , pm),
where m is the number of rounds of the protocol. The messages of the n-fold paral-
lel repetition 〈Pn,Vn,n〉 of 〈P,V〉 are denoted by ~v1 = (v1,1, . . . , v1,n), ~v2, . . . , ~vm, and
~p1, . . . , ~pm, respectively. Also, as mentioned, by Lemma 2.5, 2.6, we can assume with-
out loss of generality that our starting point is a deterministic parallel prover strat-
egy Pn∗ with success probability at least ε. Hence the interaction of 〈Pn∗,Vn,n〉(x)
is determined solely by Vn,n’s messages (~v1, . . . , ~vm). For convenience, we ignore
Pn∗’s messages and say (~v1, . . . , ~vm) is the transcript of 〈Pn∗,Vn,n〉(x), and refer to
(~v1, . . . , ~vj) and (~v1, . . . , ~vj−1, vj,i) as a partial transcript of 〈Pn∗,Vn,n〉(x). We also
write Pr[〈Pn∗,Vn,n〉(x) = 1|~v1, . . . , ~vj] as the success probability of Pn∗ conditioned on
the partial transcript being (~v1, . . . , ~vj). Similarly, Pr[Pn∗ convinces Vi|~v1, . . . , ~vj−1, vj,i]
is the probability that Pn∗ convinces the first subverifier V1 conditioning on partial
transcript (~v1, . . . , ~vj−1, vj,i).

3.2.1 Reduction Prover Strategies

We proceed to discuss the reduction prover strategies for public-coin protocols.
Recall the common framework that the interaction of 〈P∗,V〉 simulates the interaction
of 〈Pn∗,Vn,n〉 as follows. At beginning, P∗ first selects a coordinate i ∈ [n] in which
to embed V. Then in each round j, V randomly generate a message vj = vj,i and the
task of P∗ is to select messages ~vj,−i of V−i. It is convenient to think of 〈P∗,V〉 as
a game played between P∗ and V, where P∗’s moves are (i, ~v1,−i, ~v2,−i, . . . , ~vm,−i) and
V’s moves are (v1,i, v2,i, . . . , vm,i). In the game, V plays uniformly random strategy,
and our goal is to find an optimal strategy for P∗ such that P∗ can succeed with
probability at least roughly ε1/n whenever Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε.

Following the discussion in the end of the previous section, the challenge here is
that the protocol has multiple rounds, so P∗ needs to decide his move ~vj,−i before
seeing V’s future moves vj+1,i, . . . , vm,i. One natural idea is to let P∗ to evaluate the
game tree and play the optimal strategy. Namely, at each step, P∗ selects the move
that maximizes his success probability. It can be shown that the optimal strategy can
indeed succeed with probability at least ε1/n, but the problem is that both finding

Chapter 3: Efficient Direct Product Theorems 33

the optimal move and evaluating the success probability of each node of the game
tree may not efficient.

Pass and Venkitasubramaniam [30] observed that both tasks can be approximated
by recursive sampling, which gives a somewhat efficient strategy with success probabil-
ity at least roughly ε1/n. However, due to the recursion, this strategy has complexity
depending exponentially on the number of rounds m. Therefore, the strategy is only
efficient for constant-round protocols. For protocols with a super-constant number of
rounds, a different reduction strategy is required to prove the direct product theorem
for public-coin protocols.

Hast̊ad, Pass, Pietrzak, and Wikström [19] proved that the following surprisingly
simple rejection sampling strategy P∗rej works fairly well: At beginning, P∗rej selects
the coordinate i ∈ [n] uniformly at random. Upon receiving V’s message vj,i (i.e.,
after V plays move vj,i), P

∗
rej uses rejection sampling to find a successful continuation

(~vj,−i, ~vj+1, . . . , ~vm) of the current partial interaction (~v1, . . . , ~vj−1, vj,i) such that Pn∗

convinces Vn,n on the corresponding interaction (~v1, . . . , ~vm). Namely, P∗rej keeps sam-
pling, as many times as he can, uniform random continuation (~vj,−i, ~vj+1, . . . , ~vm) and
rejecting until one successful continuation is found. If such a successful continuation
is found, P∗rej selects the corresponding ~vj,−i as his move; otherwise, P∗rej simply gives
up and aborts. A formal description of P∗rej can be found in Figure 3.3.

Prover Strategy P∗rej(x, n, ε, ξ)
/* P∗rej interacts with V and is given oracle access to Pn∗. */

/* The interaction of 〈P∗rej ,V〉 simulates the interaction of 〈Pn∗,Vn,n〉. */

• P∗rej selects a coordinate i ∈R [n] uniformly at random.

• For each round j ∈ [m], upon receiving vj,i = vj from V, P∗rej repeats the following

at most M = O
(
mn
εξ

)
times.

– P∗rej generates a random continuation (~vj,−i, ~vj+1, . . . , ~vm) of 〈Pn∗,Vn,n〉 and
checks if it is a successful continuation in the sense that Pn∗ convinces Vn,n

at the end of interaction.

– If so, P∗rej selects the corresponding ~vj,−i as his move in this round, and
runs Pn∗ on (vj,i, ~vj,−i) to generate ~pj and sends pj,i to V.

• If all the M attempts fail, P∗ aborts.

Figure 3.3: Rejection sampling strategy P∗rej for public-coin protocols.

Note that this strategy is a natural generalization of a variant of the reduction
strategy for three-message public-coin protocols in Figure 3.1 where we conditioning
on Pn∗ convincing Vn,n instead of only Vi. As discussed at the end of Section 3.1, both
versions are good for the setting of three-message public-coin protocols. However, in

Chapter 3: Efficient Direct Product Theorems 34

this setting of public-coin protocols, it seems to be important for P∗rej to conditioning
Pn∗ convincing Vn,n as opposed to only Vi, since in the analysis, we crucially use the
fact that P∗ conditions on the same event for different coordinate i ∈ [n].

To illustrate why the rejection sampling strategy P∗rej works, we give the follow-
ing intuition from Hast̊ad et al [19]. We first observe that P∗rej playing the rejection
sampling strategy is equivalent to P∗rej sampling a uniformly random successful con-
tinuation (~vj,−i, ~vj+1, . . . , ~vm) and then selecting the corresponding ~vj,−i (Here, we
ignore the sampling errors where P∗rej fails to find a successful (~vj,−i, ~vj+1, . . . , ~vm).)
Let us consider a mental experiment 〈P∗rej,V∗rej〉 where the verifier V∗rej, instead of
playing a random strategy, also plays the rejection sampling strategy. Namely, V∗rej
also selects his move vj,i by first sampling a uniformly random successful continuation
(vj,i, ~vj,−i, ~vj+1, . . . , ~vm), and then selecting the corresponding vj,i. It is not hard to
see that the interaction of 〈P∗rej,V∗rej〉 amounts to P∗rej and V∗rej select a uniformly
random successful transcript (~v1, . . . , ~vm) jointly. Therefore, Pn∗ always convince Vn,n

on the resulting transcript (~v1, . . . , ~vm), which means P∗rej succeeds with probability
1 in convincing V∗rej. If the distribution of the actual interaction 〈P∗rej,V〉 and that of
the mental interaction 〈P∗rej,V∗rej〉 are statistically close, P∗rej must also success with
good probability in convincing the actual verifier V. This statistical closeness turns
out to be the case, as we explain below.

Consider a fixed round j ∈ [m]. Note that in the mental interaction 〈P∗rej,V∗rej〉,
both messages vj,i and ~vj,−i are selected conditioning on successful interaction, while
in the actual interaction, the messages ~vj,−i are selected conditioning on successful
interaction but the message vj,i is selected uniformly at random. The following lemma
of Raz [32] says that for a product distribution (vj,1, . . . , vj,n), conditioning on an
event with noticeable probability cannot change the marginal distributions too much
on average over coordinates i ∈ [n].

Lemma 3.3 (Raz [32]) Let X1, . . . , Xn be independent random variables on a finite

domain U . Let W an event defined on ~X = (X1, . . . , Xn). We have

1

n
·

n∑
i=1

∆(Xi, Xi|W) ≤

√
1

n
· log

1

Pr[W]
.

As an example, by Raz’s Lemma, averaging over the coordinates i ∈ [n], the statistical
distance between the verifier’s message vj,i played by V∗rej and the uniform vj,i played
by V is upper bounded by√

1

n
· log

1

Pr[〈Pn∗,Vn,n〉(x) = 1|~v1, . . . , ~vj−1]
.

The averaging makes sense since P∗rej selects the coordinate i uniformly at random.
Applying Raz’s Lemma round by round with a hybrid argument, Hast̊ad et al. showed

Chapter 3: Efficient Direct Product Theorems 35

that if Pn∗ has success probability at least ε, then the statistical distance between the
two interactions is at most m ·

√
(1/n) · log(1/ε) and the success probability of P∗rej

is at least

1− (m+ 1)

√
1

n
· log

1

ε
,

where m is the number of rounds. However. this bound is not tight in comparison to
the optimal bound

ε1/n ≈ 1−O
(

1

n
· log

1

ε

)
.

Unfortunately, although the above analysis is quite intuitive and gives a lower
bound on the success probability of P∗rej, it cannot give a tight direct product the-
orem for public-coin protocols. The problem is that, in lower bounding the success
probability of P∗rej, the above analysis loses an additive factor of the statistical distance
between the two interactions. However, we cannot afford even a single application of
the Raz’s Lemma. Suppose that the success probability of Pn∗ is ε, then the bound
given by the Raz’s Lemma is√

1

n
· log

1

Pr[〈Pn∗,Vn,n〉(x) = 1]
=

√
1

n
· log

1

ε
.

This loss is already too large since the optimal bound only allows us to loss a factor
of O((1/n) · log(1/ε)).

Furthermore, the Raz’s Lemma itself is tight and we can embed a tight example
of Raz’s Lemma below into the interaction of Pn∗ and Vn,n. This means that the
statistical distance between the actual interaction and the mental interaction can
indeed be

Ω

(√
1

n
· log

1

ε

)
> O

(
1

n
· log

1

ε

)
.

Therefore, to obtain a tight direct product theorem, we cannot afford to move from
the actual interaction to the mental interaction.

A Tight Example. Let X1, . . . , Xn be i.i.d. binary random variables with Pr[Xi =
1] = 1/2, and W be the event that the average of the Xi’s is large:

1

n
·
∑
i

Xi ≥
1

2
+ α.

By standard Chernoff bounds, we know that Pr[W] ≤ e−Ω(α2n). Also, by symmetry
among the coordinates, we know that for every i ∈ [n],

Pr[Xi = 1|W] ≥ 1

2
+ α.

Chapter 3: Efficient Direct Product Theorems 36

In this case, the Raz’s Lemma is tight:

1

n
·

n∑
i=1

∆(Xi, Xi|W) ≥ α = Ω

(√
1

n
· log

1

Pr[W]

)
.

We now consider a two-message public-coin protocol 〈P,V〉 and its n-fold parallel
repetition 〈Pn,Vn,n〉. Let Pn∗ be an (artificial) parallel prover such that Pn∗ convinces
Vn,n iff the sum of the first bits of v1,1, . . . , v1,n is greater than (1/2 + α) · n. It is not
hard to see that the average (over i ∈ [n]) statistical distance between the v1,i played
by V∗rej and the uniform v1,i played by V is exactly the average statistical distance of
Xi|W and Xi, which is

Ω

(√
1

n
· log

1

ε

)
> O

(
1

n
· log

1

ε

)
.

3.2.2 Our Tight Analysis to the Rejection Sampling Strategy

Our contribution is a tight analysis to the rejection sampling strategy P∗rej. To
obtain a tight analysis, we analyze the success probability of 〈P∗rej,V〉 directly and
avoid using any form of Raz’s Lemma. We lower bound the success probability of
P∗rej by a careful induction on the number of rounds regarding the geometric mean
of P∗rej’s success probabilities over the choice of coordinate i. Again, we start with
analyzing an ideal version P∗ideal of P∗rej, where there are no sampling errors, and then
generalize the analysis to analyze the actual strategy P∗rej. As in the warm-up setting
of three-message public-coin protocols in Section 3.1, P∗ideal is the same as P∗rej except
that P∗ideal can sample a unbounded number of (instead of M) random continuations
(~vj,−i, ~vj+1, . . . , ~vm) until seeing all possible continuations, and hence P∗ideal can find a
random successful continuation as long as there exists one. A formal description of
P∗ideal can be found in Figure 3.4.

Analysis of the Ideal Strategy P∗ideal

We shall show that if Pn∗ has success probability at least ε, then P∗ideal can succeed
with probability at least ε1/n. Note that no slackness ξ is needed for the ideal strategy.

As mentioned, we will lower bound the success probability of P∗ideal by an in-
duction on the number of rounds regarding the geometric mean of P∗ideal’s success
probabilities over the choice of coordinate i. Recall that we use Pr[〈Pn∗,Vn,n〉(x) =
1|~v1, . . . , ~vj] to denote the success probability of Pn∗ conditioning on the partial in-
teraction (~v1, . . . , ~vj). Similarly, we use Pr[〈P∗ideal,V〉(x)|i, ~v1, . . . , ~vj] to denote the
conditional success probability of P∗ideal when the partial moves of P∗ideal and V are

Chapter 3: Efficient Direct Product Theorems 37

Prover Strategy P∗ideal(x, n, ε, ξ)
/* P∗ideal may not be efficient. */

/* The interaction of 〈P∗ideal,V〉 simulates the interaction of 〈Pn∗,Vn,n〉. */

• P∗ideal selects a coordinate i ∈R [n] uniformly at random.

• For each round j ∈ [m], upon receiving vj,i = vj from V, P∗ideal repeats the
following until seeing all possible continuations (~vj,−i, ~vj+1, . . . , ~vm).

– P∗ideal generates a random continuation (~vj,−i, ~vj+1, . . . , ~vm) and checks if it
is a successful continuation. Namely P∗ideal checks if Pn∗ convinces Vn,n on
interaction (~v1, . . . , ~vm). If so, P∗ideal selects the corresponding ~vj,−i as his
move in this round, and runs Pn∗ on (vj,i, ~vj,−i) to generate ~pj and sends
pj,i to V.

• If no successful continuation exists, P∗ideal aborts.

Figure 3.4: Ideal version P∗ideal of P∗rej for public-coin protocols.

(i;~v1, . . . , ~vj). Namely, P∗ideal selects the coordinate i in which to embed V, V’s mes-
sages are v1,i, . . . , vj,i, and P∗ideal’s corresponding moves are ~v1,−i, . . . , ~vj,−i. With these
notations, our induction hypothesis can be stated as follows.

Induction Hypothesis for P∗ideal. For every j ∈ [m] and every partial interaction
(~v1, . . . , ~vj), the following inequality holds.

n∏
i=1

Pr[〈P∗ideal,V〉(x) = 1|i, ~v1, . . . , ~vj] ≥ Pr[〈Pn∗,Vn,n〉(x) = 1|~v1, . . . , ~vj].

In words, it says that for every partial interaction (~v1, . . . , ~vj), the product of the suc-
cess probability of P∗ideal conditioning on V playing i and partial interaction (~v1, . . . , ~vj)
is at least the success probability of Pn∗ conditioning on partial interaction (~v1, . . . , ~vj).
We remark that the same induction hypothesis is already used in Pass and Venkita-
subramaniam [30] to prove their tight direct production theorem for constant-round
public-coin protocols.

We shall prove the induction backward on j = m,m − 1, . . . , 1, 0 and apply the
induction hypothesis with j = 0 (i.e., without conditioning) to complete the proof.
Let us first see how the induction hypothesis is applied.

Induction Hypothesis for j = 0 ⇒ Pr[〈P∗ideal,V〉(x) = 1] ≥ ε1/n. When j = 0,
the induction hypothesis says that

n∏
i=1

Pr[〈P∗ideal,V〉(x) = 1|i] ≥ Pr[〈Pn∗,Vn,n〉(x) = 1].

Chapter 3: Efficient Direct Product Theorems 38

Recalling that P∗ideal selects the coordinate i uniformly at random, we have

Pr[〈P∗ideal,V〉(x) = 1] =
1

n

n∑
i=1

Pr[〈P∗ideal,V〉(x) = 1|i].

Similar to the setting of three-message public-coin protocols in the previous section,
putting them together by applying the Arithmetic-Mean-Geometric-Mean Inequality
gives the desired lower bound on the success probability of P∗ideal.

Pr[〈P∗ideal,V〉(x) = 1] =
1

n

n∑
i=1

Pr[〈P∗ideal,V〉(x) = 1|i]

≥

(
n∏
i=1

Pr[〈P∗ideal,V〉(x) = 1|i]

)1/n

≥ (Pr[〈Pn∗,Vn,n〉(x) = 1])1/n

≥ ε1/n.

It is also easy to verify the base case j = m of the induction, where we conditioning
on a complete transcript (~v1, . . . , ~vm). Indeed, when we conditioning on a complete
transcript, there is no randomness and the probabilities are simply 0 or 1 and the
inequality is trivial to verify.

Base Case of the Induction. For every complete transcript (~v1, . . . , ~vm), we have

n∏
i=1

Pr[〈P∗ideal,V〉(x) = 1|i, ~v1, . . . , ~vm] ≥ Pr[〈Pn∗,Vn,n〉(x) = 1|~v1, . . . , ~vm].

By inspection, the LHS is 1 iff Pn∗ convinces Vi for every i ∈ [n] on interaction
(~v1, . . . , ~vm), which is equivalent to Pn∗ convinces Vn,n on (~v1, . . . , ~vm), which is the
case iff RHS is 1.

Finally, the remaining and challenging part is to prove the following induction
step. We first introduce some shorthand notations below to simplify the expressions
later in the analysis, and then use the new notations to state and prove the induction
step. We will use h̄ = (~v1, . . . , ~vj) to denote a partial interaction and define

γ(h̄) = γ(~v1, . . . , ~vj)
def
= Pr[〈Pn∗,Vn,n〉(x) = 1|~v1, . . . , ~vj], and

ηi(h̄) = ηi(~v1, . . . , ~vj)
def
= Pr[〈P∗ideal,V〉(x) = 1|i, ~v1, . . . , ~vj] for every i ∈ [n].

Chapter 3: Efficient Direct Product Theorems 39

Induction Step. For every j ∈ [m] and every partial interaction h̄ = (~v1, . . . , ~vj−1),
the following holds. Suppose that for every message ~vj, it is true that

n∏
i=1

ηi(h̄, ~vj) ≥ γ(h̄, ~vj).

Then we have
n∏
i=1

ηi(h̄) ≥ γ(h̄).

It should be clear that the above induction step together with the base case prove
the induction. We proceed to prove the induction step. The first step is to express
the probabilities γ(h̄) and ηi(h̄) in terms of γ(h̄, ~vj) and ηi(h̄, ~vj). It is easy to see by
definition that

γ(h̄) = E
~vj

[
γ(h̄, ~vj)

]
and γ(h̄, vj,i) = E

~vj,−i

[
γ(h̄, ~vj)

]
.

For ηi(h̄), we state the following claim.

Claim 3.4 For every i ∈ [n], j ∈ [m], and partial interaction h̄ = (~v1, . . . , ~vj−1),2

ηi(h̄) = E
~vj

[
γ(h̄, ~vj) · ηi(h̄, ~vj)

γ(h̄, vj,i)

]
.

Proof of claim: Recall that V plays the random strategy and P∗ideal
plays the rejection sampling strategy. Let Pr[vj,i],Pr[~vj,−i] denote the
uniform probability on vj,i, ~vj,−i, respectively. For a given ~vj = (vj,i, ~vj,−i),
observe that V plays vj,i with probability Pr[vj,i]. By Bayes Rule, P∗ideal
plays ~vj,−i with probability

Pr[~vj,−i|h̄, vj,i, 〈Pn∗,Vn,n〉(x) = 1]

=
Pr[~vj,−i] · Pr[〈Pn∗,Vn,n〉(x) = 1|h̄, ~vj]

Pr[〈Pn∗,Vn,n〉(x) = 1|h̄, vj,i]

= Pr[~vj,−i] ·
γ(h̄, ~vj)

γ(h̄, vj,i)
,

and by definition, P∗ideal can succeed with probability ηi(h̄, ~vj). Hence, we
have

ηi(h̄) =
∑
~vj

Pr[vj,i] · Pr[~vj,−i] ·
γ(h̄, ~vj)

γ(h̄, vj,i)
· ηi(h̄, ~vj)

= E
~vj

[
γ(h̄, ~vj) · ηi(h̄, ~vj)

γ(h̄, vj,i)

]
2

2We use a convention that 0/0 = 0.

Chapter 3: Efficient Direct Product Theorems 40

Using the above formulas, our goal is to show that
n∏
i=1

ηi(h̄) =
n∏
i=1

E
~vj

[
γ(h̄, ~vj) · ηi(h̄, ~vj)

γ(h̄, vj,i)

]
≥ γ(h̄).

This can be done by applying Hölder’s Inequality twice. We first recall Hölder’s
Inequality, and then prove the induction step by a lemma below.

Lemma 3.5 (Hölder’s Inequality[8]) Let F1, . . . , Fn be non-negative functions
from a finite domain Ω to R, and a1, . . . an > 0 satisfying 1/a1 + . . . 1/an = 1. Let q
be a uniform random variable over Ω. We have

E
q
[F1(q) · · ·Fn(q)] ≤ E

q
[F1(q)a1]1/a1 · · ·E

q
[Fn(q)an]1/an .

Lemma 3.6 (Induction Step) Let γ, η1, . . . , ηn : Ωn → [0, 1] be [0, 1]-valued func-
tions over a product space Ωn such that

∏
i ηi(~q) ≥ γ(~q) for every ~q = (q1, . . . , qn) ∈

Ωn. Let γ = E~q[γ(~q)]. For every i ∈ [n] and qi ∈ Ω, let

γ(qi) = E
~q−i

[γ(~q)] and ηi = E
~q

[
γ(~q) · ηi(~q)
γ(qi)

]
,

where the above expectation is over uniform distribution over Ωn. We have
n∏
i=1

ηi =
n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi)

)]
≥ γ.

Proof. We apply Hölder’s Inequality twice to prove the lemma, as presented in the
calculation below. Informally, the first application of Hölder’s Inequality moves the
product operator to inside the expectation so that we can apply the induction hypoth-
esis, and the second application of Hölder’s Inequality moves the expectation operator
inside again so that we can simplify the terms. We present the whole computation
first, and then explain how Hölder’s Inequality is applied in each step.

n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi)

)]

≥ E
~q

[(
γ(~q)n ·

∏n
i=1 ηi(~q)∏n

i=1 γ(qi)

)1/n
]n

(by Hölder’s Inequality)

≥ E
~q

[(
γ(~q)n+1∏n
i=1 γ(qi)

)1/n
]n

(by induction hypothesis)

≥

[(
E~q[γ(~q)]n+1

E~q[
∏n

i=1 γ(qi)]

)1/n
]n

(by Hölder’s Inequality)

= (γn+1/γn) = γ.

We now explain the application of Hölder’s Inequalities.

Chapter 3: Efficient Direct Product Theorems 41

• The first inequality uses E[Xn
1]1/n · · · · · E[Xn

n]1/n ≥ E[X1 · · · · ·Xn] with

Xi =

(
γ(~q) · ηi(~q)
γ(qi)

)1/n

.

• The third inequality uses E [Bn+1]
1/(n+1) · E

[
(A/B)(n+1)/n

]n/(n+1) ≥ E[A], or
equivalently,

E

[(
An+1

Bn+1

)1/n
]
≥
(

E[A]n+1

E[Bn+1]

)1/n

with {
A = γ(~q),

Bn+1 =
∏n

i=1 γ(qi).

Remark 3.7 One might worry about the legitimacy of the manipulation when the
denominators are zeros. One way to justify it is by adding some µ > 0 in the
denominators before the manipulation. Formally, we have

n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi)

)]
≥

n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi) + µ

)]
≥ · · · ≥ (γn+1/(γ + µ)n),

which is valid for arbitrary µ > 0. Taking µ→ 0, we obtain the desired result.

It is easy to verify that the probabilities γ(h̄, ·) and ηi(h̄, ·) satisfy the premise
of the above lemma. Therefore, a straightforward application of the above lemma
completes the analysis of the induction step and hence completes the analysis of
P∗ideal.

Analysis of the Rejection Sampling Strategy P∗rej

We proceed to analyze to actual (non-ideal) rejection sampling strategy P∗rej where
there are sampling errors. Namely, P∗rej may abort due to the failure of finding a suc-
cessful continuation in M trials when there are too few successful continuations. The
challenge is to show that the sampling errors do not lower the success probability to
much. We remark again (as in Section 3.1.2) that we cannot show that the success
probability of P∗ is close to that of P∗ideal, since it is possible that the success proba-
bility of P∗ideal is 1, but the success probability of P∗ remains small. We have to lower
bound the success probability of P∗rej directly.

We will generalize our inductive hypothesis for P∗ideal to accommodate the sampling
errors. Before we proceed, we first give some intuition about why a polynomially many
number of samples of random continuations is sufficient for P∗rej to find a successful
continuation (~vj,−i, ~vj+1, . . . , ~vm) with high probability.

Chapter 3: Efficient Direct Product Theorems 42

For intuition, let us investigate the mental interaction 〈P∗rej,V∗rej〉 instead, and
consider the first step of both the rejection sampling of V∗rej and P∗rej. In the first
step, V∗rej uses rejection sampling to find a successful interaction (~v1, . . . , ~vm) and
selects the corresponding v1,i. Here, since the success probability of Pn∗ is at least
ε, in expectation, only 1/ε samples is needed to find a successful interaction. Then,
given v1,i selected by V∗rej, P

∗
rej samples random continuations (~v1,−i, ~v2, dots, ~vm) to

find a successful one. Although for some v1,i’s, the success probability γ(v1,i) =
Pr[〈Pn∗,Vn,n〉(x) = 1|v1,i] can be very small so that a successful continuation is hard
to find. Since V∗rej selects v1,i with probability proportional to γ(v1,i), such a v1,i is
selected by V∗rej with very small probability as well. Intuitively, for most v1,i selected
by V∗rej, P∗rej can find a successful continuation by a reasonably small number of
samples.

Indeed, in the mental interaction, one can show (as proved in Hast̊ad et al. [19])
that in every round j, the expected number of samples for P∗rej to find a successful
continuation (~vj,−i, ~vj+1, . . . , ~vm) is 1/Pr[〈Pn∗,Vn,n〉(x) = 1], where the expectation
is over the random partial interaction (~v1, . . . , ~vj−1, vj,i) selected so far and the ran-
domness of rejection sampling process. It follows by a Markov type argument that a
sufficiently larger than 1/ε number of samples is enough for P∗rej to find a successful
continuation with high probability (in each step) over the interaction of 〈P∗rej,V∗rej〉.
Since the two interactions 〈P∗rej,V〉 and 〈P∗rej,V∗rej〉 are statistically close, the same
number of samples are enough for P∗rej to interact with V as well.

However, again, we cannot afford to move to the mental interaction since the sta-
tistical distance between the two interactions is not small enough to prove a tight
direct product theorem. We proceed to generalize the inductive analysis in the pre-
vious subsection to analyze P∗rej. We shall show that if Pn∗ has success probability

at least ε, then P∗ can succeed with probability at least ε1/n · (1 − ξ). We start by
recapping the key steps of the analysis of P∗ideal.

Recall that we analyzed the ideal strategy P∗ideal by induction with the following
induction hypothesis: For every j ∈ [m] and every partial interaction h̄ = (~v1, . . . , ~vj),
we have

n∏
i=1

ηi(h̄) ≥ γ(h̄),

where γ(h̄) = Pr[〈Pn∗,Vn,n〉(x) = 1|~v1, . . . , ~vj], and for every i ∈ [n], ηi(h̄) =
Pr[〈P∗ideal,V〉(x) = 1|i, ~v1, . . . , ~vj]. Then, in the induction step, we show that for
every partial interaction h̄ = (~v1, . . . , ~vj−1),

n∏
i=1

ηi(h̄) =
n∏
i=1

E
~vj

[
γ(h̄, ~vj) · ηi(h̄, ~vj)

γ(h̄, vj,i)

]
≥ γ(h̄),

provided that
∏n

i=1 ηi(h̄, ~vj) ≥ γ(h̄, ~vj) for every ~vj.

Chapter 3: Efficient Direct Product Theorems 43

To analyze P∗rej, we redefine

ηi(h̄) = ηi(~v1, . . . , ~vj)
def
= Pr[〈P∗rej,V〉(x) = 1|i, ~v1, . . . , ~vj] for every i ∈ [n].

The issue with P∗rej is that due to the sampling errors,

ηi(h̄) 6= E
~vj

[
γ(h̄, ~vj) · ηi(h̄, ~vj)

γ(h̄, vj,i)

]
.

Instead, it becomes a more complicated formula below.

Claim 3.8 For every i ∈ [n], j ∈ [m], and partial transcript h̄ = (~v1, . . . , ~vj−1), we
have

ηi(h̄) = E
~vj

[
γ(h̄, ~vj) · ηi(h̄, ~vj)

γ(h̄, vj,i)
· f(γ(h̄, vj,i))

]
,

where f(α) = (1 − (1 − α)M), and M = O
(
mn
εξ

)
is the number of samples specified

in the strategy of P∗rej in Figure 3.3.

Proof of claim: Observing that P∗rej can find a successful continuation
with probability exactly f(γ(h̄, vj,i)), and that conditioning on a successful
continuation is found, P∗rej plays ~vj,−i with the same probability as P∗ideal,
we obtain the above formula for ηi. 2

Fortunately, we can still prove an induction with a variant induction hypothesis
to accommodate the “error term” f(γ(h̄, vj,i)).

Induction Hypothesis for P∗ref . For every j ∈ [m] and every partial interaction
(~v1, . . . , ~vj), the following inequality holds.

n∏
i=1

ηi(h̄) ≥
(

(γ(h̄)− (m− j) · ν)n+1
+

(γ(h̄) + ν)n

)
,

where (α)+
def
= max{α, 0} and ν = 1/M .

Observe that as M → 0 (i.e., ν → 0), our induction hypothesis is the same as
before. Compared to the induction hypothesis for P∗ideal, we add a copy of γ(h̄) in
numerator and denominator, and further add certain slackness in ν = 1/M in both
the numerator and the denominator, where the slackness in the numerator grows
round by round backwardly to accommodate the sampling errors.

As before, we show how the induction hypothesis implies a lower bound on the
success probability of P∗rej first.

Chapter 3: Efficient Direct Product Theorems 44

Induction Hypothesis for j = 0 → Pr[〈P∗rej,V〉(x) = 1] ≥ ε1/n · (1 − ξ). When
j = 0, the induction hypothesis says that

n∏
i=1

Pr[〈P∗rej,V〉(x) = 1|i] ≥ (Pr[〈Pn∗,Vn,n〉(x) = 1]−m · ν)n+1
+

(Pr[〈Pn∗,Vn,n〉(x) = 1] + ν)n
.

Applying the Arithmetic-Mean-Geometric-Mean Inequality in the same way as before
with a bit more complicated calculation gives the desired lower bound on the success
probability of P∗rej.

Pr[〈P∗rej,V〉(x) = 1]

=
1

n

n∑
i=1

Pr[〈P∗rej,V〉(x) = 1|i]

≥

(
n∏
i=1

Pr[〈P∗rej,V〉(x) = 1|i]

)1/n

≥
(

(Pr[〈Pn∗,Vn,n〉(x) = 1]−m · ν)n+1
+

(Pr[〈Pn∗,Vn,n〉(x) = 1] + ν)n

)1/n

≥ (Pr[〈Pn∗,Vn,n〉(x) = 1])1/n ·
(

1−O
(

mnν

Pr[〈Pn∗,Vn,n〉(x) = 1]

))
≥ ε1/n · (1− ξ).

We proceed to prove the induction. Again, the base case j = m is trivial to check.
Conditioning on a complete transcript h̄ = (~v1, . . . , ~vm), the probabilities γ(h̄) and
ηi(h̄) are simply 0 or 1, and γ(h̄) = 1 iff ηi(h̄) = 1 for every i ∈ [n], which implies that
the above inequality holds for the base case. The complicated part is the induction
step.

Induction Step. For every j ∈ [m] and every partial interaction h̄ = (~v1, . . . , ~vj−1),
the following holds. Suppose for all messages ~vj, it is true that

n∏
i=1

ηi(h̄, ~vj) ≥
(

(γ(h̄, ~vj)− (m− j) · ν)n+1
+

(γ(h̄, ~vj) + ν)n

)
,

Then we have
n∏
i=1

ηi(h̄) ≥
(

(γ(h̄)− (m− (j − 1)) · ν)n+1
+

(γ(h̄) + ν)n

)
.

As before, the induction step can be proved by applying Hölder’s Inequality twice
in the same way, but with a more careful analysis on the error terms. We prove the
induction step by the following lemma.

Chapter 3: Efficient Direct Product Theorems 45

Lemma 3.9 Let ν ∈ (0, 1) and t,M ≥ 0 such that M · ν ≥ 1. Let γ, η1, . . . , ηn :
Ωn → [0, 1] be functions over Ωn such that∏

i

ηi(~q) ≥
(

(γ(~q)− t · ν)n+1
+

(γ(~q) + ν)n

)
for every ~q = (q1, . . . , qn) ∈ Ωn. Let γ = E~q[γ(~q)]. For every i ∈ [n], let

γ(qi) = E
~q−i

[γ(~q)] and ηi = E
~q

[
γ(~q) · ηi(~q)
γ(qi)

· f(γ(qi))

]
,

where f(α) = (1− (1− α)M), and the above expectation is over uniform distribution
over Ωn. We have

n∏
i=1

ηi =
n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi)

)
· f(γ(qi))

]
≥
(

(γ − (t+ 1) · ν)n+1
+

(γ + ν)n

)
.

Proof. The proof is similar to that of Lemma 3.6 but a bit more technical. Again,
we first write down the whole computation, and then justify the inequalities.

n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi)

· f(γ(qi))

)]
=

n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)

γ(qi)/f(γ(qi))

)]

≥ E
~q

[(
γ(~q)n ·

∏n
i=1 ηi(~q)∏n

i=1(γ(qi)/f(γ(qi)))

)1/n
]n

(by Hölder’s Inequality)

≥ E
~q

[(
γ(~q)n · (γ(~q)− t · ν)n+1

+ /(γ(~q) + ν)n∏n
i=1(γ(qi)/f(γ(qi)))

)1/n
]n

(by induction hypothesis)

≥ E
~q

[(
(γ(~q)− (t+ 1) · ν)n+1

+∏n
i=1(γ(qi)/f(γ(qi)))

)1/n
]n

(justified below)

≥

[(
E~q[(γ(~q)− (t+ 1) · ν)+]n+1

E~q[
∏n

i=1(γ(qi)/f(γ(qi)))]

)1/n
]n

(by Hölder’s Inequality)

≥
(

(γ − (t+ 1) · ν)n+1
+

(γ + ν)n

)
(justified below)

In the first equality, observing that α/f(α) → 1/M as α → 0, we can take the
convention that 0/f(0) = 1/M . This gives us a correct formula for ηi’s, and gets
around the zero denominator issue. The application of Hölder’s Inequalities are the
same as the proof in Lemma 3.6. We check the third and last inequality below.

Chapter 3: Efficient Direct Product Theorems 46

• Third inequality: we check that the inequality holds pointwise for every ~q. The
denominator is the same. For the numerator, we need to check that(

γ(~q) · (γ(~q)− t · ν)n+1
+

(γ(~q) + ν)n

)
≥ (γ(~q)− (t+ 1) · ν)n+1

+ ,

which follows by inequality αn · (α − tν)n+1
+ ≥ (α + ν)n · (α − (t + 1)ν)n+1

+ for
every t, α, ν ≥ 0 (Claim 3.10 below).

• Last inequality: We have E~q[(γ(~q) − (t + 1) · ν)+] ≥ (γ − (t + 1) · ν)+ for the
numerator by Jensen’s inequality. For the denominator, we check that for every
i ∈ [n],

E
qi

[
γ(qi)

1− (1− γ(qi))M

]
≤ γ + ν.

This holds since if Mν ≥ 1, then α/(1− (1− α)M) ≤ α+ ν for every α ∈ [0, 1]
(Claim 3.11 below).

Claim 3.10 The inequality αn · (α − tν)n+1
+ ≥ (α + ν)n · (α − (t + 1)ν)n+1

+ holds for
every t, α, ν ≥ 0.

Proof of claim: Fix arbitrary t, ν ≥ 0, the inequality is trivial for

α ≤ (t+1)ν. For α ≥ (t+1)ν, let us consider h(x)
def
=(α+x)n·(α−tν−x)n+1.

Clearly, we have h(0) = αn · (α − tν)n+1
+ , and h(ν) = (α + ν)n · (α −

(t + 1)ν)n+1
+ . Furthermore, it is easy to verify that h′(x) ≤ 0 for every

x ∈ [0, ν]. Therefore, we have h(0) ≥ h(ν), which proves the claim. 2

Claim 3.11 Let M ∈ R, ν ∈ (0, 1] be two numbers with Mν ≥ 1. Let

g(α) =

{ α
1−(1−α)M

α ∈ (0, 1]

1/M α = 0

Then g(α) ≤ α + ν for α ∈ [0, 1].

Proof of claim: If α = 0, then the inequality holds trivially. For the
case α ∈ (0, 1], first we consider the function h(α) = (1−(1−α)M)(α+ν)−
α, and prove that h(α) ≥ 0. By the fact h′(α) = (1−α)M(Mα+Mν−1) ≥
0 for α ∈ [0, 1], which tells that h is a non-decreasing function in [0, 1],
we have h(0) = 0 implies h(α) ≥ h(0) ≥ 0 for α ∈ [0, 1]. Then we observe
that for α ∈ (0, 1], h(α) ≥ 0 implies g(α) ≤ α+ν (since (1−(1−α)M) > 0).
Thus the claim holds for α ∈ [0, 1]. 2

Applying Lemma 3.9 directly completes the proof of induction and the analysis
of P∗rej.

Chapter 3: Efficient Direct Product Theorems 47

3.2.3 Discussion

As we have hinted, the nice properties of public-coin protocols that allow us to
prove parallel repetition theorems are that (1) the verifier V’s next messages can
be efficiently simulated without knowing V’s coin, and that (2) V’s decision can be
efficiently computed from the transcript, also without knowing V’s coin. Indeed, it is
not hard to see that when both properties are satisfied, the rejection sampling strategy
can be implemented efficiently, and one can check that the analysis presented in this
section goes through as well. Hence, a tight direct product theorem actually holds for
any protocol satisfying both properties. Furthermore, we will show in later sections
that the reduction can be generalized to work for more general class of protocols with
“simulatable” verifiers, where only the first property holds but not the second one,
which proves direct product theorem for these protocols.

On the other hand, as mentioned in the introduction, optimal monotone repeti-
tion theorems are known for three-message (private-coin) protocols [22] and constant-
round public-coin protocols [3]. However, for protocols with super-constant rounds,
we can only prove Chernoff-type theorems (not exactly match the information-theoretic
bounds), but the more general threshold/monotone repetition theorems remain open.
Here, we briefly discuss the limitations of known reduction strategies when applied
to super-constant-round protocols with more general type of parallel verifiers.

As mentioned in this section, Pass and Venkitasubramaniam [30] proved the first
tight direct product theorem for constant-round public-coin protocols by an efficient
reduction strategy that approximate the optimal strategy using recursive sampling.
We will show in Section 4.3 that the recursive sampling strategy can be applied to
the setting of monotone verifiers and gives tight monotone repetition theorem for
constant-round public-coin protocols. Unfortunately, the reduction is only efficient
for constant-round protocols.

At the first glance, given the simplicity of the rejection sampling strategy and
the clean induction hypothesis in the inductive analysis, one may expect that we can
extend the result to a tight Chernoff-type theorem by some natural generalization of
both the rejection sampling strategy and the inductive analysis.

Unfortunately, this seems to be not the case. The issue is that, the rejection
sampling strategy P∗rej selects a coordinate i ∈ [n] uniformly at random. As discussed
in Section 3.1.3, this works for the direct product verifier since all coordinates are
symmetric, but even for the threshold verifier with threshold k = n − 1, randomly
selecting a coordinate i cannot achieve the information-theoretic bound. For Chernoff-
type verifiers, Wikström [36] showed that the rejection sampling strategy P∗rej still
gives fairly good bounds. However, when the threshold is small, selecting a random
coordinate i ∈ [n] becomes a bad idea. Consider the extreme case where the threshold
k = 1, where it is possible that the given parallel prover Pn∗ always convince only
the first subverifier. In this case, a reduction prover strategy P∗ that embeds V in
a random coordinate i ∈ [n] can only succeed with probability at most 1/n. It is

Chapter 3: Efficient Direct Product Theorems 48

unclear how to modify the way to select the coordinate i for the rejection sampling
strategy.

3.3 Efficient Direct Product Theorem for

Three-Message Protocols

In thise section, we present a tight efficient direct product theorem for general three
message (private-coin) protocols, which says that n-fold parallel repetition reduces
soundness error from δ to δn + ngl for any three-message protocols. Again, this is
proved by a black-box reduction converting a parallel prover strategy Pn∗ with success
probability δn + ξ to a single instance prover strategy P∗ with success probability at
least δ.3

The reduction presented here is due to Canetti, Halevi, and Steiner [2], who pre-
sented it in the context of weakly verifiable puzzles, which are essentially two-message
protocols. This reduction can be generalized naturally to prove tight parallel repeti-
tion theorems for three-message protocols with threshold verifiers [4] and more gen-
eral parallel verifiers with monotone combining functions [22], but with more involved
analysis. Hence, we first present the direct product theorem of Canetti et al. [2], and
then generalize it in later sections. Formally, we prove the following theorem in this
section.

Theorem 3.12 Let V ∈ PPT be a three-message verifier. There exists a prover
strategy P∗ such that for every common input x ∈ {0, 1}∗, every n ∈ N, every δ, ξ ∈
(0, 1), and every parallel prover strategy Pn∗,

1. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ δn + ξ ⇒

Pr[〈P∗(Pn∗)(n, δ, ξ),V〉(x) = 1] ≥ δ +
ξ

10n
.

2. P∗(·)(x, n, δ, ξ) runs in time poly(|x|, n, ξ−1) given oracle access to Pn∗(x).

Recall that the three messages of 〈P∗,V〉 and 〈Pn∗,Vn,n〉 are denoted by w, v, p
and ~w,~v, ~p respectively. We use c to denote V’s private coins, and write v = V(w, c)
or simply v = V(c) when the prover’s first message w is clear from the context.
Again, we assume without loss of generality that Pn∗ is deterministic, and hence
~w is fixed and the outcome of 〈Pn∗,Vn,n〉(x) is determined by Vn,n’s private coins
~c = (c1, . . . , cn). With a slight abuse of notation, we write “Pn∗(~c) convinces V−i,”

3The choice of slackness parameters is different from the previous section, but it can be shown
that they are equivalent. The reason for the different choice of parameters is for the convenience of
presenting the proof.

Chapter 3: Efficient Direct Product Theorems 49

“Pn∗(vi,~c−i) convinces V−i,” or “Pn∗ convinces V−i on ~c (or (vi,~c−i))” to denote the
subverifiers V−i = (V1, . . . ,Vi−1,Vi+1, . . . ,Vn) accept in the corresponding interaction
〈Pn∗,Vn,n〉(x). (Note that ~c−i determines ~v−i, which together with vi determines Pn∗’s
messages ~p, which together with ~c−i determines the decisions of V−i.)

We proceed to discuss the reduction prover strategy P∗ for three-message pro-
tocols. Recall the common framework that the interaction of 〈P∗,V〉 simulates the
interaction of 〈Pn∗,Vn,n〉, where (1) P∗ first selects coordinate i, (2) V generates ran-
dom coins c = ci, which determine the message vi = Vi(ci), and then (3) P∗ selects
the remaining n−1 sequences of coins ~c−i, which determine messages ~v−i. P

∗ succeeds
iff Pn∗ convinces Vi in the corresponding interaction (i.e., Vi with coins ci accepts the
interaction (wi, vi, pi).).

As discussed in Section 3.1.3, in comparison to the public-coin setting, the chal-
lenge is that P∗ cannot predict V’s decision from the transcript, since P∗ does not
know V’s private coin ci. On the other hand, P∗ can compute the decision of the n−1
internal subverifiers V−i since P∗ knows the coins ~c−i. A natural attempt is for P∗

to select ~c−i such that Pn∗ convinces all V−i on interaction (ci,~c−i), as convincing all
internal subverifiers may give confidence on convincing the external verifier as well.
However, such naive P∗ cannot succeed with good probability if the “success pattern”
of this coordinate and the remaining coordinates have certain bad correlations, as il-
lustrated by the following example. In the discussion below, the slackness parameter
ξ is omitted for clarity.

Consider a deterministic parallel prover Pn∗ such that when interacting with Vn,n,
(i) Pn∗ can convince the parallel verifier Vn,n with probability δn, and (ii) for every
i ∈ [n], Pn∗ can convince all except the i-th subverifier with probability (1 − δn)/n.
Observe that for this Pn∗, the above naive P∗ convinces V iff the simulated interaction
(ci,~c−i) falls in case (i). Intuitively, one can expect the simulated interaction (ci,~c−i)
to fall in each case with probability proportional to p = δn and q = (1 − δn)/n,
respectively, and hence P∗ may succeed with probability only p/(p+ q) ≈ nδn � δ.

Nevertheless, the key observation is that one can exploit such bad correlations to
reduce the problem size: one can convert a parallel prover Pn∗ (interacting with Vn,n)
with such bad correlations to a parallel prover P(n−1)∗ (interacting with Vn−1,n−1)
that has success probability higher than δn−1. To illustrate the idea using the
above example, a such P(n−1)∗ can simply interact with Vn−1,n−1 by simulating the
interaction of Pn∗ and Vn,n, where P(n−1)∗ simulates Pn∗ and the first coordinate
V1 honestly, and Vn−1,n−1 plays the remaining coordinates V−1 of Vn,n. Hence,
Pr[〈P(n−1)∗,Vn−1,n−1〉(x) = 1] = Pr[Pn∗ convinces V−1]. It is not hard to see that
such P(n−1)∗ can succeed with probability (δn + (1− δn)/n)� δn−1.

More generally, we can consider the above P(n−1)∗ with the internal verifier V1’s
coin fixed to some c∗1 and estimate the success probability of 〈P(n−1)∗ ,Vn−1,n−1〉(x).
If the success probability is higher than δn−1, we can reduce the problem size to
n − 1. We can iteratively apply this idea until either (1) n = 1 or (2) we cannot
find coins c∗1 such that the corresponding P(n−1)∗ has success probability at least δn−1

Chapter 3: Efficient Direct Product Theorems 50

(which implies no bad correlations). In case (1), we trivially obtain a P∗ with success
probability at least δ, while in case (2), it turns out that the above naive strategy P∗

can succeed with probability at least δ.
An informal intuition of why the naive strategy works is that since Pn∗ can only

convince V−1 with probability at most δn−1, Pn∗ has to convince V1 with probability
at least δ when Pn∗ convinces V−1, so that Pn∗ can convince Vn,n with probability at
least δn. Although this intuition is not quite accurate, the (stronger) fact that we
cannot find any coins c∗1 such that the corresponding P(n−1)∗ has success probability
at least δn−1 allows the naive P∗ to succeed with probabilty at least δ.

We formalize the above correlation reduction idea and state its property in the
following section, and then present the reduction prover strategy P∗ for three-message
protocols in Section 4.2.2 and its analysis in Section 3.3.3

3.3.1 Correlation Reduction for Direct Product Verifiers

In this section, we formalize the correlation reduction idea discussed above, which
iteratively exploits the (bad) correlations (if exist) in the success pattern of a parallel
prover Pn∗ (for Vn,n) to construct a parallel prover P(n−1)∗ (for V(n−1),(n−1)) with
good success probability, and hence, no bad correlations exist after the reduction.
We emphasize that the reduction is general and can be applied to any interactive
protocols (not necessarily three-message).

We recap the idea with more details. Again, we omit the slackness parameter ξ for
clarity. The starting point is a (deterministic) parallel prover Pn∗ for Vn,n with success
probability at least δn, and we perform the following process to exploit the correlations
in the success pattern of Pn∗: If n = 1, we output Pn∗. Otherwise, we randomly
sample several copies of coins c∗1, and consider the following (deterministic) parallel
prover P(n−1)∗(c∗1) for Vn−1,n−1: P(n−1)∗(c∗1) interacts with Vn−1,n−1 by simulating the
interaction of Pn∗ and Vn,n, where P(n−1)∗(c∗1) simulates Pn∗ and the first coordinate
V1 with coins c∗1 honestly, and Vn−1,n−1 plays the remaining coordinates V−1 of Vn,n.
We estimate the success probability of P(n−1)∗(c∗1) by sampling. If there exists a coin
c∗1 such that P(n−1)∗(c∗1) has success probability at least δn−1, then we repeat the
above process with Pn∗ replaced by P(n−1)∗(c∗1). Otherwise, we output Pn∗. A formal
description of the above process can be found in Figure 3.5.

We shall show that the above process outputs Pn
′∗ such that either (1) n′ = 1 and

Pn
′∗ succeeds with probability δ, or (2) Pn

′∗ has success probability δn
′
, and for most

coins c∗1, Pr[Pn
′∗ convinces V−1|c1 = c∗1] ≤ δn

′−1. We formally state the property of
the transformation CR as the following lemma.

Let a PPT verifier V (not necessarily three-message), an input x ∈ {0, 1}∗, pa-
rameters n ∈ N , δ, ξ ∈ (0, 1), and a deterministic parallel prover Pn∗ for Vn,n be given
as above.

Chapter 3: Efficient Direct Product Theorems 51

Sub-Routine FindC(Pn∗, n, i, δ, ξ)
/* Find correlations in the success pattern of Pn∗ on coordinate i ∈ [n]. */

/* Return P(n−1)∗ if such correlation is found. Otherwise, return ⊥ */

Repeat the following at most M1 = O
(
n
ξ
· log n

ξ

)
times:

• Sample random coins c∗i and estimate p(c∗i)
def
= Pr[Pn∗ convinces V−i|ci = c∗i]

by sampling. Namely, randomly sample M2 = O
(
n2

ξ2
· log n

ξ

)
independent

copies of ~c−i’s, check if Pn∗ convinces V−i on (c∗i ,~c−i), and compute an
estimator p̂(c∗i) = |{~c−i : Pn∗ convinces V−i on (c∗i ,~c−i)}|/M2.

• If p̂(c∗i) ≥ δn−1 + (1− (1/n)) · ξ, then return a parallel prover P(n−1)∗(c∗i) for
Vn−1,n−1 defined as follows: P(n−1)∗(c∗i) interacts with Vn−1,n−1 by simulating
the interaction of Pn∗ and Vn,n, where P(n−1)∗(c∗i) simulates Pn∗ and the i-
th coordinate Vi with coin c∗i honestly, and Vn−1,n−1 plays the remaining
coordinates V−i of Vn,n.

Return ⊥ after M1 (failure) attempts.

CR(Pn∗, n, δ, ξ)
/* Implicitly, there are a PPT verifier V and an input x as part of the input. */

/* Iteratively exploit correlation in the success pattern of Pn∗ to obtain P(n−1)∗.*/

Iteratively apply FindC until n = 1 or FindC returns ⊥, namely

• Call FindC(Pn∗, n, 1, δ, ξ). If FindC returns P(n−1)∗, then set ξ ←
(
1− 1

n

)
· ξ

and n← n−1 (so that Pn∗ refers to the prover strategy returned by FindC).

Return the final Pn∗.

Figure 3.5: Correlation reduction for direction product verifiers.

Lemma 3.13 If Pn∗ has success probability at least (δn + ξ) on input x, then with
probability at least (1− (ξ/10n)) over the randomness of CR, CR(Pn∗, n, δ, ξ) outputs
a deterministic prover strategy Pn

′∗ satisfying the following properties.

• Pr[〈Pn′∗,Vn′,n′〉(x) = 1] ≥ δn
′
+ ((10n′ − 1)/10n) · ξ.

• Either n′ = 1, or with probability at least (1− (ξ/10n)) over V1’s coin c∗1,

Pr[Pn
′∗ convinces V−1|c1 = c∗1] ≤ δn

′−1 +
10(n′ − 1) + 1

10n
· ξ.

Furthermore, CR(Pn∗, n, δ, ξ) can be implemented with oracle access to Pn∗ with run-
time poly(|x|, n, ξ−1), and the output Pn

′∗ can be implemented in time poly(|x|, n)
given oracle access to Pn∗.

Chapter 3: Efficient Direct Product Theorems 52

Proof. We first verify the “furthermore” part of the lemma. We observe that CR
calls FindC at most n times, and FindC simulates the interaction 〈Pn∗,Vn,n〉(x) at
most M1 ·M2 times. Since V is PPT, CR runs in time poly(|x|, n, ξ−1) given oracle
access to Pn∗. Also, a careful inspection shows that the output Pn

′∗ of CR is simply
the following: Pn

′∗ interacts with Vn
′,n′ by simulating the interaction of Pn∗ and Vn,n,

where Pn
′∗ simulates Pn∗ and the first n − n′ coordinates V1, . . . ,Vn−n′ of Vn,n with

some fixed coins c∗1, . . . , c
∗
n−n′ (found by FindC iteratively) honestly, and Vn

′,n′ plays

the remaining coordinates of Vn,n. Hence, the output Pn
′∗ can be implemented in

time poly(|x|, n) given oracle access to Pn∗.
We proceed to prove the main statement of the lemma. Observe that the sub-

routine FindC uses sampling to (1) find a coin c∗i such that the probability p(c∗i)
def
=

Pr[Pn∗ convinces V−i|ci = c∗i] is high, and (2) estimate the probability p(c∗i). For
intuition, we first prove the lemma assuming that there were no sampling errors.
Namely, FindC could find such a c∗i if there exists one and compute p(c∗i) exactly. In
this case, the output prover Pn

′
can succeed with probability at least

δn
′
+

(
n∏

k=n′+1

(
1− 1

k

))
· ξ = δn

′
+
n′

n
· ξ > δn

′
+

10n′ − 1

10n
· ξ.

Also, if n′ > 1, then the fact that FindC(Pn
′
, n′, 1, δ, (n′/n) · ξ) returns ⊥ implies that

for every c∗1,

Pr[Pn∗ convinces V−i|ci = c∗i] < δn
′−1 +

(
1− 1

n′

)
· n
′

n
· ξ < δn

′−1 +
10(n′ − 1) + 1

10n
· ξ.

We continue to analyze the actual transformation. Note that the parameters M1

and M2 in FindC are chosen so that

• If

Pr
c∗i

[
p(c∗i) ≥ δn−1 +

10(n− 1) + 1

10n
· ξ
]
≥ ξ

10n
, (3.1)

then with probability at least (1 − (ξ/20n2)) over the M1 random samples of
c∗i , at least one of c∗i satisfies the above event, i.e., p(c∗i) ≥ δn−1 + ((10(n− 1) +
1)/10n) · ξ. Indeed, the probability that FindC fails to find such a c∗i is at most

(1−(ξ/10n))M1 ≤ (ξ/20n2) for a properly chosen constant in M1 = O
(
n
ξ

log n
ξ

)
.

We say that the sampling is failed if (3.1) holds but no such a c∗i is found.

• With probability at least (1− (ξ/20M1n
2)) over the M2 random samples of ~c−i,

the estimator p̂(c∗i) computed via these ~c−i’s satisfies |p̂(c∗i)− p(c∗i)| ≤ (ξ/10n).
This follows by a standard Chernoff bound with a properly chosen constant

in M2 = O
(
n2

ξ2
log n

ξ

)
. We say that the sampling is failed if |p̂(c∗i) − p(c∗i)| >

(ξ/10n).

Chapter 3: Efficient Direct Product Theorems 53

Also observe that CR makes at most n calls to FindC, and each FindC consists of one
sampling of the first type and at most M1 sampling of the second type. By an union
bound, we know that with probability at least (1 − (ξ/10n)) over the randomness
of CR, no sampling is failed during the execution of CR. In this case, the output
prover Pn

′
(constructed by FindC(Pn

′+1, n′ + 1, i, δ, ((n′ + 1)/n) · ξ)) can succeed with
probability at least

δn
′
+
n′

n
· ξ − ξ

10n
= δn

′
+

10n′ − 1

10n
· ξ,

since the estimator has error less than ξ/10n. Also, when n′ > 1, the facts that
FindC(Pn

′
, n′, 1, δ, (n′/n) · ξ) returns ⊥ and that no sampling is failed imply that with

probability at least (1− (ξ/10n)) over c∗1,

Pr[Pn
′∗ convinces V−1|c1 = c∗1] < δn

′−1 +
n′ − 1

n
· ξ +

ξ

10n
= δn

′−1 +
10(n′ − 1) + 1

10n
· ξ,

since otherwise, FindC can find a c∗1 with p(c∗1) ≥ δn
′−1 + (10(n′ − 1) + 1)/(10n) · ξ,

and so the corresponding estimator p̂(c∗1) ≥ δn
′−1 + ((n′ − 1)/n) · ξ.

3.3.2 Reduction Prover Strategy P∗

In this section, we present the reduction prover strategy P∗ of Canetti et al. [2]
for proving a tight direct product theorem for three message protocols. As discussed,
the idea is to first apply the correlation reduction CR to the given (deterministic)
parallel prover Pn∗ to get rid of bad correlations in the success pattern of Pn∗, and
then apply the aforementioned “naive” strategy to the resulting prover strategy Pn

′∗

from CR.
We recap with a bit more detail on the naive strategy as follows. The inter-

action of 〈P∗,V〉 simulates the interaction of 〈Pn′∗,Vn′,n′〉, and P∗ needs to select
coordinate i and n′ − 1 internal subverifiers’ coins ~c−i. P∗ always selects the first
coordinate as correlation reduction guarantees no bad correlations. Then P∗ uses
random sampling to find a ~c−1 such that Pn

′∗ convinces V−1 on the corresponding
interaction. Intuitively (omitting the slackness parameter ξ), since Pn

′
, as Lemma

3.13 promised, has the additional property that with high probability over V1’s coin
c∗1, Pr[Pn

′∗ convinces V−1] ≤ δn
′−1, Pn

′∗ needs to convince V1 with probability at least
δ when Pn

′∗ convinces V−1, so that Pn
′

can convince Vn
′,n′ with probability at least

δn
′
. A formal description of P∗ can be found in Figure 3.6.

3.3.3 Analysis of the Prover Strategy P∗

We shall show that P∗ can succeed with good probability. Again, it is instructive to
consider the ideal case where there are no sampling errors for intuition. Specifically,
we consider an ideal scenario (where there are no sampling errors in both the CR
transformation and sampling ~c−1) that satisfies the following properties:

Chapter 3: Efficient Direct Product Theorems 54

Prover Strategy P∗(x, n, δ, ξ)
/* P∗ interacts with V and is given oracle access to Pn∗. */

• P∗ applies CR to Pn∗ to obtain Pn
′∗ = CR(Pn∗, n, δ, ξ).

• If n′ = 1, P∗ interacts with V by running Pn
′∗; otherwise, P∗ does the following.

• P∗ runs Pn
′∗ to generate ~w, and sends w1 to V.

• Upon receiving v1 = v from V, P∗ repeats the following at most M =

O
(
n
ξ · log n

ξ

)
times.

– P∗ generates random coins ~c−1 = (c2, . . . , cn′). Then P∗ checks if
Pn
′∗(v1,~c−1) convinces V−1. Namely, P∗ computes ~v−1 = V−1(~c−1) and

~p = Pn∗(v1, ~v−1), and checks if Vj with coin cj accepts transcript (wj , vj , pj)
for every j = 2, . . . , n. If so, P∗ sends p1 to V and terminates.

• If all the M attempts fail, P∗ sends ⊥ to V (or simply abort).

Figure 3.6: Reduction prover strategy P∗ for three-message protocols.

• The Pn
′

returned by CR (assuming that n′ > 1 as the n′ = 1 case is trivial)
always satisfies the following properties:

– Pr[〈Pn′∗,Vn′,n′〉(x) = 1] ≥ δn
′
+ (n′/n) · ξ.

– For every c∗1, Pr[Pn
′∗ convinces V−1|c1 = c∗1] ≤ δn

′−1 + ((n′ − 1)/n) · ξ.

• If there exist ~c−1 such that Pn
′∗ convinces V−1 on (v1,~c−1), then P∗ can sample a

uniformly random such ~c−1. (This is achieved by randomly sample a unbounded
number of ~c−1 as opposed to at most M times in Figure 3.6.)

We argue that (in this ideal scenario) the success probability of P∗ can be expressed
in the following formula:

Pr[〈P∗,V〉(x) = 1] = E
c∗1

[
Pr[Pn

′∗ convinces Vn
′,n′|c1 = c∗1]

Pr[Pn′∗ convinces V−1|c1 = c∗1]

]
.4

First, the expectation operator corresponds to that V uses uniformly random coin c∗1.
Second, note that P∗ samples a random ~c−1 conditioning on Pn

′∗ convinces V−1 on
(c∗1,~c−1), and P∗ succeeds iff Pn

′∗ also convinces V1 on (c∗1,~c−1). Conditioning on V’s
coin being c∗1, the success probability of P∗ is precisely

Pr[Pn
′∗ convinces Vn

′,n′ |c1 = c∗1]

Pr[Pn′∗ convinces V−1|c1 = c∗1]
.

4Here, we take a convention that 0/0 = 0.

Chapter 3: Efficient Direct Product Theorems 55

Recall that for every c∗1, Pr[Pn
′∗ convinces V−1|c1 = c∗1] ≤ δn

′−1 + ((n′ − 1)/n) · ξ
(again, in the ideal scenario). We can bound the expectation as follows.

E
c∗1

[
Pr[Pn

′∗ convinces Vn
′,n′|c1 = c∗1]

Pr[Pn′∗ convinces V−1|c1 = c∗1]

]
≥ E

c∗1

[
Pr[Pn

′∗ convinces Vn
′,n′ |c1 = c∗1]

δn′−1 + ((n′ − 1)/n) · ξ

]
=

Ec∗1

[
Pr[Pn

′∗ convinces Vn
′,n′|c1 = c∗1]

]
δn′−1 + ((n′ − 1)/n) · ξ

=
Pr[Pn

′∗ convinces Vn
′,n′]

δn′−1 + ((n′ − 1)/n) · ξ

≥ δn
′
+ (n′/n) · ξ

δn′−1 + ((n′ − 1)/n) · ξ

≥ δ +
ξ

n
.

This completes the analysis in the ideal scenario.
We proceed to analyze the actual (non-ideal) prover strategy P∗. Again, the

challenge is to show that the sampling errors does not lower the success probability
too much. We shall show that if Pn∗ has success probability at least δn + ξ, then P∗

can succeed with probability at least δ + (ξ/10n).
Recall that by Lemma 3.13, with probability at least (1− (ξ/10n)) over the ran-

domness of CR, the Pn
′∗ returned by CR satisfies two good properties. Let us call

a Pn
′∗ returned by CR good if Pn

′
satisfies the two properties stated in the lemma.

Informally, Lemma 3.13 allows us to focus on good Pn
′∗’s with a loss of of at most

(ξ/10n) on the success probability, since Pn
′∗ is not good with probability at most

(ξ/10n). Also observe that by definition, when Pn
′∗ is good and n′ = 1, P∗ can success

with probability at least δ + (9/10n) · ξ. Therefore, it remains to analyze the success
probability of P∗ for the case that the Pn

′∗ returned by CR is good and n′ > 1.
Fix a good Pn

′∗ returned by CR with n′ > 1. We introduce two shorthand notations
below to simplify the expressions later in the analysis, and recall the two properties
stated in Lemma 3.13 using the new notations. We define

α(c∗1)
def
= Pr[Pn

′∗ convinces Vn
′,n′|c1 = c∗1], and

β(c∗1)
def
= Pr[Pn

′∗ convinces V−1|c1 = c∗1].

With these notations, Lemma 3.13 say that a good Pn
′∗ with n′ ≥ 1 satisfies

• Ec∗1
[α(c∗1)] ≥ δn

′
+ ((10n′ − 1)/10n) · ξ.

• With probability at least (1− (ξ/10n)) over c∗1,

β(c∗1) ≤ δn
′−1 +

10(n′ − 1) + 1

10n
· ξ.

Chapter 3: Efficient Direct Product Theorems 56

Let us call c∗1 is good and denote it by c∗1 ∈ Good if the above inequality holds. In
other words, we define

Good =

{
c∗1 : β(c∗1) ≤ δn

′−1 +
10(n′ − 1) + 1

10n
· ξ
}
.

By a similar argument as that in the analysis of the ideal scenario, we observe
that the success probability of P∗ can be expressed as

Pr[〈P∗,V〉(x) = 1|Pn′] = E
c∗1

[
α(c∗1)

β(c∗1)
·
(
1− (1− β(c∗1))M

)]
,

where
(
1− (1− β(c∗1))M

)
is the probability that P∗ can find a ~c−1 such that Pn

′∗

convinces V−1 on (c∗1,~c−1) from at most M random samples of ~c−1. Our goal is to
lower bound the expectation.

Observing that by definition, α(c∗1) ≤ β(c∗1), and when β(c∗1) is not too small,
(1− (1− β(c∗1)M) is very close to 1, we can simplify the quantity in the expectation
by the following simple claim.

Claim 3.14 Let γ ∈ (0, 1). If M ∈ N satisfies (1 − γ)M ≤ γ, then for every α, β
with 0 ≤ α ≤ β ≤ 1, we have

α

β
·
(
1− (1− β)M

)
≥ (α− γ)+

β
,

where (x)+
def
= max{x, 0}.5

Proof of claim: Note that the LHS is non-negative. If β ≤ γ, then
RHS = 0 and the inequality holds. If β > γ, then (1− (1− β)M) ≥ 1− γ.
It follows that

α

β
· (1− (1− β)M) ≥ α · (1− γ)

β
≥ (α− γ)+

β
.

2

Choosing the constant in M = O
(
n
ξ

log n
ξ

)
properly so that (1 − (ξ/10n))M ≤

(ξ/10n), and using the above claim, we have

E
c∗1

[
α(c∗1)

β(c∗1)
·
(
1− (1− β(c∗1))M

)]
≥ E

c∗1

[
(α(c∗1)− (ξ/10n))+

β(c∗1)

]
.

5Again, we use a convention that 0/0
def
= 0.

Chapter 3: Efficient Direct Product Theorems 57

Also, we can get rid of bad c∗1 by

E
c∗1

[
(α(c∗1)− (ξ/10n))+

β(c∗1)

]
≥ E

c∗1

[
(α(c∗1)− (ξ/10n))+ · 1[c∗1 ∈ Good]

β(c∗1)

]
,

where 1[E] = 1 if the event E is true, and 0 otherwise. We can then perform similar
calculation as in the ideal scenario:

E
c∗1

[
(α(c∗1)− (ξ/10n))+ · 1[c∗1 ∈ Good]

β(c∗1)

]
≥ E

c∗1

[
(α(c∗1)− (ξ/10n))+ · 1[c∗1 ∈ Good]

δn′−1 + ((10(n′ − 1) + 1)/10n) · ξ

]
=

Ec∗1
[(α(c∗1)− (ξ/10n))+ · 1[c∗1 ∈ Good]]

δn′−1 + ((10(n′ − 1) + 1)/10n) · ξ
,

where we can bound the numerator by

E
c∗1

[(α(c∗1)− (ξ/10n))+ · 1[c∗1 ∈ Good]]

≥ E
c∗1

[α(c∗1) · 1[c∗1 ∈ Good]]− (ξ/10n)

≥ E
c∗1

[α(c∗1)]− Pr[c∗1 /∈ Good]− (ξ/10n)

≥ (δn
′
+ ((10n′ − 1)/10n) · ξ)− (ξ/10n)− (ξ/10n)

= δn
′
+ ((10n′ − 3)/10n) · ξ.

Putting things together, for every good Pn
′∗ returned by CR with n′ > 1, we have

Pr[〈P∗,V〉(x) = 1|Pn′∗] ≥ δn
′
+ ((10n′ − 3)/10n)

δn′−1 + ((10(n′ − 1) + 1)/10n) · ξ
≥ δ +

2ξ

10n
.

It follows that

Pr[〈P∗,V〉(x) = 1]

≥ Pr[〈P∗,V〉(x) = 1|Pn′∗ is good]− Pr[Pn
′∗ is not good]

≥ δ +
2ξ

10n
− ξ

10n

≥ δ +
ξ

10n
,

which completes the analysis.

Chapter 3: Efficient Direct Product Theorems 58

3.3.4 Historical Notes and Discussion

The first direct product theorem for three-message protocols is proved by Bel-
lare, Impagliazzo, and Naor [1], who showed that n-fold parallel repetition decreases
soundness error from (1 − ε) to e−Ω(ε2n) + ngl for three-message protocols using a
different reduction strategy. Later on, Canetti, Halevi, and Steiner [2] improved the
bound to tight using the reduction strategy presented in this section.

We discuss the two different approaches below. Recall that the main challenge
for the setting of three-message protocols is that P∗ cannot predict the verifier V’s
decision due to the lack of V’s coins.

• As presented in this section, Canetti et al. use correlation reduction to deal with
the challenge. Correlation reduction allows us to get rid of bad correlations, and
hence P∗ can succeed with good probability by sampling a random ~v−i such that
Pn∗ convinces all internal subverifiers V−i on (vi, ~v−i).

• In contrast, Bellare et al. use a “soft-decision” method to deal with the chal-
lenge. There is no preprocessing and P∗ selects a random coordinate i ∈ [n]
in which to embed V.6 The term soft-decision refers to how P∗ selects ~v−i: P∗

randomly sample a ~v−i and decides whether to accept this ~v−i probabilistically
with probability depending on the number of internal subverifiers V−i that Pn∗

can convince on (vi, ~v−i). Specifically, P∗ accepts the ~v−i with probability 2−t if
t out of the n− 1 subverifiers V−i reject on (vi, ~v−i).

To get some intuition on why the soft-decision method works, let us see how it
works on the adversarial example presented in this section, which is recalled below:
Consider a deterministic parallel prover Pn∗ such that when interacting with Vn,n,
(i) Pn∗ can convince the parallel verifier Vn,n with probability δn, and (ii) for every
i ∈ [n], Pn∗ can convince all except the i-th subverifier with probability (1− δn)/n.

Informally, in this example, with probability δn+(1−δn)/n, P∗ samples a ~v−i such
that Pn∗ convinces all V−i, and P∗ accepts this ~v−i with probability 1. Conditioning
on this case, P∗ is “cheated” and can only succeed with small probability, roughly
nδn. However, with the remaining (n − 1) · (1 − δn)/n probability, P∗ samples a ~v−i
such that only one subverifiers of V−i rejects, and P∗ accepts this ~v−1 with probability
1/2 according to the soft-decision. Note that conditioning on this case, P∗ succeeds
with probability 1, which compensate the first case where P∗ is cheated.

As indicated in the above example, soft-decision works since it smooths out the
“error” that it makes. Very informally, whenever it gets “cheated”, it gets some
compensation (with smaller “weight”) from other coordinates. However, this seems
to be also the reason that soft-decision does not achieve optimal information-theoretic

6Actually, Bellare et al. used sampling to select a best coordinate i ∈ [n] in which to embed V.
However, it can be shown that a random coordinate also works, which is also the choice of later
generalizations of Bellare et al. in other settings.

Chapter 3: Efficient Direct Product Theorems 59

bounds, since the smoothing process incurs some inherent loss. Nevertheless, both
techniques are useful and can be generalized to different settings, which we briefly
discuss below.

• For three-message protocols, the correlation reduction approach can be gen-
eralized naturally to handle any threshold verifiers [4] and even more general
monotone verifiers [22], which give tight bounds for these settings. Furthermore,
for more general protocols with simulatable verifiers7 studied in the next section,
the correlation reduction approach can be combined with the rejection sampling
strategy in Section 3.2 to give a nearly tight direct product theorem for proto-
cols with simulatable verifiers. However, it is unclear how to use this approach
to handle threshold or even Chernoff-type (parallel) verifiers8 for protocols with
simulatable verifiers.

• In contrast, the soft-decision method seems to only be able to be generalized to
handle Chernoff-type verifiers and cannot achieve optimal information-theoretic
bounds. However, it can be applied to all classes of protocols where parallel rep-
etition is known to decrease soundness error, and gives Chernoff-type theorems
for all these settings.

Finally, we remark that while the reduction presented in this section is discovered
by Canetti et al. [2], the analysis presented here is in spirit close to the analysis of
Holenstein and Schoenebeck [22]. The analysis of Holenstein and Schoenebeck handles
the sampling errors in a better way, which allows the numbers of samples M1,M2,M
that P∗ needs to generate depend only on the (additive) slackness parameter ξ, but
independent of the success probability δn. This is important to obtain an efficient
reduction for the more general case of verifier with arbitrary monotone combining
functions in [22].

On the other hand, we [4] considered the same generalization of the reduction
presented in this section as Holenstein and Schoenebeck [22]. However, the better
analysis is missed in [4], and hence we are only able to get an efficient reduction when
the number of repetition n is small. To obtain an efficient reduction for threshold
parallel verifiers with large n, we apply a generic reduction first to reduce n to a small
enough n′ before applying the generalized reduction.

7Informally, a verifier V is simulatable if one can simulate V’s next messages without knowing
V’s coin.

8Recall that a Chernoff-type verifier is a threshold verifier with sufficiently large threshold.

Chapter 3: Efficient Direct Product Theorems 60

3.4 Efficient Direct Product Theorem for

Computationally Simulatable Protocols

In this section, we define a more general class of computationally simulatable pro-
tocols, and prove a direct product theorem for computationally simulatable protocols.
The class of computationally simulatable protocols contains both public-coin proto-
cols and three-message protocols. More interestingly, we will show in the next section
that any interactive protocols can be made computationally simulatable by running
it under a fully homomorphic encryption scheme, such as the one recently proposed
by Gentry [11]. This gives a way to get around the negative results of Bellare et
al. [1] and Pietrzak and Wikström [31] and amplify soundness for any interactive pro-
tocol in a round preserving way. Namely, we first make the protocol computationally
simulatable, and then do parallel repetition.

3.4.1 Definition of Simulatability and Theorem Statement

The study of “simulatable protocols” was initiated by Hast̊ad, Pass, Pietrzak, and
Wikström [19]. They observed that parallel repetition theorems hold for protocols
where the rejection sampling strategy P∗rej can be implemented efficiently. In other
words, it suffices that P∗rej can efficiently sample random continuations of 〈Pn∗,Vn,n〉
and identify successful continuations. Furthermore, the rejection sampling strategy
can be modified so that the definition of successful continuation does not depend on
the external verifier’s decision. Hence, only the verifier’s next messages (but not nec-
essary his decision) need to be simulated efficiently. Roughly speaking, “simulatable
protocols” are protocols where a certain version of rejection sampling strategy can be
implemented efficiently, so that parallel repetition theorem holds for these protocols.

However, the simulatability property is tricky to define. The first definition of
Hast̊ad et al. [19] defined not only a simulatability property, but also an “extendabil-
ity” property. A later version of Hast̊ad et al. [20] considered a simpler (but incom-
parable) formulation and defined a weak simulatablility property. Roughly speaking,
weak simulatability only requires simulating continuation of the interaction condi-
tioned on some noticeable event, but the quality of the simulation is required to be
statistically close. In contrast, we define a computational simulatability property,
which requires simulating the whole continuation of the interaction, but a computa-
tionally indistinguishable simulation is sufficient. The above three formulations are
subtly different and incomparable.

Before further discussions, let us consider some examples informally. Public-coin
protocols are clearly simulatable, since the verifier’s messages are simply independent
random strings. Three-message protocols are also simulatable, since the first message
of a verifier V is easy to simulate by just running V with fresh random coins. Note
that for three-message protocols, a prover P∗ cannot compute V’s decision, but this is

Chapter 3: Efficient Direct Product Theorems 61

OK for simulatability. On the other hand, the negative example discussed in Section
1.1.1 is not simulatable, since the second message of V is hard to simulate unless the
prover can generate the key from only the box.

We proceed to discuss subtle issues in defining the computational simulatability
and introduce our definition formally.

Issue on Random Continuation. Let us first look closely at the rejection sam-
pling strategy P∗rej for public-coin protocols. Consider the interaction of 〈P∗,V〉 at
the `-th round for some ` ∈ [m]. Before the `-th round, P∗ and V jointly select the
parallel verifier Vn,n’s messages ~v[`−1] = (~v1, . . . , ~v`−1). At the `-th round, P∗rej receives
a message v`,i from the external verifier V = Vi, and P∗rej selects ~v`,−i by rejection
sampling. Namely, P∗rej keeps sampling random continuation of the parallel interac-
tion 〈Pn∗,Vn,n〉 from partial interaction (~v1, . . . , ~v`−1, v`,i), rejecting until a successful
continuation is found, and selects the corresponding ~v`,−i. For the case of public-coin
protocols, sampling a random continuation amounts to sampling uniformly random
messages (~v`,−i, ~v`+1, . . . , ~vm).

However, when the protocol is not public-coin, the definition of a random con-
tinuation is less clear. Does a random continuation refer to a random interaction
of 〈Pn∗,Vn,n〉 conditioned on the transcript (~v1, . . . , ~v`−1, v`,i), or conditioned on the
random coins tossed so far? It turns out that both definitions work in the sense
that the rejection sampling strategy can succeed with good probability under both
definitions of random continuations. However, the issue is whether P∗rej can sample a
random continuation efficiently.

Suppose random continuations are defined by conditioning on the transcript. Then
even the n − 1 internal verifiers V−i’s messages may also be hard to generate. For
example, a verifier’s first two messages may be (h, h(x)) and x, where h is a shrinking
collision-resistant hash function and x is a random input to h. Sampling a random
second message x′ conditioned on the first message (h, h(x)) is equivalent to sample a
random preimage of h(x), which breaks the collision-resistant property. The original
formulation of Hast̊ad et al. [19] used this definition, and so they required not only
simulatability but also “extendability,” which roughly says that a prover can sample
the external verifiers’ and the internal verifiers’ next messages, respectively.

In contrast, if random continuations are defined by conditioning on the random
coins tossed so far, then the issue of simulating the internal verifiers’ messages goes
away. In the above example, conditioned on the coins h and x, the second message
is deterministic, namely, just x, which is trivial to sample given the coins h and x.
In general, for the n − 1 internal subverifiers V−i, P∗rej has the coins tossed in the
previous `− 1 rounds, so P∗rej can sample the `-th round message of V−i conditioned
on the previous coins easily.

On the other hand, the task of simulating the external verifier V = Vi’s next
message conditioned on the previous coins is non-trivial, since P∗rej does not have Vi’s

Chapter 3: Efficient Direct Product Theorems 62

coins. Both the weak simulatablility property and the computational simulatablility
property refer to the ability to efficiently perform this task in certain respects.

We remark that one needs to carefully specify the coins tossed by V in each round
so that such task is possible. As an extreme example, consider a public-coin verifier
V who tosses all coins in the first round. Conditioned on the coins tossed in the first
round, the second message is fixed. However, there is no way for a prover to guess
the fixed message correctly without knowing the verifier’s coins.

Issue on Computational Indistinguishability. We mentioned that the rejec-
tion sampling strategy can succeed with good probability if P∗rej can simulate a ran-
dom continuation perfectly, i.e., P∗rej can perfectly sample a random interaction of
〈Pn∗,Vn,n〉 conditioned on the coins tossed in the first `-rounds of interaction. In-
tuitively, since both P∗rej and V are PPT, computationally indistinguishable samples
of random continuations should be as good as samples from the actual distribution.
This is indeed the case when computational indistinguishability is formulated prop-
erly. There are a few possible formulations. The question is what is the most general
formulation of computational indistinguishability for defining computational simulat-
ablility property, so that the class of computationally simulatable protocols contains
more interesting protocols, and the proof of parallel repetition goes through.

Our definition of computational simulatability generalizes the definition in the
original version of Hast̊ad et al. [19] in some aspects. The generalization is necessary
for us to prove that running a protocol under fully homomorphic encryption schemes
makes the protocol computationally simulatable. The key issue is that, Hast̊ad et
al. [19] requires computationally indistinguishability to hold even against distinguish-
ers with verifier’s coins. This is problematic for us since the verifier’s coins would
leak the secret keys of fully homomorphic encryption schemes completely.

Our Definition. We proceed to introduce our first definition of computational
simulatability. We require that a simulator can simulate a random continuation from
any partial interaction in a computationally indistinguishable way to efficient, non-
uniform distinguishers who get only the prover’s view but not the verifier’s coins.
The partial interaction includes not only the transcripts, but also both parties’ coins
tossed so far. Therefore, to define the computational simulatable property, we need
to specify both parties’ coins in each round. Recall that for a m-round protocol
〈P,V〉, the verifier’s (resp., the prover’s) messages are denoted by v1, . . . , vm (resp.,
p1, . . . , pm). We use c1, . . . , cm and t1, . . . , tm to denote the verifier and the prover’s
coins in each round, respectively. Hence, a `-round partial interaction of 〈P,V〉(x)
can be described by (t[`], c[`], x, p[`], v[`]), and P’s and V’s views are (t[`], x, p[`], v[`]) and
(c[`], x, p[`], v[`]), respectively. Recall that p[`] denotes (p1, . . . , p`).

Informally, we would like to say that given a prover strategy P∗, there is a simulator
S such that starting from any partial interaction (t[`], c[`], x, p[`], v[`]), when P∗ continues

Chapter 3: Efficient Direct Product Theorems 63

the interaction with either the actual verifier V or the simulator S, the resulting views
of the prover (without V’s coins and verdict) are computationally indistinguishable.

Definition 3.15 (Computational Simulatable Verifier) A verifier V is said to
be computationally simulatable if for every non-uniform PPT prover strategy P∗

there exists a PPT simulator S such that for every PPT distinguisher D, the following
holds.

There exists a negligible function ngl : N → (0, 1) such that for sufficiently large
s, for every common input x with security parameter s, for every partial interaction
(t[`], c[`], x, p[`], v[`]), D cannot distinguish the following two distributions with probabil-
ity greater than ngl(s).

• The prover P∗’s view (t[m], x, p[m], v[m]) after continuing the interaction with V
from (t[`], c[`], x, p[`], v[`]).

• The simulator S’s output (t′[m], x, p
′
[m], v

′
[m]), when we run S on the prover’s view

(t[`], x, p[`], v[`]) of the partial interaction.

Namely, we have

|Pr[D(t[m], c[`], x, p[m], v[m]) = 1]− Pr[D(t′[m], c[`], x, p
′
[m], v

′
[m]) = 1]| ≤ ngl(s).9

Note that the verifier V’s decision bit as well as V’s coins c[m] are not included in
the distributions. When the above holds for a specific PPT prover P∗, we say V is
computationally simulatable w.r.t. P∗.

Note that in the above definition, we require that the indistinguishability holds
for any partial interaction of 〈P∗,V〉 and holds against non-uniform distinguishers,
which seem to be strong requirements. Nevertheless, we will show that, running a
protocol under a fully homomorphic encryption scheme, when it is done properly, can
satisfy the above definition.

Theorem Statement. We proceed to state our direct product theorem for com-
putationally simulatable protocols below. The theorem says that n-fold parallel rep-
etition with direct product verifiers decreases the soundness error of computationally
simulatable protocols from δ to δn/2, which almost matches the information theoret-
ical bound of δn.

Theorem 3.16 Let 〈P,V〉 be a computationally simulatable protocol with input do-
main Λ, δ : Λ → [0, 1] and n : N → N efficiently computable functions with

9Note that since the verifier’s coins c[`] in the partial interaction is fixed and the distinguisher D is
non-uniform, D has access to c[`] through non-uniform advice. Hence, we include in the distribution
explicitly for clarity. The point is that V’s coins after `-th round are not given to D.

Chapter 3: Efficient Direct Product Theorems 64

n ≤ poly(s). If 〈P,V〉 has soundness error δ, then its n-fold parallel repetition with
direct product verifier 〈Pn,Vn,n〉 has soundness error δn/2 + ngl, where ngl denotes a
negligible function in the security parameter s.

We remark that the bound δn/2 is tight for our reduction prover strategy. It is
an interesting open question to see if δn/2 is optimal, since improving the bound
to δn would imply an essentially tight Chernoff-type theorem for computationally
simulatable protocols. In the following section, we prove Theorem 3.16 by defining
a black-box reduction prover strategy, which exploits ideas from the reductions for
public-coin protocols and three-message protocols in previous sections.

3.4.2 Reduction Prover Strategy

In this section, we define an efficient reduction prover strategy P∗ for proving
Theorem 3.16. Our goal is to show that if there exists a parallel prover strategy
Pn∗ with at least non-negligible success probability δn + ξ, then our reduction prover
strategy P∗ can convince a single instance verifier V with probability at least δ2.10

As discussed, our reduction prover strategy is a variant of the rejection sampling
strategy P∗rej for public-coin protocols, so let us first recall the rejection sampling strat-
egy P∗rej from Figure 3.3: P∗rej interacts with a public-coin verifier V by simulating the
interaction of a deterministic parallel prover strategy Pn∗ and a parallel verifier Vn,n,
where V plays a random subverifier Vi of Vn,n, and P∗rej plays Pn∗ and the remaining
n − 1 subverifiers V−i of Vn,n. Since Pn∗ is deterministic, the interaction of 〈P∗rej,V〉
amounts to determining Vn,n’s messages ~v1, . . . , ~vm, where V selects v1,i, . . . , vm,i uni-
formly at random, and P∗rej selects ~v1,−i, . . . , ~vm,−i by rejection sampling. Namely, at
each round j, P∗rej repeatedly samples random continuations (~vj,−i, ~vj+1, . . . , ~vm) of
〈Pn∗,Vn,n〉 until a successful continuation is found, where a successful continuation
means Vn,n accepts at the end of the interaction. Then P∗rej selects the corresponding
~vj,−i in the successful continuation.

Let us look at closely whether the above rejection sampling strategy P∗rej can be
implemented when V is not public-coin. First, P∗rej can still interact with V by sim-
ulating the interaction of a deterministic Pn∗ and a Vn,n, but now P∗rej and V jointly
select the random coins ~c1, . . . ,~cm of Vn,n, instead of the messages ~v1, . . . , ~vm. In
the interaction, V selects Vi’s coins c1,i, . . . , cm,i uniformly at random, and the is-
sue is whether P∗rej can efficiently select ~c1,−i, . . . ,~cm,−i by rejection sampling. This
requires to sample random continuations of 〈Pn∗,Vn,n〉 and identify successful contin-
uations efficiently. As discussed in Section 3.4.1, for private-coin protocols, random
continuations means continuations of interaction 〈Pn∗,Vn,n〉 conditioned on the coins
(~c1, . . . ,~c`) tosses in previous rounds, as opposed to conditioned on the transcript
(~v1, . . . , ~v`).

10As we will see later, it is more convenient to use parameters δ2 and δn than δ and δn/2.

Chapter 3: Efficient Direct Product Theorems 65

Consider the first round of the interaction, where V sends v1,i = V(c1,i) to P∗rej,
and P∗rej needs to select ~c1,−i. It is easy for P∗rej to sample coins (~c1,−i,~c2, . . . ,~cm)
and simulate Pn∗ and n− 1 internal subverifiers V−i. However, in general, P∗ cannot
simulate the external subverifier Vi due to the lack of information about the external
subverifier Vi’s coins c1,i.

Intuitively, when the verifier is computationally simulatable, P∗rej can use a simu-
lator S to simulate the external verifier V = Vi. Indeed, consider the “naive” prover
strategy P∗naive defined in Figure 3.7, who selects a random coordinate i and interacts
with V by playing Pn∗ and V−i honestly. Note that the interaction of P∗naive with V
simulates the interaction of 〈Pn∗,Vn,n〉 honestly, and a partial interaction of the first
` rounds of 〈P∗naive,V〉 can be described by (i;~c1, . . . ,~c`). By the computational simu-
latability, there exists an efficient simulator S that can simulate random continuations
of 〈P∗naive,V〉 from a partial interaction (i;~c1, . . . ,~c`), which corresponds to random
continuations of 〈Pn∗,Vn,n〉 from the corresponding partial interaction (~c1, . . . ,~c`) with
Vi being the external subverifier.

Prover Strategy P∗naive(x, n)
/* P∗naive interacts with V and is given oracle access to Pn∗. */

/* The interaction of 〈P∗naive,V〉 simulates the interaction of 〈Pn∗,Vn,n〉 honestly. */

• P∗naive selects a coordinate i ∈R [n] uniformly at random.

• For each round j ∈ [m], upon receiving vj,i = vj from V, P∗naive samples coins
~cj,−i uniformly at random, runs V−i to generate ~vj,−i, runs Pn∗ to generate ~pj ,
and sends pj,i to V.

Figure 3.7: A “naive” prover strategy P∗naive such that the interaction of 〈P∗naive,V〉
simulates the interaction of 〈Pn∗,Vn,n〉 honestly.

Note that the simulator S only generates a (computationally indistinguishable)
view of P∗naive, which consists of the internal subverifiers V−i’s view, but not the ex-
ternal verifier Vi’s view. Hence, P∗rej can only compute the verdict bits of the internal
subverifiers, but not the verdict bit of the external verifier. However, to check if
a continuation is successful, P∗rej needs to check the verdict bits of all subverifiers.
Hence, the computational simulatablility property is not sufficient to imply that the
rejection sampling strategy of Figure 3.3 is efficiently implementable. Nevertheless, if
the definition of successful continuation depends only on the verdict bits of the inter-
nal subverifiers but not on the external subverifier’s verdict, then the corresponding
rejection sampling strategy becomes efficiently implementable for computationally
simulatable protocols.

Note that this situation is similar to the situation of three-message protocols in
Section 3.3, where a reduction prover strategy P∗ can only base his decision on the
internal subverifiers’ verdict bits, as the external subverifier’s verdict bit is unknown.

Chapter 3: Efficient Direct Product Theorems 66

In Section 3.3, we considered a naive strategy, where P∗ only checks whether all
internal subverifiers accept. We first observed that this naive strategy does not work
when there are“bad correlations” in the “success pattern” of Pn∗. Then, we presented
a correlation reduction procedure in Figure 3.5, which exploits such bad correlations
to convert a parallel prover strategy Pn∗ to another parallel prover strategy Pn

′∗ with
smaller n′ < n. We proved that correlation reduction eliminates bad correlations,
and the naive strategy works when applied to the Pn

′∗ returned by the correlation
reduction procedure.

We observe that the same idea can be applied to computationally simulatable
protocols as well, although the analysis is very different and much more involved.
First, we consider an analogous naive modification of the rejection sampling strategy,
where the definition of successful continuation is changed to only require that all
internal subverifiers accept. For notationally simplicity, let us still use P∗rej to denote
the modified rejection sampling strategy. Such a P∗rej is efficeintly implementable for
computationally simulatable protocols, but does not work because of the same issue
of “bad correlations”, as illustrated by the following example copied from Section 3.3.

Let 〈P,V〉 be a two-message protocol (which is clearly computationally simulat-
able). Consider a deterministic parallel prover Pn∗ such that when interacting with
Vn,n, (i) Pn∗ can convince the parallel verifier Vn,n with probability δn, and (ii) for ev-
ery i ∈ [n], Pn∗ can convince all except the i-th subverifier with probability (1−δn)/n.
In the reduction, the modified P∗rej selects a random coordinate i ∈ [n], V selects Vi’s
coin ci, and P∗rej samples random continuations (ci,~c−i). Observe that for this Pn∗,
P∗rej convinces V iff the random continuation (ci,~c−i) falls in case (i). Intuitively, one
can expect the random continuation (ci,~c−i) to fall in each case with probability pro-
portional to p = δn and q = (1−δn)/n, respectively, and hence P∗rej may succeed with
probability only p/(p+q) ≈ nδn � δ. Fortunately, as before, a natural generalization
of the correlation reduction procedure in Figure 3.5 can be applied to eliminate bad
correlations, and the modified rejection sampling strategy works when applies to the
Pn
′∗ returned by the generalized correlation reduction.

3.4.3 Correlation Reduction

Again, we briefly recall the key idea of correlation reduction: one can convert a
parallel prover Pn∗ (interacting with Vn,n) with such bad correlations to a parallel
prover P(n−1)∗ (interacting with Vn−1,n−1) that has success probability higher than
δn−1. To illustrate, in the above example, a such P(n−1)∗ can simply interact with
Vn−1,n−1 by simulating the interaction of Pn∗ and Vn,n, where P(n−1)∗ simulates Pn∗ and
the first coordinate V1 honestly, and Vn−1,n−1 plays the remaining coordinates V−1 of
Vn,n. Hence, Pr[〈P(n−1)∗,Vn−1,n−1〉(x) = 1] = Pr[Pn∗ convinces V−1] = (1−δn)/n+δn.

Formal descriptions of the generalized correlation reduction CR and our final re-
duction prover strategy P∗ can be found in Figure 3.8 and 3.9, respectively. At a high
level, our P∗ first applies CR to obtain a prover strategy Pn

′∗, and then applies the

Chapter 3: Efficient Direct Product Theorems 67

modified rejection sampling strategy P∗rej to Pn
′∗. (Again, we use the same name CR

and P∗rej for notational simplicity.)

Sub-Routine FindC(Pn∗, n, i, δ, ξ)
/* Find correlations in the success pattern of Pn∗ on coordinate i ∈ [n]. */

/* Return P(n−1)∗ if such correlation is found. Otherwise, return ⊥ */

Repeat the following at most M1 = O
(
n
ξ
· log n

ξ

)
times:

• Sample random c∗[m],i and estimate p(c∗[m],i)
def
= Pr[Pn∗ convinces V−i|c[m],i =

c∗[m],i] by sampling. Namely, randomly sample M2 = O
(
n2

ξ2
· log n

ξ

)
independent copies of ~c[m],−i’s, check if Pn∗ convinces V−i on
(c∗[m],i,~c[m],−i), and compute an estimator p̂(c∗[m],i) = |{~c[m],−i :

Pn∗ convinces V−i on (c∗[m],i,~c[m],−i)}|/M2.

• If p̂(c∗[m],i) ≥ δn−1 + (1− (1/n)) · ξ, then return a parallel prover P(n−1)∗(c∗i)

for Vn−1,n−1 defined as follows: P(n−1)∗(c∗[m],i) interacts with Vn−1,n−1 by

simulating the interaction of Pn∗ and Vn,n, where P(n−1)∗(c∗[m],i) simulates Pn∗

and the i-th coordinate Vi with random coins c∗[m],i honestly, and Vn−1,n−1

plays the remaining coordinates V−i of Vn,n.

Return ⊥ after M1 (failure) attempts.

CR(Pn∗, n, δ, ξ)
/* Implicitly, there are a PPT verifier V and an input x as part of the input. */

/* Iteratively exploit correlation in the success pattern of Pn∗ to obtain P(n−1)∗.*/

Iteratively, apply FindC to every coordinate i ∈ [n], until n = 1 or FindC returns
⊥ for all coordinates, namely

• Call FindC(Pn∗, n, i, δ, ξ) for every i ∈ [n]. If there exists a coordinate i
such that FindC(Pn∗, n, i, δ, ξ) returns P(n−1)∗, then set ξ ←

(
1− 1

n

)
· ξ and

n← n− 1 (so that Pn∗ refers to the prover strategy returned by FindC).

Return the final Pn∗.

Figure 3.8: Generalized correlation reduction for direction product verifiers.

Note that the subroutine FindC defined here and in Figure 3.5 are exactly the
same, although the notation is slightly different. Here, the coins of Vn,n are denoted
by ~c[m] = (~c1, . . . ,~cm), and c[m],i = (c1,i, . . . , cm,i) denotes Vi’s whole coin tosses. On
the other hand, the difference between the correlation reduction CR defined here and
in Figure 3.5 is that, here, CR tries to find correlation for every coordinate i ∈ [n], as
opposed to only the first coordinate in Figure 3.5. This simple generalization is needed

Chapter 3: Efficient Direct Product Theorems 68

for an intuitive reason: the rejection sampling strategy P∗rej embeds V in a random
coordinate i ∈ [n], and in contrast, the reduction prover strategy for three-message
protocols always embeds V in the first coordinate.

As in Section 3.3.1, we formalize the property of CR in the following lemma,
which is a straightforward generalization of Lemma 3.13. The lemma says that when
we apply CR to a prover strategy Pn∗ with success probability at least roughly δn,
with high probability, CR outputs a “good” prover strategy Pn

′∗ with success prob-
ability at least roughly δn

′
such that either (1) n′ = 1, in which case we obtain a

good single instance prover strategy, or (2) for every coordinate i ∈ [n′], we have
Pr[Pn

′∗ convinces V−i] . δn
′−1.11 The latter case informally means that there are no

bad correlations in the success pattern of Pn
′∗.

Let a PPT verifier V (not necessarily computationally simulatable), an input x ∈
{0, 1}∗, parameters n ∈ N , δ, ξ ∈ (0, 1), and a deterministic parallel prover Pn∗ for
Vn,n be given as in Figure 3.8.

Lemma 3.17 If Pn∗ has success probability at least (δn + ξ) on input x, then with
probability at least (1− (ξ/10n)) over the randomness of CR, CR(Pn∗, n, δ, ξ) outputs
a good deterministic prover strategy Pn

′∗ satisfying the following properties.

• Pr[〈Pn′∗,Vn′,n′〉(x) = 1] ≥ δn
′
+ ((10n′ − 1)/10n) · ξ.

• Either n′ = 1, or for every i ∈ [n′],

Pr[Pn
′∗ convinces V−i] ≤ δn

′−1 +
10(n′ − 1) + 2

10n
· ξ.

Furthermore, CR(Pn∗, n, δ, ξ) can be implemented with oracle access to Pn∗ with run-
time poly(|x|, n, ξ−1), and the output Pn

′∗ can be implemented in time poly(|x|, n)
given oracle access to Pn∗.

The above lemma can be proved by a straightforward generalization of the proof
of Lemma 3.13. We omit the proof to avoid repetitive arguments. The lemma allows
us to analyze the rejection sampling strategy assuming that it is given a good parallel
prover Pn∗ that satisfies the conclusion of Lemma 3.17.

3.4.4 Rejection Sampling

Our reduction prover strategy P∗ for proving Theorem 3.16 is given in Figure 3.9.
We remark that when we restrict to the case of three-message protocols, P∗ is very
similar to the reduction prover strategy for three-message protocols in Section 4.2.2,

11In Lemma 3.13, we have upper bounds on the probability of Pn
′∗ convinces V−1 even conditioned

on every c1 = c∗1. The same statement holds, but here, we only need the stated weaker assertion.

Chapter 3: Efficient Direct Product Theorems 69

Prover Strategy P∗(x, n, δ, ξ)
/* P∗ interacts with V and is given oracle access to Pn∗. */

• Let α = δn+ξ. If δn ≤ ξ, update the value of δ and ξ: set δ ← (α/2)1/n, ξ ← α/2.

• P∗ applies CR to Pn∗ to obtain Pn
′∗ = CR(Pn∗, n, δ, ξ).

• If n′ = 1, P∗ interacts with V by running Pn
′∗. Otherwise, P∗ performs the

following rejection sampling strategy with parameter P
∗(Pn′∗)
rej (x, n′, δ, (n′/n) · ξ).

Prover Strategy P∗rej(x, n, δ, ξ)
/* P∗rej interacts with V and is given oracle access to Pn∗. */

/* Let P
∗(Pn∗)
naive be the naive prover strategy defined in Figure 3.7, and S the correspond-

ing simulator for P∗naive. */

• P∗rej selects a coordinate i ∈R [n] uniformly at random.

• For each round j ∈ [m], upon receiving vj,i = vj from V, P∗rej repeats the following

at most M = O
(
mn
δnξ

)
times.

– P∗rej first samples coins ~cj,−i uniformly at random.

– P∗rej uses S to generate a random continuation from current partial interac-
tion (i;~c1, . . . ,~cj) of 〈P∗naive,V〉 (which emulates 〈Pn∗,Vn,n〉 honestly), and
checks if it is a successful continuation in the sense that all internal subver-
ifiers accept at the end of the interaction.

– If the continuation is successful, then P∗rej selects the coins ~cj,−i, runs V−i
to generate ~vj,−i, runs Pn∗ to generate ~pj , and sends the corresponding pj,i
to V.

• If all the M attempts fail, P∗rej aborts.

Figure 3.9: Rejection sampling strategy P∗rej for computationally simulatable

protocols.

and one can slightly modify the analysis in Section 3.3.3 to show that P∗ can succeed
with probability at least δ as well. However, as a black-box reduction for general
computationally simulatable protocols, the bound δ2 is tight for P∗.

We will show that if a deterministic parallel prover strategy Pn∗ can succeed
with probability δn + ξ, then the reduction prover strategy P∗, given oracle access to
Pn∗, can succeed with probability at least δ2, where ξ is a (non-negligible) slackness
parameter. The core part of our analysis is to lower bound the success probability
of the rejection sampling strategy P∗rej when it is applied to a “good” parallel prover
strategy Pn∗ returned by CR. The analysis of P∗rej consists of the following two steps.

Chapter 3: Efficient Direct Product Theorems 70

Step 1. We first consider a “perfectified” version of the rejection sampling strategy,
where P∗rej can get perfect samples of random continuations of 〈Pn∗,Vn,n〉, as opposed
to computationally indistinguishable samples obtained from a simulator.

One way to formalize this perfectified strategy is to consider an “omniscient” third
party OV, who can generate perfect samples of random continuations for P∗rej. More
precisely, during the interaction of P∗rej and V, OV keeps track the view V (including
V’s coins), and P∗rej is allowed to query OV as follows. P∗rej can send OV the prover
strategy P∗naive together with a partial view of P∗naive (that is consistent with the
current view of V), and OV returns a sample of random continuation of 〈P∗naive,V〉
from the partial interaction defined by the views of P∗naive and V.

For notationally convenience, we use P
∗(OV)
rej to denote the perfectified rejection

sampling strategy. More generally, for a prover strategy P∗ who uses some simulator
S to generate random continuations, we use P∗(OV) to denote the perfectified version of
P∗, who queries OV to get perfect samples of random continuations, instead of using
S. We note that OV is defined for the purpose of analysis and is not an oracle in the
usual sense.

A formal description of the perfectified rejection sampling strategy P
∗(OV)
rej can be

found in Figure 3.10. We will analyze the success probability of P
∗(OV)
rej when it is

given a good parallel prover Pn∗ that satisfies the conclusion of Lemma 3.17. The
analysis follows closely the inductive analysis of the rejection sampling strategy for
public-coin protocols in Section 3.2.2, but using a different induction hypothesis.

Step 2. We then show that the success probability of the actual P∗rej, who uses
a simulator to generate random continuations, is close to the success probability of
the perfectified P

∗(OV)
rej . More generally, we will prove by a hybrid argument that

for any PPT prover strategy P∗, who uses a simulator S to generate samples of
random continuations, the success probability of P∗ is close to that of a corresponding
perfectified prover strategy P∗(OV), who uses the oracle OV to generate such samples
with correct distribution.

3.4.5 Analysis of Perfectified Rejection Sampling Strategy
P
∗(OV)
rej

Recall that the main difference between the rejection sampling strategies P∗rej for
public-coin protocols and computationally simulatable protocols is in the definition
of successful continuations. Previously, a continuation is successful if Pn∗ convinces
Vn,n. Here, we only require that Pn∗ convinces all internal subverifiers V−i. To analyze

P
∗(OV)
rej , we use the same inductive analysis as in Section 3.2.2 with a different induction

hypothesis.
As before, it is instructive to first analyze an ideal version P

∗(OV)
ideal of P

∗(OV)
rej , where

there are no sampling errors in the sense that P
∗(OV)
ideal can always find a random suc-

Chapter 3: Efficient Direct Product Theorems 71

Prover Strategy P
∗(OV)
rej (x, n, δ, ξ)

/* P
∗(OV)
rej interacts with V and is given oracle access to Pn∗. */

• P
∗(OV)
rej selects a coordinate i ∈R [n] uniformly at random.

• For each round j ∈ [m], upon receiving vj,i = vj from V, P
∗(OV)
rej repeats the

following at most M = O
(
mn
δnξ

)
times.

– P
∗(OV)
rej first samples coins ~cj,−i uniformly at random.

– P
∗(OV)
rej uses the oracle OV to generate a random continuation of
〈Pn∗,Vn,n〉 (by querying OV with P∗naive), and checks if it is a suc-
cessful continuation in the sense that all internal subverifiers accept
at the end of the interaction.

– If the continuation is successful, then P
∗(OV)
rej selects the coins ~cj,−i,

runs V−i to generate ~vj,−i, runs Pn∗ to generate ~pj, and sends the
corresponding pj,i to V.

• If all the M attempts fail, P
∗(OV)

rej aborts.

Figure 3.10: perfectified rejection sampling strategy P
∗(OV)
rej for computationally sim-

ulatable protocols.

cessful continuation if there exists one.

Analysis of the Ideal Version P
∗(OV)
ideal of Perfectified P

∗(OV)
rej

We shall show that if a deterministic Pn∗ satisfies (1) Pr[Pn∗ convinces Vn,n] ≥ δn,

and (2) for every coordinate i ∈ [n], Pr[Pn∗ convinces V−i] ≤ δn−1, then P
∗(OV)
ideal , given

oracle access to Pn∗, can convince V with probability at least δ2. We use the following
induction hypothesis for P

∗(OV)
ideal .

Chapter 3: Efficient Direct Product Theorems 72

Induction Hypothesis for P
∗(OV)
ideal . For every j ∈ [m] and every partial interaction

(~c1, . . . ,~cj), the following inequality holds.12

n∏
i=1

Pr[〈P∗(OV)
ideal ,V〉(x) = 1|i,~c1, . . . ,~cj]

≥ Pr[〈Pn∗,Vn,n〉(x) = 1|~c1, . . . ,~cj] ·(
n∏
i=1

Pr[Pn∗ convinces Vi|(Pn∗ convinces V−i),~c1, . . . ,~cj]

)

=
Pr[〈Pn∗,Vn,n〉(x) = 1|~c1, . . . ,~cj]

n+1∏n
i=1 Pr[Pn∗ convinces V−i|~c1, . . . ,~cj]

.

Recall that the induction hypothesis used in Section 3.2.2 is of the form

n∏
i=1

Pr[〈P∗(OV)
ideal ,V〉(x) = 1|i,~c1, . . . ,~cj] ≥ Pr[〈Pn∗,Vn,n〉(x) = 1|~c1, . . . ,~cj].

In comparison, here we pay extra factors of

n∏
i=1

Pr[Pn∗ convinces Vi|(Pn∗ convinces V−i),~c1, . . . ,~cj],

intuitively, since in the rejection sampling, P
∗(OV)
ideal makes his decision based only on

whether Pn∗ convinces V−i.
We introduce some shorthand notations below to simplify the expressions. We

will use h̄ = (~c1, . . . ,~cj) to denote a partial interaction and define

γ(h̄) = γ(~c1, . . . ,~cj)
def
= Pr[〈Pn∗,Vn,n〉(x) = 1|~c1, . . . ,~cj],

γi(h̄) = γ(~c1, . . . ,~cj)
def
= Pr[Pn∗ convinces V−i|~c1, . . . ,~cj], for every i ∈ [n], and

ηi(h̄) = ηi(~c1, . . . ,~cj)
def
= Pr[〈P∗(OV)

ideal ,V〉(x) = 1|i,~c1, . . . ,~cj] for every i ∈ [n].

With the above shorthand notation, the inductive hypothesis becomes

n∏
i=1

ηi(h̄) ≥ γn+1(h̄)∏n
i=1 γi(h̄)

.

We will prove the induction backward on j = m,m − 1, . . . , 1, 0 and apply the
induction hypothesis with j = 0 to complete the analysis. We present the latter step
of applying the induction hypothesis first.

12We use a convention that 0/0 = 0.

Chapter 3: Efficient Direct Product Theorems 73

Induction Hypothesis for j = 0 ⇒ Pr[〈P∗(OV)
ideal ,V〉(x) = 1] ≥ δ2. When j = 0, the

induction hypothesis says that

n∏
i=1

Pr[〈P∗(OV)
ideal ,V〉(x) = 1|i] ≥ Pr[〈Pn∗,Vn,n〉(x) = 1]n+1∏n

i=1 Pr[Pn∗ convinces V−i]
≥ δn·(n+1)

δ(n−1)·n = δ2n.

Recalling that P
∗(OV)
ideal selects the coordinate i uniformly at random, we have

Pr[〈P∗(OV)
ideal ,V〉(x) = 1] =

1

n

n∑
i=1

Pr[〈P∗(OV)
ideal ,V〉(x) = 1|i].

Putting them together by applying the Arithmetic-Mean-Geometric-Mean Inequality
gives the desired lower bound on the success probability of P

∗(OV)
ideal .

Pr[〈P∗(OV)
ideal ,V〉(x) = 1] =

1

n

n∑
i=1

Pr[〈P∗(OV)
ideal ,V〉(x) = 1|i]

≥

(
n∏
i=1

Pr[〈P∗(OV)
ideal ,V〉(x) = 1|i]

)1/n

≥ δ2.

We proceed to verify the base case j = m of the induction, where we condition on
a complete interaction (~c1, . . . ,~cm) and there is no randomness.

Base Case of the Induction. For every complete interaction h̄ = (~c1, . . . ,~cm), we
have

n∏
i=1

Pr[〈P∗(OV)
ideal ,V〉(x) = 1|i, h̄] ≥ Pr[〈Pn∗,Vn,n〉(x) = 1|h̄]n+1∏n

i=1 Pr[Pn∗ convinces V−i|h̄]
.

By inspection, the left-hand-side is 1 iff Pn∗ convinces Vi for every i ∈ [n] on inter-
action h̄, which is equivalent to Pn∗ convinces Vn,n on h̄, which is the case iff the
right-hand-side is 1.

Finally, we prove the following induction step.

Induction Step. For every j ∈ [m] and every partial interaction h̄ = (~c1, . . . ,~cj−1),
the following holds. Suppose that for all coins ~cj, it is true that

n∏
i=1

ηi(h̄,~cj) ≥
γn+1(h̄,~cj)∏n
i=1 γi(h̄,~cj)

.

Chapter 3: Efficient Direct Product Theorems 74

Then we have
n∏
i=1

ηi(h̄) ≥ γn+1(h̄)∏n
i=1 γi(h̄)

.

The above induction step together with the base case prove the induction. As in
the previous analysis of P∗ideal in Section 3.2.2, the first step to prove the induction
step is to express the probabilities γ(h̄), γi(h̄), and ηi(h̄) in terms of γ(h̄,~cj), γi(h̄,~cj)
and ηi(h̄,~cj). By definition, we have

γ(h̄) = E
~cj

[
γ(h̄,~cj)

]
and γi(h̄) = E

~cj

[
γi(h̄,~cj)

]
.

Now, since for P
∗(OV)
ideal , a successful continuation only requires the acceptance of the

internal subverifiers, the formula of ηi(h̄)’s is different from that of P∗ideal.

Claim 3.18 For every i ∈ [n], j ∈ [m], and partial interaction h̄ = (~c1, . . . ,~cj−1),

ηi(h̄) = E
~cj

[
γi(h̄,~cj) · ηi(h̄,~cj)

γi(h̄, cj,i)

]
.

Proof of claim: Recall that V plays the random strategy and P
∗(OV)
ideal

plays the rejection sampling strategy. Let Pr[cj,i],Pr[~cj,−i] denote the uni-
form probability on cj,i,~cj,−i, respectively. For a given ~cj = (cj,i,~cj,−i),

observe that V plays cj,i with probability Pr[cj,i]. By Bayes Rule, P
∗(OV)
ideal

plays ~cj,−i with probability

Pr[~cj,−i|h̄, cj,i,Pn∗ convinces V−i]

=
Pr[~cj,−i] · Pr[Pn∗ convinces V−i|h̄,~cj]

Pr[Pn∗ convinces V−i|h̄, cj,i]

= Pr[~cj,−i] ·
γi(h̄,~cj)

γi(h̄, cj,i)
,

and by definition, P
∗(OV)
ideal can succeed with probability ηi(h̄,~cj). Hence, we

have

ηi(h̄) =
∑
~cj

Pr[cj,i] · Pr[~cj,−i] ·
γi(h̄,~cj)

γi(h̄, cj,i)
· ηi(h̄,~cj)

= E
~cj

[
γi(h̄,~cj) · ηi(h̄,~cj)

γi(h̄, cj,i)

]
2

Chapter 3: Efficient Direct Product Theorems 75

Using the above formulas, our goal is to show that

n∏
i=1

ηi(h̄) =
n∏
i=1

E
~cj

[
γi(h̄,~cj) · ηi(h̄,~cj)

γi(h̄, cj,i)

]
≥ γn+1(h̄)∏n

i=1 γi(h̄)
.

As in Section 3.2.2, we formalize the induction step as the following lemma, and prove
it by applying Hölder’s Inequality twice.

Lemma 3.19 (Induction Step) Let γ, γ1, . . . , γn, η1, . . . , ηn : Ωn → [0, 1] be [0, 1]-
valued functions over a product space Ωn such that∏

i

ηi(~q) ≥
γn+1(~q)

γi(~q)
for every ~q = (q1, . . . , qn) ∈ Ωn.

Let γ = E~q[γ(~q)]. For every i ∈ [n] and qi ∈ Ω, let

γi = E
~q
[γi(~q)], γi(qi) = E

~q−i

[γi(~q)] and ηi = E
~q

[
γi(~q) · ηi(~q)
γi(qi)

]
,

where the above expectation is over uniform distribution over Ωn. We have

n∏
i=1

ηi =
n∏
i=1

E
~q

[(
γi(~q) · ηi(~q)
γi(qi)

)]
≥ γn+1∏n

i=1 γi
.

Proof. We apply Hölder’s Inequality twice to prove the lemma, as presented in the
calculation below. The calculation is similar to that in the proof of Lemma 3.6, and
the applications of Hölder’s Inequality are the same.

n∏
i=1

E
~q

[(
γi(~q) · ηi(~q)
γi(qi)

)]

≥ E
~q

[(∏n
i=1 γi(~q)

n ·
∏n

i=1 ηi(~q)∏n
i=1 γi(qi)

)1/n
]n

(by Hölder’s Inequality)

≥ E
~q

[(∏n
i=1 γi(~q) · (γ(~q)n+1/

∏n
i=1 γi(~q)∏n

i=1 γi(qi)

)1/n
]n

(by induction hypothesis)

≥ E
~q

[(
γ(~q)n+1∏n
i=1 γi(qi)

)1/n
]n

=

[(
E~q[γ(~q)]n+1

E~q[
∏n

i=1 γi(qi)]

)1/n
]n

(by Hölder’s Inequality)

=
γn+1∏n
i=1 γi

.

Chapter 3: Efficient Direct Product Theorems 76

It is easy to verify that the probabilities γ(h̄, ·), γi(h̄, ·) and ηi(h̄, ·) satisfy the
premise of the above lemma. A straightforward application of the above lemma
completes the analysis of the induction step and hence completes the analysis of
P
∗(OV)
ideal .

Analysis of the Perfectified Rejection Sampling Strategy P
∗(OV)
rej

Following the proof in Section 3.2.2, we proceed to analyze the actual (non-ideal

version of) perfectified rejection sampling strategy P
∗(OV)
rej , where we modify the in-

duction hypothesis to accommodate the sampling errors, i.e., P
∗(OV)
rej may abort due

to the failure of finding a successful continuation in M trials when there are too few
successful continuations.

Let a m-round PPT verifier V, input x, parameters n,M ∈ N, δ, ξ ∈ (0, 1), a
deterministic parallel prover Pn∗ be given as in Figure 3.10. We prove the following
technical lemma regarding the success probability of P

∗(OV)
rej .

Lemma 3.20 Let γ
def
= Pr[〈Pn∗,Vn,n〉(x) = 1] and γi

def
= Pr[Pn∗ convinces V−i] for every

i ∈ [n]. We have

Pr[〈P∗(OV)
rej ,V〉(x) = 1] ≥

(
(γ −m · ν)n+1

+∏n
i=1(γi + ν)

)1/n

,

where (α)+
def
= max{α, 0} and ν = 1/M .

Proof. The proof follows closely the analysis of P
∗(OV)
ideal . Recall that we use h̄ =

(~c1, . . . ,~cj) to denote a partial interaction, and use γ(h̄) and γi(h̄) to denote the
success probability of Pn∗ in convincing Vn,n and V−i, respectively, starting from

partial interaction h̄. We redefine ηi(h̄) to denote the success probability of P
∗(OV)
rej :

ηi(h̄) = ηi(~c1, . . . ,~cj)
def
= Pr[〈P∗(OV)

rej ,V〉(x) = 1|i,~c1, . . . ,~cj] for every i ∈ [n].

We use the following induction hypothesis.

Induction Hypothesis for P
∗(OV)
rej . For every j ∈ [m] and every partial interaction

(~c1, . . . ,~cj), the following inequality holds.
n∏
i=1

ηi(h̄) ≥
(

(γ(h̄)− (m− j) · ν)n+1
+∏n

i=1(γi(h̄) + ν)

)
.

Observe that as M → ∞ (i.e., ν → 0), our induction hypothesis is the same as

before. Compared to the induction hypothesis for P
∗(OV)
ideal , we add certain slackness

in ν = 1/M in both the numerator and the denominator, where the slackness in the
numerator grows round by round backwardly to accommodate the sampling errors.
We show how to prove the lemma using the induction hypothesis first.

Chapter 3: Efficient Direct Product Theorems 77

Induction Hypothesis for j = 0 ⇒ Lemma 3.20. When j = 0, the induction
hypothesis says that

n∏
i=1

Pr[〈P∗(OV)
rej ,V〉(x) = 1|i] ≥ (γ −m · ν)n+1

+∏n
i=1(γi + ν)

.

Applying the Arithmetic-Mean-Geometric-Mean Inequality in the same way as before
gives the desired lower bound on the success probability of P

∗(OV)
ideal .

Pr[〈P∗(OV)
rej ,V〉(x) = 1]

=
1

n

n∑
i=1

Pr[〈P∗(OV)
rej ,V〉(x) = 1|i]

≥

(
n∏
i=1

Pr[〈P∗(OV)
rej ,V〉(x) = 1|i]

)1/n

≥
(

(γ −m · ν)n+1
+∏n

i=1(γi + ν)

)1/n

We proceed to prove the induction. Again, the base case j = m is trivial to check,
as the probabilities γ(h̄), γi(h̄) and ηi(h̄) are simply 0 or 1 when conditioned on a
complete interaction h̄ = (~c1, . . . ,~cm). We prove the induction step below.

Induction Step. For every j ∈ [m] and every partial interaction h̄ = (~c1, . . . ,~cj−1),
the following holds. Suppose for all coins ~cj, it is true that

n∏
i=1

ηi(h̄,~cj) ≥
(

(γ(h̄,~cj)− (m− j) · ν)n+1
+∏n

i=1(γi(h̄,~cj) + ν)

)
,

Then we have
n∏
i=1

ηi(h̄) ≥
(

(γ(h̄)− (m− (j − 1)) · ν)n+1
+∏n

i=1(γ(h̄) + ν)

)
.

The induction step can be proved by applying Hölder’s Inequality twice in the
same way as before, but with a more careful analysis on the error terms. We first
express the success probabilities ηi(h̄) in terms of γi(h̄,~cj) and ηi(h̄,~cj).

Claim 3.21 For every i ∈ [n], j ∈ [m], and partial interaction h̄ = (~c1, . . . ,~cj−1), we
have

ηi(h̄) = E
~cj

[
γi(h̄,~cj) · ηi(h̄,~cj)

γi(h̄, cj,i)
· f(γi(h̄, cj,i))

]
,

where f(α) = (1−(1−α)M), and M is the number of samples specified in the strategy

of P
∗(OV)
rej in Figure 3.10.

Chapter 3: Efficient Direct Product Theorems 78

Proof of claim: Observing that P
∗(OV)
rej can find a successful contin-

uation with probability exactly f(γi(h̄, cj,i)), and that conditioning on a

successful continuation is found, P
∗(OV)
rej plays ~cj,−i with the same proba-

bility as P
∗(OV)
ideal , we obtain the above formula for ηi. 2

We prove the induction step by the following lemma.

Lemma 3.22 Let ν ∈ (0, 1) and t,M ≥ 0 such that M ·ν ≥ 1. Let γ, γ1, . . . , γn, η1, . . . , ηn :
Ωn → [0, 1] be functions over Ωn such that

∏
i

ηi(~q) ≥
(

(γ(~q)− t · ν)n+1
+∏n

i=1(γi(~q) + ν)

)
for every ~q = (q1, . . . , qn) ∈ Ωn. Let γ = E~q[γ(~q)]. For every i ∈ [n], let γi = E~q[γi(~q)],
γi(qi) = E~q−i

[γi(~q)], and

ηi = E
~q

[
γi(~q) · ηi(~q)
γi(qi)

· f(γi(qi))

]
,

where f(α) = (1− (1− α)M), and the above expectation is over uniform distribution
over Ωn. We have

n∏
i=1

ηi =
n∏
i=1

E
~q

[(
γi(~q) · ηi(~q)
γi(qi)

)
· f(γi(qi))

]
≥
(

(γ − (t+ 1) · ν)n+1
+∏n

i=1(γi + ν)

)
.

Proof. The proof is very similar to that of Lemma 3.9 in Section 3.2.2. In the
calculation below, Hölder’s Inequalities are applied in the same way as before, and
the third and last inequality can be justified in the same way as the corresponding

Chapter 3: Efficient Direct Product Theorems 79

inequalities in the proof of Lemma 3.9.
n∏
i=1

E
~q

[(
γi(~q) · ηi(~q)
γi(qi)

· f(γi(qi))

)]
=

n∏
i=1

E
~q

[(
γi(~q) · ηi(~q)

γi(qi)/f(γi(qi))

)]

≥ E
~q

[(∏n
i=1 γi(~q) ·

∏n
i=1 ηi(~q)∏n

i=1(γi(qi)/f(γi(qi)))

)1/n
]n

(by Hölder’s Inequality)

≥ E
~q

[(
(
∏n

i=1 γi(~q)) · ((γ(~q)− t · ν)n+1
+ /

∏n
i=1(γi(~q) + ν))∏n

i=1(γi(qi)/f(γi(qi)))

)1/n
]n

(by induction hypothesis)

≥ E
~q

[(
(γ(~q)− (t+ 1) · ν)n+1

+∏n
i=1(γi(qi)/f(γi(qi)))

)1/n
]n

≥

[(
E~q[(γ(~q)− (t+ 1) · ν)+]n+1

E~q[
∏n

i=1(γi(qi)/f(γi(qi)))]

)1/n
]n

(by Hölder’s Inequality)

≥
(

(γ − (t+ 1) · ν)n+1
+∏n

i=1(γi + ν)

)

Applying the above lemma directly completes the proof of induction and Lemma
3.20.

3.4.6 Relating the Success Probability of P∗rej and P
∗(OV)
rej

In this section, we argue that the success probability of the actual rejection sam-
pling strategy P∗rej is close to that of the perfectified rejection sampling strategy

P
∗(OV)
rej , provided that they run in polynomial time. More generally, we prove by a

hybrid argument that for any PPT prover strategy that uses a simulator S to generate
samples of random continuations, the success probability of P∗ is close the that of
a corresponding perfectified prover strategy P∗(OV), who uses oracle OV to generate
such samples with correct distribution.

Lemma 3.23 Let V ∈ PPT be a PPT verifier that is computationally simulatable
with respect to a PPT prover strategy P∗0. Let S be the corresponding simulator. Let P∗

be a PPT prover strategy, who uses S to generate (computationally indistinguishable)
samples of random continuations of 〈P∗0,V〉. Let P∗(OV) be a corresponding perfectified
prover strategy of P∗, who instead of using S, uses oracle OV to generate such samples
with correct distribution. It holds that for sufficiently large s, and every input x ∈
{0, 1}∗ with security parameter s,

|Pr[〈P∗,V〉(x) = 1]− Pr[〈P∗(OV),V〉(x) = 1]| ≤ ngl(s),

Chapter 3: Efficient Direct Product Theorems 80

where ngl is a negligible function in the security parameter s.

Proof. We prove it by contradiction. Suppose that for infinitely many s ∈ N, there
exists an input x ∈ {0, 1}∗ with security parameter s such that

|Pr[〈P∗,V〉(x) = 1]− Pr[〈P∗(OV),V〉(x) = 1]| ≥ ε(s), (3.2)

where ε(s) is a non-negligible function. We will show that S is not a simulator
for P∗0. Namely, there exists a non-uniform PPT distinguisher D such that for in-
finitely many s, there exists a partial interaction (t[`], c[`], x, p[`], v[`]) of 〈P∗0,V〉 such
that D distinguishes the actual random continuation (t[m], x, p[m], v[m]) from the one
(t′[m], x, p

′
[m], v

′
[m]) generated by S with non-negligible probability.

Given an input x such that Inequality (3.2) holds, and let T ∈ poly(s) be an upper
bound on the number of calls to S that P∗ makes. We define the following hybrid
experiments.

• Experiment Hk: the interaction between P∗ and V on input x, where P∗ uses
oracle OV to generate the first k samples of random continuations, and uses the
simulator S to generate the remaining samples of random continuations.

It is easy to see that the interactions 〈P∗,V〉(x) and 〈P∗(OV),V〉(x) correspond to
hybrids H0 and HT , respectively. Also note that the whole experiment Hk can be
generated efficiently since all parties V,P∗,P∗0, and S are PPT, and OV is just V. By
a standard hybrid argument, there exists an index k ∈ [T] such that

|Pr[Hk−1 outputs 1]− Pr[Hk outputs 1]| ≥ ε/T.

Note that the only difference between Hk−1 and Hk is that the k-th sample of random
continuation is generated by S in Hk−1 and generated from the correct distribution
in Hk. By an averaging argument, we can fix the randomness of the remaining
part of the experiments while maintaining the non-negligible probability gap. More
precisely, recall that c[m] denotes the coins of V. Let R1, . . . , RT denote the random
coins for generating the T random continuations (either from S or from the correct
distribution), and let R be the coins used by P∗. By an averaging argument, there

exists a set of coins R, ~R−k = (R1, . . . , Rk−1, Rk+1, . . . , RT), c[m], such that

|Pr[Hk−1 outputs 1|R, ~R−k, c[m]]− Pr[Hk outputs 1|R, ~R−k, c[m]]| ≥ ε/T.

Note that when the coinsR, ~R−k, c[m] are fixed, the partial interaction (t[`], c[`], x, p[`], v[`])
of the k-th random continuation is also determined. The above non-negligible prob-
ability gap of the two experiments gives the desired distinguisher.

Specifically, our distinguisher D has coins R, ~R−k, c[m] hard-wired in. On input
(t̃[m], x, p̃[m], ṽ[m]), D simulates the interaction of P∗ and V with the hard-wired coins
R and c[m], respectively, and outputs the verdict of V, where (1) the first k−1 random

Chapter 3: Efficient Direct Product Theorems 81

continuations are generated by actual distribution using coins R1, . . . , Ri−1, (2) the
k-th random continuation is (t̃[m], x, p̃[m], ṽ[m]), and (3) the remaining continuations
are generated using S with coins Rk+1, . . . , RT . Note that D can be implemented in
non-uniform PPT.

By construction, if the input is a random continuation (t′[m], x, p
′
[m], v

′
[m]) generated

by S from the partial interaction (t[`], c[`], x, p[`], v[`]), then D simulates Hk−1 with coins

R, ~R−k, c[m], and if the input is a random continuation (t[m], x, p[m], v[m]) with correct

distribution, then D simulates Hk with coins R, ~R−k, c[m]. Hence, for this partial
interaction, we have

|Pr[D((t[m], x, p[m], v[m]) = 1]− Pr[D((t′[m], x, p
′
[m], v

′
[m]) = 1]| ≥ ε/T.

Note that this holds for infinitely many s ∈ N, which implies that S is not a simulator
for P∗0, a contradiction.

3.4.7 Proof of Theorem 3.16

Putting things together, we prove Theorem 3.16 restated as follows. (Again, we
use parameters δ2, δn instead of δ, δn/2 for convenience.)

Theorem 3.24 (Theorem 3.16 restated) Let 〈P,V〉 be a computationally simulatable
protocol with input domain Λ, δ : Λ → [0, 1] and n : N → N efficiently computable
functions with n ≤ poly(s). If 〈P,V〉 has soundness error δ2, then its n-fold parallel
repetition with direct product verifier 〈Pn,Vn,n〉 has soundness error δn + ngl, where
ngl denotes a negligible function in the security parameter s.

Proof. We prove it by contradiction. Suppose the conclusion is not true, then there
exists a PPT parallel prover Pn∗ and a noticeable η such that for infinitely many
s ∈ N, there exists some x with security parameter s such that

Pr[〈Pn∗,Vn,n〉(x) = 1] > δn(x) + η(s). (3.3)

Consider the reduction prover strategy P∗ defined in Figure 3.9 with parameters n, δ
and ξ = η and oracle access to Pn∗. We claim that

1. P∗ runs in time poly(|x|, n, ξ) = poly(s), which is efficient.

2. For sufficiently large s ∈ N, for every x with security parameter s such that the
above Inequality 3.3 holds, we have

Pr[〈P∗(Pn∗)(n, δ, ξ),V〉(x) = 1] > δ.

Chapter 3: Efficient Direct Product Theorems 82

This contradicts to the fact that 〈P,V〉 has soundness error δ and completes the proof.
It remains to prove the two claims. We first argue that P∗ runs in time poly(|x|, n, ξ−1).

It is not hard to see by inspection that both CR and P∗rej run in time poly(|x|, n, δ−n, ξ−1).
Note that in the first step of P∗, we update the value of δ, ξ so that the updated δn, ξ
are at least a half of the original ξ. Hence, P∗ runs in time poly(|x|, n, ξ−1) = poly(s).

We proceed to prove the second claim. In the following analysis, we refer to the
updated value of δ, ξ after the first step of P∗. We first lower bound the success
probability of the corresponding perfectified P∗(OV), who calls the perfectified P

∗(OV)
rej

instead of P∗rej. By Lemma 3.17, with probability at least 1− (ξ/10n), CR outputs a

good Pn
′∗ with 1 ≤ n′ ≤ n such that

• Pr[〈Pn′∗,Vn′,n′〉(x) = 1] ≥ δn
′
+ 10n′−1

10n
· ξ.

• Either n′ = 1 or for every i ∈ [n′], Pr[Pn
′∗ convinces V−i] ≥ δn

′−1 + 10(n′−1)+2
10n

· ξ.

By Lemma 3.20, when apply to such a good Pn
′∗, P

∗(OV)
rej can succeed with good

probability. In particular, for 1 < n′ ≤ n, we have (
δn
′
+ 10n′−1

10n
· ξ
)n′+1(

δn′−1 + 10(n′−1)+2
10n

· ξ
)n′


1/n′

≥ δ2 +
2ξ

10n
.

Also, when n′ = 1, we have δ + (9ξ/10n) ≥ δ2 + (2ξ/10n). It follows that

Pr[〈P∗(OV),V〉(x) = 1]

≥ Pr[〈P∗(OV),V〉(x) = 1|Pn′∗ is good]− Pr[Pn
′∗ is not good]

≥ δ2 +
2ξ

10n
− ξ

10n

≥ δ2 +
ξ

10n
.

Finally, by Lemma 3.23, when s is sufficiently large, we have

Pr[〈P∗,V〉(x) = 1] ≥ Pr[〈P∗(OV),V〉(x) = 1]− ngl(s) ≥ δ2 +
ξ

10n
− ngl(s) > δ2.

Noting the δ can only increase in the first step of P∗, this finishes the proof of our
second claim.

3.4.8 Discussion

In this section, we briefly discuss the reduction prover strategy for simulatable pro-
tocols (both computationally simulatable and “weakly simulatable”) and the tightness
of our analysis.

Chapter 3: Efficient Direct Product Theorems 83

Recall that in terms of the reduction, a main difference of simulatable protocols
from public-coin protocols is that the external verifier’s verdict bit is unknown when
we sample a random continuation, and this situation is similar to the difference be-
tween three-message protocols and three-message public-coin protocols. Also recall
that there are two methods to handle the issue of unknown verdict bit. In fact, both
methods can be generalized to the setting of simulatable protocols. We give a high
level comparison of the two methods as follows.

• Hast̊ad, Pass, Pietrzak, and Wikström [19, 20] generalize the “soft-decision
method” of Bellare, Impagliazzo, and Naor [1] to prove parallel repetition the-
orems for simulatable protocols. This method can be applied to both computa-
tionally simulatable and weakly simulatable protocols, and gives Chernoff-type
theorems directly. However, this method gives worse bounds in the direct prod-
uct case.

• In this section, we used the correlation reduction method of Canetti, Halevi,
and Steiner [2] to prove a direct product theorem for computationally simulat-
able protocols. Our bound is better than the bound of Hast̊ad et al. [20], and
almost matches the information-theoretic bounds. However, unlike the case of
three-message protocols, where we can obtain tight parallel repetition theorems
for general monotone verifiers, here, it is unclear how to prove Chernoff-type
theorems for simulatable protocols using the correlation reduction method.

We proceed to discuss the tightness of our analysis for our reduction prover strat-
egy P∗ in Figure 3.9. We will show that as a black-box reduction, the bound δn/2 is
actually tight for P∗. Therefore, to improve the bound to δn (if it is possible), we
need a different reduction prover strategy. We will construct an (artificial) example
to prove the tightness of our analysis. The tight example consists of four messages.
In contrast, as we remarked before, when we restrict to three-message protocols, one
can improve the bound for P∗ to the optimal δn by slightly modifying the analysis in
Section 3.3. For simplicity, in the following example, we omit the common input x,
and ignore the sampling errors and slackness parameters.

A Tight Example (informal). Let us consider a four-message public-coin protocol
〈P,V〉 and its two-fold repetition 〈P2,V2,2〉. Let the first and second message of V2,2 be
denoted by ~v1 = (v1,1.v1,2) ∈ {0, 1}2×k and ~v2 = (v2,1, v2,2) ∈ {0, 1}2×k, respectively.
Our goal is to construct a (deterministic) parallel prover strategy P2∗ for V2,2 such
that P2∗ can succeed with probability at least δ2, but the reduction prover strategy
P∗ in Figure 3.9, given oracle access to P2∗, can only success with probability at most
δ2.

Note that for our purpose, the details of the protocol does not matter. The
important data to design is the “success pattern” of P2∗, namely, a mapping from V2,2’s

Chapter 3: Efficient Direct Product Theorems 84

messages ~v1, ~v2 to {0, 1}2 that specifies whether P2∗ convinces the two subverifiers of
V2,2 when V2,2’s messages are ~v1, ~v2.

We will construct a P2∗ such that correlation reduction CR does not have any
effect, i.e., always returns P2∗. For this to hold, we need to make sure that

• For all V1 messages v[2],1 = (v1,1, v2,1), Pr[P2∗ convinces V2|v[2],1] ≤ δ.

• For all V2 messages v[2],2 = (v1,2, v2,2), Pr[P2∗ convinces V1|v[2],2] ≤ δ.

Of course, the main properties we want are that Pr[P2∗ convinces V2,2] ≥ δ2, and that
the rejection sampling strategy P∗rej in Figure 3.9 can only succeed with probability
at most δ2, given oracle access to P2∗.

The construction is not too complicated, so we present it directly as follows. We
view each message vi,j ∈ {0, 1}k as an element in ZK , where K = 2k. Let S ⊂ ZK be
an arbitrary subset of ZK of size |S| = δ ·K. We construct P2∗ such that

• P2∗ convinces V1 iff v1,1 + v1,2 + v2,2 ∈ S, where the operation + is over ZK .

• P2∗ convinces V2 iff v1,1 + v1,2 + v2,1 ∈ S, where the operation + is over ZK .

We comment that this example is very artificial in the sense that whether P2∗ con-
vinces V1 depends on V2’s message v2,2 but not on V1’s message v2,1.

By construction, it is not hard to see that the success probability of P2∗ is δ2.

Pr[P2∗ convinces V2,2] = Pr[(v1,1 + v1,2 + v2,2 ∈ S) ∧ (v1,1 + v1,2 + v2,1 ∈ S)] = δ2

Let us proceed to analyze P∗rej’s success probability given oracle access to P2∗. We
claim that conditioning on every coordinate i ∈ [2] and first message ~v1 = (v1,1, v1,2),
P∗rej can only succeed with probability δ2, and hence, the success probability of P∗rej
is δ2.

To see this, consider say, i = 1, and an arbitrary first message ~v1 = (v1,1, v1,2). In
the second round, V selects a uniformly random v2,1, and P∗rej uses rejection sampling
to select a random successful continuation v2,2 such that P2∗ convinces V2. Note that
v1,1, v1,2, and v2,1 determines whether P2∗ convinces V2, so either

1. every v2,2 is a successful continuation, and P∗rej selects a uniformly random v2,2,
or

2. there exists no successful continuation, and P∗rej aborts and fails.

Hence, P∗rej succeeds only when both v1,1 + v1,2 + v2,1 ∈ S and v1,1 + v1,2 + v2,2 ∈ S,
where both v2,1 and v2,2 are uniformly random. It follows that P∗rej can succeed with
probability δ2, as claimed. A similar argument applies to the case i = 2 as well.

It may look unsatisfactory that the reason that P∗rej fails in the second case is
the non-existence of successful continuation. However, it is not hard to modify the

Chapter 3: Efficient Direct Product Theorems 85

example slightly so that in the second case, there exist a few successful continuations
and P∗rej fails when using any of these successful continuations. We omit the details
since it is not very enlightening.

Finally, we check that the correlation reduction CR has no effect. For every V1’s
messge v[2],1 = (v1,1, v2,1), we have

Pr[P2∗ convinces V2|v1,1, v2,1] = Pr[v1,1 + v1,2 + v2,1 ∈ S|v1,1, v2,1] = δ.

Similarly, for every V2’s messge v[2],2 = (v1,2, v2,2), we have

Pr[P2∗ convinces V1|v1,2, v2,2] = Pr[v1,1 + v1,2 + v2,2 ∈ S|v1,2, v2,2] = δ.

Therefore, given P2∗, CR always returns P2∗.
Putting things together, we showed that given oracle access to the above P2∗,

who has success probability δ2, the reduction prover strategy P∗ in Figure 3.9 can
only success with probability δ2, which implies that our analysis to P∗ is tight. We
remark that in the above presentation, we omit some implementation details such as
sampling errors, which can be handled by small changes to the above example. We
skip the details to make the idea clear.

3.5 Making Any Protocol Computationally Simu-

latable

In this section, we present a simple transformation that converts any interactive
protocol 〈P,V〉 to one 〈P̃, Ṽ〉 that is computationally simulatable. Roughly speak-
ing, the idea, inspired by Gennaro, Gentry, and Parno [10] is for the transformed
protocol 〈P̃, Ṽ〉 to run the original protocol under encryption using a fully homo-
morphic encryption scheme. This gives a way to get around the negative results of
Bellare, Impagliazzo, and Naor [1] and Pietrzak and Wikström [31]. Namely, we can
amplify the soundness of any computationally sound protocols by first applying the
transformation and then doing parallel repetition.

In such a transformation, it is desirable to preserve the structure of the orig-
inal protocol, such as the round complexity and completeness and soundness prop-
erty. Our transformation preserves these properties, and blows up the communication
complexity by a factor that depends only on the security parameter of the fully ho-
momorphic encryption scheme.

The idea of getting around the negative results of Bellare et al. [1] and Pietrzak
and Wikström [31] by slightly modifying the protocol was first proposed by Haitner
[16]. He suggested a “random-termination” transformation, where in every round, the
new verifier Ṽ terminates and accepts with a small probability. The transformation
also preserves most of the structure of the original protocol, and it makes any protocol

Chapter 3: Efficient Direct Product Theorems 86

weakly simulatable, so that parallel repetition decreases the soundness error of the
transformed protocol.

In comparison, our transformation requires a strong assumption of the existence
of fully homomorphic encryption schemes, but gives better bounds on the sound-
ness error under parallel repetition. In contrast, the transformation of Haitner [16]
is unconditional, but the bound of soundness error is worse, with an undesirable
dependency on the round complexity.

We start by introducing fully homomorphic encryption schemes in the following
section.

3.5.1 Fully Homomorphic Encryption Schemes

A fully homomorphic encryption scheme is a public-key encryption scheme E =
(KeyGen,Enc,Dec) associated with an additional polynomial-time algorithm Eval, that
takes as input a public key pk, a ciphertext m̂ = Enc(m) and a circuit C, and
outputs, a new ciphertext c = Evalpk(C, m̂), such that Decsk(c) = C(m), where sk
is the secret key corresponding to the public key pk. It is required that the size
of c = Evalpk(Encpk(m), C) depends polynomially on the security parameter and the
length of C(m), but is otherwise independent of the size of the circuit C.

In a recent breakthrough, Gentry [11] proposed a fully homomorphic encryption
scheme based on ideal lattices. Following Gentry, an alternative construction was
proposed by van Dijk, Gentry, Halevi, and Vaikuntanathan [35] based on the hard-
ness of an “Approximate-GCD” problem. In both schemes, the complexity of the
algorithms (KeyGen,Enc,Dec) depend linearly on the depth of the circuits C that are
allowed as inputs to Eval. However, under the additional assumption that the en-
cryption schemes are circular secure (i.e., it remains secure even given an encryption
of the secret key), the complexity of these algorithms are independent of C.

For the sake of completeness, we present a formal definition of fully homomor-
phic encryption schemes as follows. We separate the security parameter k for fully
homomorphic encryption schemes from the security parameter s for computationally
sound protocols .

Definition 3.25 (Fully Homomorphic Encryption Schemes) A fully homomor-
phic encryption scheme is a four-tuple of PPT algorithms E = (KeyGen,Enc,Dec,Eval)
defined as follows.

• KeyGen: on input a security parameter 1k, KeyGen(1k) outputs a pair of public
and secret keys (pk, sk).

• Enc: on input a public key pk and a message m ∈ {0, 1}∗, Encpk(m) outputs a
ciphertext m̂.13

13We assume without loss of generality that both pk and sk encodes the security parameter k.

Chapter 3: Efficient Direct Product Theorems 87

• Dec: on input a secret key sk and a ciphertext c ∈ {0, 1}∗, Decsk(c) outputs a
message m.

• Eval: on input a public key pk, a ciphertext c, and a description of a circuit C,
Evalpk(C, c) outputs a new ciphertext c′.

Furthermore, for every security parameter 1k, (pk, sk)← KeyGen(1k), every message
m ∈ {0, 1}∗, there exists a set Val(pk,sk)(m) ⊂ {0, 1}∗ of valid ciphertexts of m such
that

• Pr[Encpk(m) ∈ Val(pk,sk)(m)] = 1.

• if c ∈ Val(pk,sk)(m), then Evalpk(C, c) ∈ Val(pk,sk)(C(m)) for every circuit C.

• if c ∈ Val(pk,sk)(m), then Decsk(c) = m.

• if c ∈ Val(pk,sk)(m), then |c| ≤ poly(|m|, k).

For the security, we consider the usual message indistinguishability against non-
uniform efficient adversaries, which says that the distributions (pk,Encpk(m1)) and
(pk,Encpk(m2)) are computationally indistinguishable for every pair of messages m1

and m2.

Definition 3.26 ((non-adaptive) IND-security) A fully homomorphic encryption
scheme E = (KeyGen, Enc,Dec,Eval) is IND-secure if for every non-uniform PPT
distinguisher D, the following holds.

There exists a negligible function ngl : N → (0, 1) such that for sufficiently large
security parameter k, for every two messages m1,m2 ∈ {0, 1}poly(k) of equal length,
let (pk, sk) = KeyGen(1k), we have

|Pr[D(pk,Encpk(m1)) = 1]− Pr[D(pk,Encpk(m2)) = 1]| ≤ ngl(k).

We remark that in the usual definition of security, we also allow an adversary to
pick the messages m1 and m2 depending on the public key pk, but we do not need it for
our task. We also remark that the above definition does not imply “circuit privacy”.
In other words, it does not guarantee that Evalpk(C,Encpk(x)) and Encpk(C(x)) are
indistinguishable, and it is possible that the output of Evalpk(C,Encpk(x)) contains
certain partial information about the circuit C. Circuit privacy is a desirable property
and can be achieved by both schemes of Gentry [11] and van Dijk et al. [35]. We do
not require circuit privacy here.

Finally, we remark that for our purpose, security against non-uniform adversaries
is necessary, since the soundness property is a worst-case definition on every input x
in a certain domain Λ, which becomes a non-uniform advice in the security reduction.

Chapter 3: Efficient Direct Product Theorems 88

3.5.2 The Transformation

In this section, we formally present our transformation of running a protocol under
a fully homomorphic encryption scheme. We will show in the following section that
our transformation preserves the round complexity and completeness and soundness
property of the original protocol, and make the resulting protocol computationally
simulatable.

As a warm up, let us consider the following naive implementation of the idea:
In the transformed protocol 〈P̃, Ṽ〉 of 〈P,V〉, Ṽ generates a pair of keys (pk, sk) of
a fully homomorphic encryption scheme E, publishes pk, and then P̃ and Ṽ run the
original protocol 〈P,V〉 under encryption with key pk. By the fully homomorphic
property, although the messages pj, vj are encrypted (denoted by ciphertexts p̂j, v̂j,
respectively), Ṽ and P̃ can still compute their encrypted responses v̂j+1, p̂j under
encryption. More precisely, Ṽ can compute v̂j+1 by applying Evalpk(Cj+1, (p̂1, . . . , p̂j)),
where Cj+1 is the circuit of the corresponding next-message function of V. At the end
of the interaction, Ṽ, who has the secret key sk, can decrypt and output the verdict
bit of V.

Clearly, this preserves the round complexity as well as the completeness, since
P̃ performs exactly the same strategy as P under encryption. Intuitively, we would
like to say that the soundness is preserved too, since 〈P̃, Ṽ〉 is essentially the same
as 〈P,V〉, just executed under encryption. We would also like to say that 〈P̃, Ṽ〉
is computationally simulatable, since Ṽ’s messages are ciphertexts, which are com-
putationally indistinguishable to encryption of zero strings 0̄ and hence are easy to
simulate. However, the above 〈P̃, Ṽ〉 may not preserve the soundness and may not be
computationally simulatable due to the issues discussed below.

Issue with Soundness. Note that the prover strategy P̃ receives from Ṽ cipher-
texts v̂j = Evalpk(Cj, (p̂1, . . . , p̂j−1)) outputted by the Eval function. As mentioned,
the IND-security does not imply circuit privacy. Hence, P̃ may learn additional in-
formation from v̂j, such as information about the coins used to compute vj. Such
additional information may help an adversarial P̃∗ to convince Ṽ. This is also an is-
sue for computational simulatability, since computational simulatability requires that
V’s future messages reveals no information about previous rounds. Furthermore, P̃∗

may send invalid ciphertexts to Ṽ. In this case, it is not even guaranteed that the
interaction of 〈P̃∗, Ṽ〉 simulates the interaction of some 〈P∗,V〉.

To resolve this issue, we modify Ṽ to, upon receiving p̂j−1, decrypt p̂j−1 to obtain
the underlying message pj−1, compute the next message vj of V, and send a fresh
encryption v̂j = Encpk(vj) to P̃. Here, we assume without loss of generality that Ṽ
always get a certain message pj−1 from decryption, even if the ciphertext p̂j−1 received
from P̃ is invalid. This is easy to achieve by slightly modifying the decryption function
Dec.

Note that by doing so, we guarantee that the interaction of 〈P̃∗, Ṽ〉 indeed simulates

Chapter 3: Efficient Direct Product Theorems 89

the interaction of some 〈P∗,V〉. Furthermore, it can be shown that any prover strategy
P̃∗ for Ṽ can be simulated by a prover strategy P∗ for V, and vice versa, which implies
that 〈P̃, Ṽ〉 and 〈P,V〉 have exactly the same soundness.

Issue with Computational Simulatability. Recall that in our definition of the
computational simulatability property in Section 3.4.1, we require a simulator to
simulate random continuations of 〈P,V〉 from any partial interaction. In the above
naive implementation, Ṽ uses a single pair of keys generated at beginning throughout
the interaction. This protocol cannot be computationally simulatable, since the keys
are fixed when conditioned on partial interactions.

This issue can be resolved by letting Ṽ use different fresh keys pkj to encrypt
messages in every round. By doing so, conditioning on any partial interaction does
not fix the keys for encrypting the next messages, and we can simulate Ṽ using
encryptions of zero Encpk(0̄).

Note that to compute P’s next message pj, P̃ needs V’s previous messages v1, . . . , vj
under encryption of the same key pkj. One way to do is to let Ṽ send all encrypted
v̂1, . . . , v̂j under the key pkj. However, this blows up the communication complexity. A

simple alternative, pointed out in [11], is to let Ṽ send Encpkj(skj−1) to P̃. This allows

P̃ to convert ciphertexts under key pkj−1 to ciphertexts under key pkj and compute
P’s next message under encryption of pkj without blowing up the communication
complexity of the resulting protocol.

A formal description of our transformation can be found in Figure 3.11. We
analyze the transformation in the next section.

3.5.3 Analysis of Our Transformation

In this section, we analyze our transformation by proving the following simple
lemmas.

Lemma 3.27 Let 〈P,V〉 be a m-round interactive protocol, and 〈P̃, Ṽ〉 the correspond-
ing transformed protocol defined in Figure 3.11. Both protocols 〈P,V〉 and 〈P̃, Ṽ〉 have
the same completeness and soundness.

Proof. The completeness part follows by inspection. Observe that for every input
x, the interaction of 〈P̃, Ṽ〉(x) perfectly simulates the interaction of 〈P,V〉(x) under
encryption. P̃ convinces Ṽ with exactly the same probability as P convinces V. Hence,
the completeness of the two protocols are the same.

For the soundness property, we show that for every prover strategy P̃∗ for Ṽ, there
exists a corresponding prover strategy P∗ for V that simulates P̃∗ and achieves the
same success probability as P̃∗, and vice versa. This implies that the soundness of
the two protocols are the same.

Chapter 3: Efficient Direct Product Theorems 90

Transformed Protocol 〈P̃, Ṽ〉(x)
/* 〈P̃, Ṽ〉 runs a given m-round protocol 〈P,V〉 under encryption. */

/* Let E = (KeyGen,Enc,Dec,Eval) be a fully homomorphic encryption scheme. */

Set the security parameter k of E to be k = sc for any fixed constant c > 0. For
each round j ∈ [m], upon receiving p̂j−1 from P̃ (except for j = 1), Ṽ does the
following.

• If j = 1, Ṽ generates a whole random tape R for simulating V; otherwise,
Ṽ decrypts the received p̂j−1 from P̃ to obtain pj−1 = Decskj−1

(p̂j−1).

• Ṽ computes V’s next message vj using randomness R and P̃’s messages
p1, . . . , pj−1.

• Ṽ generates a pair of keys (pkj, skj)← KeyGen(1k).

• Ṽ encrypts vj to obtain v̂j = Encpkj(vj), and computes ŝkj−1 = Encpkj(skj−1).

• Ṽ sends pkj, v̂j, and ŝkj−1 to P̃ (except for j = 1, there is no ŝkj−1).

At the end, Ṽ receives p̂m from P̃, decrypts it to obtain pm, and then computes
and outputs V’s verdict bit on interaction (v1, p1, . . . , vm, pm) and randomness R.

For each round j ∈ [m], upon receiving v̂j from Ṽ, P̃ does the following.

• P̃ uses pkj and ŝkj−1 to convert encryptions v̂1, . . . , v̂j−1 under key
pkj−1 to that under key pkj. This can be done by computing

Evalpkj(Dec(·; ·), (ŝkj−1, v̂`)), where v̂` is an encryption under key pkj−1.

• P̃ homomorphically computes P’s response pj under encryption. I.e., P̃
computes p̂j = Evalpkj(Cj, (v̂1, . . . , v̂j)), where Cj denotes the circuit of the
next-message function of P, and v̂1, . . . , v̂j are V’s messages encrypted under
key pkj.

• P̃ sends p̂j to Ṽ.

Figure 3.11: A generic transformation that makes a protocol computationally
simulatable.

One direction is simple. Given any prover strategy P∗ for V, we can define a
corresponding prover strategy P̃∗, which simulates P∗ in the same way as P̃ simulates
P. Such a P̃∗ has exactly the same success probability as P∗ on every input x.

Chapter 3: Efficient Direct Product Theorems 91

For the other direction, given any prover strategy P̃∗ for Ṽ, it is also not hard to
define a corresponding prover strategy P∗, who interacts with V by simulating the
interaction of P̃∗ and Ṽ, where P∗ plays P̃∗ and parts of Ṽ. Namely, P∗ generates the
public keys and secret keys on his own, so he can decrypt P̃∗’s messages and send
them to V (like Ṽ does). Formally, such a reduction is given in Figure 3.12.

Prover Strategy P∗(x)
/* P∗ is given oracle access to a prover strategy P̃∗ for Ṽ. */

/* P∗ interacts with V by simulating the interaction of 〈P̃∗, Ṽ〉. */

Let E = (KeyGen,Enc,Dec,Eval) be a fully homomorphic encryption scheme used
by 〈P̃, Ṽ〉. Set the security parameter k of E to be k = sc for any fixed constant
c > 0. For each round j ∈ [m], upon receiving vj from V, P∗ does the following.

• P∗ generates a pair of keys (pkj, skj)← KeyGen(1k).

• P∗ encrypts vj to obtain v̂j = Encpkj(vj), and computes ŝkj−1 =
Encpkj(skj−1).

• P∗ simulates P̃∗, who receives pkj, v̂j, and ŝkj−1, and sends back his response
p̂j.

• P∗ decrypts p̂j to obtain pj = Decskj(p̂j), and sends pj to V.

Figure 3.12: A reduction prover strategy P∗.

By inspection, for every input x, the interaction of 〈P∗,V〉(x) perfectly simulates
the interaction of 〈P̃∗, Ṽ〉(x), and so P∗ has the same success probability as P̃∗.

Lemma 3.28 Let 〈P,V〉 be a m-round interactive protocol, and 〈P̃, Ṽ〉 the correspond-
ing transformed protocol defined in Figure 3.11. If the fully homomorphic encryption
scheme E used in 〈P̃, Ṽ〉 is IND-secure, then 〈P̃, Ṽ〉 is computationally simulatable.

Proof. We prove it by contradiction. We will show by a hybrid argument that
if 〈P̃, Ṽ〉 is not computationally simulatable, then E is not IND-secure. The proof is
simple, but the notation is a bit messy. We start by reviewing the notation.

Let P̃∗ be a prover strategy. We denote a partial interaction of 〈P̃∗, Ṽ〉 by a five-
tuple (t[`], c[`], x, p̃[`], ṽ[`]), where t[`] = (t1, . . . , t`) are coins tossed by P̃∗ in the first

` rounds, c[`] are coins tossed by Ṽ, p̃[`] are P̃∗’s messages, and ṽ` are Ṽ’s messages.

Recall that Ṽ’s messages ṽj are of the form (pkj, v̂j, ŝkj−1) (except for j = 1, there is

no ŝkj−1). As mentioned, we need to be explicit about Ṽ’s coins in every round. Ṽ’s
coins cj tossed in round j consists of randomness for generating keys (pkj, skj) and

Chapter 3: Efficient Direct Product Theorems 92

encryptions v̂j,Encpkj(skj−1). In addition, in the first round, c1 also consists of R, the
whole random tape used by V.
〈P̃, Ṽ〉 is not computationally simulatable means that there exists a PPT prover

strategy P̃∗ such that there is no PPT simulator S that can generate computationally
indistinguishable random continuations of 〈P̃∗, Ṽ〉. We consider a naive simulator S
that generates a random continuation by simulating P̃∗ honestly, but using encryption
of zero strings as Ṽ’s messages. A formal description of S can be found in Figure 3.13.
We will show that if S is not a legitimate simulator, then we can break the IND-security
of E.

Simulator S(t[`], x, p̃[`], ṽ[`])
/* S outputs a (computationally indinstinguishable) P̃∗’s view of a random continuation
of a partial interaction (t[`], c[`], x, p̃[`], ṽ[`]) of 〈P̃∗, Ṽ〉. */

S continues the interaction by simulating P̃∗ and Ṽ alternatively as follows.

• P̃∗: S gets P̃∗’s view, so S can simulate P̃∗ honestly. Namely, S generates
P̃∗’s coins t′`+1, . . . , t

′
m and applies P̃∗’s next message function to generate

p̃′`+1, . . . , p̃
′
m.

• Ṽ: Recall that Ṽ’s messages are of the form ṽj = (pkj, v̂j, ŝkj−1). S

generates the key pkj honestly, and simulates Ṽ’s message by v̂′j =
(pkj,Encpkj(0̄),Encpkj(0̄)), where the two Encpkj(0̄)’s are independent en-
cryptions of zero strings with proper lengths.

S outputs the generated P̃∗’s view (t′[m], x, p̃
′
[m], ṽ

′
[m]) of a complete interaction.

Figure 3.13: A candidate simulator S.

S is not a legitimate simulator of P̃∗ means that there exists a PPT distinguisher
D such that for infinitely many s, there exists a partial interaction (t[`], c[`], x, p̃[`], ṽ[`])

of 〈P̃∗, Ṽ〉 such that

|Pr[D(t[m], x, p̃[m], ṽ[m]) = 1]− Pr[D(t′[m], x, p̃
′
[m], ṽ

′
[m]) = 1]| > ε(s),

where (t[m], x, p̃[m], ṽ[m]) = 〈P̃∗, Ṽ〉(t[`], c[`], x, p̃[`], ṽ[`]), (t′[m], x, p̃
′
[m], ṽ

′
[m]) = S(t[`], x, p̃[`], ṽ[`]),

and ε is a non-negligible function.
We consider hybrid experiments Hi for ` ≤ i ≤ m defined as follows.

• Experiment Hi: Hi outputs a P̃∗’s view of continuation of (t[`], c[`], x, p̃[`], ṽ[`])

as follows. For rounds `+ 1, . . . , i, the view is generated by 〈P̃∗, Ṽ〉. For the re-
maining rounds i+1, . . . ,m, the view is generated by S. Namely, P̃∗’s coins and
messages are generated by P̃∗, and Ṽ’s messages of the first i−` rounds are gen-
erated honestly and the remaining m− i rounds are (pkj,Encpkj(0̄),Encpkj(0̄)).

Chapter 3: Efficient Direct Product Theorems 93

By definition, experiment Hm outputs 〈P̃∗, Ṽ〉(t[`], c[`], x, p̃[`], ṽ[`]), and H` outputs
S(t[`], x, p̃[`], ṽ[`]). A standard hybrid argument implies that there exists an index
` ≤ j ≤ m such that

|Pr[D(Hj−1) = 1]− Pr[D(Hj) = 1]| > ε/(m− `+ 1).

Note that the only difference between experiments Hj−1 and Hj is that in the j-th
round, Ṽ’s message is (pkj, v̂j,Encpkj(skj−1)) in Hj and (pkj,Encpkj(0̄),Encpkj(0̄)) in
Hj−1. By an averaging argument, we can fix randomness in both experiments except
for the randomness used to generate pkj and to encrypt (vj, skj−1) or (0̄, 0̄) while
preserving the probability gap. Note that this also fixed the value of (vj, skj−1). By
hardwiring the fixed randomness, we obtain a (non-uniform) distinguisher D′ such
that

|Pr[D′(pkj,Encpkj(0̄),Encpkj(0̄)) = 1]−Pr[D′(pkj, v̂j,Encpkj(skj−1)) = 1]| > ε

m− `+ 1
,

which breaks the IND-security of E.
We summarize the property of our transformation in the following theorem.

Theorem 3.29 Let 〈P,V〉 be a m-round interactive protocol, and 〈P̃, Ṽ〉 the corre-
sponding transformed protocol defined in Figure 3.11. 〈P̃, Ṽ〉 has the following prop-
erties.

• 〈P̃, Ṽ〉 is computationally simulatable.

• 〈P̃, Ṽ〉 preserves the round complexity and completeness and soundness of 〈P,V〉.

• 〈P̃, Ṽ〉 blows up the communication complexity of 〈P,V〉 by a factor of poly(k),
where k is the security parameter of the fully homomorphic encryption scheme
used in 〈P̃, Ṽ〉.

Chapter 4

Efficient Chernoff-type and
Threshold/Monotone Repetition
Theorems

In this chapter, we present our efficient parallel repetition theorems for protocols
with more general threshold and monotone verifiers. We first present a generic re-
duction showing that a good enough direct product theorem implies Chernoff-type
theorems. This gives new Chernoff-type theorem for public-coin protocols and compu-
tationally simulatable protocols. We then generalize the reduction for three-message
protocols from the case of direct product verifiers to the case of threshold verifiers.
We present the analysis of Holenstein and Schoenebeck [22] since it gives better pa-
rameters than our original analysis [4]. Finally, we prove a parallel repetition theorem
for constant-round public-coin protocols with any monotone combining function.

4.1 Chernoff-type Theorem from Direct Product

Theorem

In this section, we present a simple generic transformation that converts a parallel
prover strategy Pn∗ for a threshold verifier Vn,k with good success probability to a par-
allel prover strategy Pt∗ for a direct product verifier Vt,t with good success probability
for some t ≤ n. Composing this transformation with the direct production theorems
in the previous chapter proves Chernoff-type theorems for corresponding protocols.
In particular, this gives new Chernoff-type theorems for public-coin protocols and
computationally simulatable protocols.

The transformation is a very naive one – Pt∗ simply embeds Vt,t in random t
coordinates of Vn,k, and simulate the interaction of 〈Pn∗,Vn,k〉 . More precisely, the
reduced prover strategy Pt∗ interacts with Vt,t by simulating the interaction between
Pn∗ and Vn,k, where Pt∗ selects a random coordinate set S ⊂ [n] of size t, let Vt,t

94

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems 95

play the coordinates S of Vn,k (denoted by VS), and Pt∗ plays Pn∗ and the remaining
n− t coordinates of Vn,k (denoted by V−S) honestly. Clearly, Pt∗ convinces Vt,t iff Pn∗

convinces subverifiers Vi for every i ∈ S, which allows us to lower bound the success
probability of Pt∗ in terms of the success probability of Pn∗.

A formal description of the above transformation can be found in Figure 4.1. We
analyze the transformation in the following simple lemma.

Prover Strategy Pt∗(x, n)
/* Pt∗ interacts with Vt,t and is given oracle access to Pn∗. */

/* The interaction of 〈Pt∗,Vt,t〉 simulates the interaction of 〈Pn∗,Vn,k〉 honestly. */

• Pt∗ selects a coordinate set S = {i1, . . . , it} ⊂ [n] of size t uniformly at random.

• For each round j ∈ [m], upon receiving messages ~vj,S = (vj,i1 , . . . , vj,it) from
Vt,t, Pt∗ samples coins ~cj,−S uniformly at random (the fresh coins tossed by V−S
at round j), simulates V−S to generate ~vj,−S , simulates Pn∗ to generate ~pj , and
sends pj,S = (pj,i1 , . . . , pj,it) to Vt,t.

Figure 4.1: Reduction prover strategy Pt∗.

Lemma 4.1 Let V be a PPT verifier, and t, k, n ∈ N such that 1 ≤ t ≤ k ≤ n. Let
Pn∗ be a parallel prover strategy for Vn,k, and Pt∗ the reduction prover strategy defined
in Figure 4.1. For every common input x ∈ {0, 1}∗, we have

1. The success probability of Pt∗ is at least

Pr[〈Pt∗(Pn∗),Vt,t〉(x) = 1] ≥ Pr[〈Pn∗,Vn,k〉(x) = 1] ·
(
k
t

)(
n
t

) .
2. Pt∗(·)(x, n) runs in time poly(|x|, n) given oracle access to Pn∗(x).

Proof. The assertion about the runtime of Pt∗ follows by inspection. For the success
probability, by construction, we have

Pr[〈Pt∗,Vt,t〉(x) = 1]

≥ Pr[(Vi accepts ∀i ∈ S in 〈Pn∗,Vn,k〉(x)) ∧ (〈Pn∗,Vn,k〉(x) = 1)]

= Pr[〈Pn∗,Vn,k〉(x) = 1] · Pr
[
Vi accepts ∀i ∈ S in 〈Pn∗,Vn,k〉(x)

∣∣〈Pn∗,Vn,k〉(x) = 1
]

≥ Pr[〈Pn∗,Vn,k〉(x) = 1] ·
(
k
t

)(
n
t

) .

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems 96

As mentioned, composing the above transformation with direct product theorems
yields Chernoff-type theorems. In particular, if the direct product theorem is tight,
then the resulting Chernoff-type theorem matches the information-theoretic Chernoff
bounds up to a constant in the exponent. More precisely, suppose 〈P,V〉 has soundness
error δ, and consider threshold k = (1 + γ) · δn for some constant γ ∈ (0, 1). The
resulting Chernoff-type theorem (proved below) says that 〈Pn,Vn,k〉 has soundness
error e−γ

2δn/3 (c.f. the standard Chernoff bound gives bound e−γ
2δn/2).

For some settings such as three-message protocols and constant-round public-coin
protocols, we can prove better Chernoff-type theorems by constructing direct reduc-
tions. However, for public-coin protocols and computationally simulatable protocols,
we obtain interesting Chernoff-type theorems by the above simple argument. One
limitation of this argument is that it gives interesting result only when δ = Ω(1).
Nevertheless, this is sufficient for most applications.

Formally, we prove the following two Chernoff-type theorems. The first theorem
says that for public-coin protocols with threshold k = (1+γ)·δn, the soundness errors
decreases from δ to e−γ

2δn/3. For computationally simulatable protocols, our theorem
requires the threshold k >

√
δ · n to guarantee the decrease of soundness error. The

second theorem says that for computationally simulatable protocols with threshold
k = (1 + γ) ·

√
δ · n, the soundness errors decreases from δ to e−γ

2
√
δ·n/3. Note that

the bound obtained for computationally simulatable protocols is significantly worse
than that of public-coin protocols. Indeed, the resulting bounds for Chernoff-type
verifiers obtained by our reduction are very sensitive to the corresponding bounds for
direct product verifiers. Our reduction does not give interesting results for weakly
simulatable protocols.

Theorem 4.2 Let 〈P,V〉 be a public-coin protocol with input domain Λ, and let δ, γ ∈
(0, 1) be constants, and n : N→ N efficiently computable functions with n ≤ poly(s).
Let k = (1 + γ)δn. If 〈P,V〉 has soundness error δ, then its n-fold parallel repetition
with threshold verifier 〈Pn,Vn,k〉 has soundness error e−bγ

2δn/3c+ngl, where ngl denotes
a negligible function in the security parameter s.

Theorem 4.3 Let 〈P,V〉 be a computationally simulatable protocol with input domain
Λ, and let δ, γ ∈ (0, 1) be constants, and n : N → N efficiently computable functions
with n ≤ poly(s). Let k = (1+γ)

√
δ·n. If 〈P,V〉 has soundness error δ, then its n-fold

parallel repetition with threshold verifier 〈Pn,Vn,k〉 has soundness error e−bγ
2δn/3c+ngl,

where ngl denotes a negligible function in the security parameter s.

Both theorems can be proved by applying Lemma 4.1 and the corresponding
direct-product theorem straightforwardly. However, the choice of t and the proof
requires some tedious calculations. For the sake of intuition, before proving the
theorems formally, we give some informal discussions.

Let us consider the public-coin case and try to prove that 〈Pn,Vn,k〉 has soundness
error ε. For the sake of contradiction, we assume there exists a Pn∗ with success

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems 97

probability ε. By Lemma 4.1, we have a Pt∗ with success probability ε ·
(
k
t

)
/
(
n
t

)
, for

some t to be determined later. Then by the direct product theorem for public-coin
protocols, we have a P∗ with success probability(

ε ·
(
k
t

)(
n
t

))1/t

.

To obtain a contradiction, we need the above quantity to be greater than δ. Rear-
ranging the term, it suffices for

ε > δt ·
(
n
t

)(
k
t

) .
We should choose t that minimizes the RHS to obtain the best bound. Let us try
to see how small the RHS can be. Observe that when t = 0, the RHS = 1, and
when t is increased by 1, the RHS is multiplied by a factor δ · (n − t)/(k − t). The
factor is equal to 1/(1 + γ) < 1 when t = 0, and increases as t increasing. The factor
becomes 1 when t = γδn/(1− δ), so we should set t to be this quantity. Noting that
1/(1 + γ) = e−Ω(γ), and there are t factors multiplied together, the RHS should be
roughly e−Ω(t·γ) = e−Ω(γ2δn), which is the bound in Theorem 4.2. We proceed to prove
Theorem 4.2 and 4.3 below.
Proof. (of Theorem 4.2) We prove it by contradiction. Suppose the conclusion is
not true, then there exists a PPT parallel prover Pn∗ and a noticeable η such that for
infinitely many s ∈ N, there exists some x with security parameter s such that

Pr[〈Pn∗,Vn,k〉(x) = 1] > e−bγ
2δn/3c + η(s)

def
= ε1.

Applying transformation in Figure 4.1 with

t = min

{⌊
γδn

1− δ

⌋
,

⌈
3

γ
ln

2

η

⌉}
,

we obtain an efficient parallel prover strategy Pt∗ for direct product verifier Vt,t. By
Lemma 4.1, we have

Pr[〈Pt∗,Vt,t〉(x) = 1] ≥

(
ε1 ·

(
k
t

)(
n
t

)) def
= ε2.

Now, applying Theorem 3.2 with parameters t, ε2, and ξ = η/4, we obtain a single-
instance prover strategy P∗ with

Pr[〈P∗,V〉(x) = 1] ≥ ε
1/t
2 · (1− η/4).

By the choice of t and recall that δ is a constant, we have

ε2 ≥ ε1 ·
(
k − t
n− t

)t
≥ ε1 · δt ≥ 1/poly(s).

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems 98

Hence, P∗ has runtime poly(|x|, t, ε−1
2 , ξ−1) = poly(s), which is efficient. To obtain a

contradiction, it remains to show that

ε
1/t
2 ·

(
1− η

4

)
=

((
e−bγ

2δn/3c + η
)
·
(
k
t

)(
n
t

))1/t

·
(

1− η

4

)
> δ.

To simplify the expression a bit, we note that(
e−bγ

2δn/3c + η
)
≥
(
e−bγ

2δn/3c +
η

2

)
·
(

1 +
η

2

)
,

and hence((
e−bγ

2δn/3c + η
)
·
(
k
t

)(
n
t

))1/t

·
(

1− η

4

)
≥

((
e−bγ

2δn/3c +
η

2

)
·
(
k
t

)(
n
t

))1/t

.

Now, we lower bound the term
(
k
t

)
/
(
n
t

)
by (proved in Lemma 4.4 below)(

k
t

)(
n
t

) ≥ eγt/3 · δt.

Hence, we are reduced to show that((
e−bγ

2δn/3c +
η

2

)
· et·γ/3 · δt

)1/t

> δ.

which follows by observing that

et·γ/3 ≥ min

{
ebγ

2δn/3c,
2

η

}
.

In sum, the prover strategy P∗ obtained above is efficient and

Pr[〈P∗,V〉(x) = 1] > δ.

This contradicts to the fact that 〈P,V〉 has soundness error δ and completes the proof.

Lemma 4.4 Let n, k, t ∈ N, and γ, δ ∈ (0, 1) be numbers satisfying (i) 1 ≤ t ≤ k ≤ n,
(ii) k = (1 + γ)δn, and (iii) t ≤ (γδn)/(1− δ). We have(

k
t

)(
n
t

) ≥ eγt/3 · δt.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems 99

Proof. We prove it by a brute-force calculation as follows. Observe that(
k
t

)(
n
t

) =
k · (k − 1) . . . (k − t+ 1)

n · (n− 1) . . . (n− t+ 1)
=

t−1∏
x=0

k − x
n− x

.

We express each term (k − x)/(n− x) of the form (1 + β(x)) · δ, where

β(x) =
γδn− (1− δ)x

δ(n− x)
.

Using inequality (1 + β) ≥ e(2/3)·β (holds for β ∈ [0, 1]), we obtain

t−1∏
x=0

k − x
n− x

=
t−1∏
x=0

(1 + β(x)) · δ ≥ e(2/3)·
∑t−1

x=0 β(x) · δt.

Observing that for 0 ≤ x ≤ t,

β(x) =
γδn− (1− δ)x

δ(n− x)
≥ γδn− (1− δ)x

δn
def
= λ(x),

we can lower bound
∑t−1

x=0 β(x) by
∑t−1

x=0 λ(x), which is a sum of arithmetic progres-
sion. Note that λ(0) = γ, and λ(t− 1) ≥ 0 for t ≤ (γδn)/(1− δ), we have

t−1∑
x=0

λ(x) ≥ t · γ
2
.

It follows that (
k
t

)(
n
t

) ≥ e(2/3)·
∑t−1

x=0 β(x) · δt ≥ e(2/3)·
∑t−1

x=0 λ(x) · δt ≥ et·γ/3 · δt,

as desired.
We proceed to proof Theorem 4.3.

Proof. (of Theorem 4.3) We prove it by contradiction. By Theorem 3.16, 〈P,V〉
has soundness error δ implies that for every efficiently computable t, the parallel
protocol 〈Pt,Vt,t〉 has soundness error δt/2 + ngl. We will derive a contradiction to
this statement assuming the conclusion is not true.

Suppose the conclusion is not true, then there exists a PPT parallel prover Pn∗

and a noticeable η such that for infinitely many s ∈ N, there exists some x with
security parameter s such that

Pr[〈Pn∗,Vn,k〉(x) = 1] > e−bγ
2
√
δ·n/3c + η(s)

def
= ε1.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems100

Applying transformation in Figure 4.1 with

t = min

{⌊
γ
√
δ · n

1−
√
δ

⌋
,

⌈
3

γ
ln

2

η

⌉}
,

we obtain an efficient parallel prover strategy Pt∗ for direct product verifier Vt,t. By
Lemma 4.1, we have

Pr[〈Pt∗,Vt,t〉(x) = 1] ≥

(
ε1 ·

(
k
t

)(
n
t

)) def
= ε2.

Note that by the choice of t and the fact that δ is a constant, δt is non-negligible. To
contradict to the fact that 〈Pt,Vt,t〉 has soundness error δt/2 + ngl, it suffices to show
that ε2 ≥ δt/2(1 + η′), for some non-negligible η′.

We again use Lemma 4.4 to estimate
(
k
t

)
/
(
n
t

)
. Substituting δ by

√
δ in Lemma

4.4, we have (
k
t

)(
n
t

) ≥ eγt/3 ·
(√

δ
)t
.

Hence,

ε2 =
(
e−bγ

2
√
δ·n/3c + η

)
·
(
k
t

)(
n
t

) ≥ (e−bγ2√δ·n/3c + η
)
· eγt/3 ·

(√
δ
)t
≥ (1 + η′) · δt/2,

for some non-negligible η′, where the last inequality follows by the fact that

et·γ/3 ≥ min

{
ebγ

2
√
δ·n/3c,

2

η

}
.

In sum, the prover strategy Pt∗ obtained above is efficient and

Pr[〈Pt∗,Vt,t〉(x) = 1] > δt/2 · (1 + η′).

This contradicts to the fact that 〈Pt,Vt,t〉 has soundness error δt/2 +ngl and completes
the proof.

4.1.1 Discussion

As mentioned in the introduction, the Chernoff-type theorems resulting from
our reduction for public-coin protocols and computationally simulatable protocols
are incomparable to the Chrenoff-type theorems of Hast̊ad, Pass, Wikström, and
Pietrzak [20]. They stated their theorems in a different form. We first present their
theorems (but in our notation), and then compare the bounds.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems101

Theorem 4.5 ([20]) Assume ε ≤ 1/2 and let V ∈ PPT be a m-round verifier and
let Pn∗ be a polynomial-time parallel prover. Then there exists a prover strategy P∗

running in time poly(|x|, n,m, 1/ε) such that for every x ∈ {0, 1}∗ where

Pr[〈Pn∗(n, k, ε),Vn,k〉(x) = 1] ≥ ε,

for threshold k = (1− α)n with 0 ≤ α < 1, we have that

1. if V is “1-simulatable with verdict”, then

Pr[〈P∗(Pn∗),V〉(x) = 1] ≥ 1− α− 2

√
log(1/ε)

n
−
√

1

n
, and

2. if V is “1-simulatable without verdict”, then

Pr[〈P∗(Pn∗),V〉(x) = 1] ≥ 1− α−O

(√
m · log(1/ε)

n
+

√
m

n
· log(mn)

)

Hast̊ad, et al. [20] state their results in terms of the “simulatability” property
of protocols (which we refer to as weak simulatability property). Informally, “1-
simulatable with verdict” and “1-simulatable without verdict” essentially correspond
to public-coin protocols and computationally simulatable protocols, respectively.1

They also state their results using different parameterizations. They fix the the suc-
cess probability ε of the parallel prover Pn∗, and lower bound the success probability
of the reduction prover strategy P∗. In contrast, we assume the original protocol
〈P,V〉 has soundness error δ, and upper bound the soundness error of the parallel
protocol 〈Pn,Vn,k〉.

To compare the results, we translate their bounds to our parameter settings. For
public-coin protocols, their bound says that if 〈P,V〉 has soundness error δ, then the
corresponding parallel protocol 〈Pn,Vn,k〉 with k = (1 + γ)δn and γ ∈ (0, 1) has
soundness error e−γ

2δ2n/4 + ngl, which is slightly worse than our bound e−γ
2δn/3 + ngl.

For computationally simulatable protocols, their bound is e−Ω(γ2δ2n/m) + ngl, which
depends on the number m of rounds. On the other hand, our reduction does not give
result for threshold k = (1 + γ)δn. We need a larger threshold k ≥ (1 + γ)

√
δ · n to

guarantee the decrease of soundness error. We obtain bound e−γ
2
√
δ·n/3 + ngl, which

is independent of m. Our bound is better when δ is close to 1 and m is large.

1The definitions are not exactly equivalent, but for example, the results hold for the case of
1-simulatable without verdict also hold for the case of computationally simulatable protocols, and
vice versa, since the reduction can be implemented in the corresponding settings.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems102

4.2 Efficient Threshold Repetition Theorem for

Three-Message Protocols

In this section, we generalize the reduction of Canetti, Halevi, and Steiner [2] pre-
sented in Section 3.3 to prove a tight threshold repetition theorem for three-message
protocols.

In the literature, there have been many proofs of parallel repetition theorems
for three-message protocols (where some of them were presented in different models).
Bellare, Impagliazzo, Naor [1] proved the first direct product theorem, which says that
n-fold parallel repetition decreases the soundness error from (1−ε) to εΩ(ε2n)+ngl. The
bound is later improved to optimal by Canetti, Halevi, and Steiner [2] in the context
of “weakly verifiable puzzle systems”. The first Chernoff-type theorem was proved
by Impagliazzo, Jaiswal, and Kabanets [23, 24]. They showed that for threshold
k = (1 + γ)δn, n-fold parallel repetition with threshold verifier Vn,k decreases the
soundness error from δ to εΩ(γ2δn) + ngl. In the context of security amplification for
commitment scheme, Helavi and Rabin [17] proved a “hardness degradation theorem”,
which corresponds to threshold repetition theorem with threshold k = 1.

We prove a threshold repetition theorem for three-message protocols, which gen-
eralizes and improves the above previous results. In particular, for the Chernoff-type
region (i.e., the threshold k ≥ (1 + γ)δn for some constant γ), our bounds match the
information-theoretic bounds up to a necessary negligible term. For convenience, we
introduce the following notation to refer to the information-theoretic bounds.

Definition 4.6 Let n, k ∈ N and δ ∈ (0, 1) be parameters. We define X1, . . . , Xn to
be i.i.d. binary random variable with Pr[Xi = 1] = δ, and

P (n, k, δ)
def
= Pr

[
n∑
i=1

Xi ≥ k

]
,

i.e., the probability that at least k out of n independent events happens, where each
event happens with probability δ.

We prove that if 〈P,V〉 has constant soundness error δ, then 〈Pn,Vn,k〉 with k ≥
(1 + γ)δn has soundness error P (n, k, δ) + ngl. For general threshold k, we obtain
a slightly worse bound P (n, k, δ + α) + ngl, where α is an arbitrarily small constant
slackness parameter. As mentioned, we prove our result by a natural generalization
of the reduction of Canetti et al. [2].

Independent of our work, Holenstein and Schoenebeck [22] proved tight efficient
parallel repetition theorem for any monotone 3-message verifier. They considered the
same reduction as ours and came up with a better analysis to handle errors, which
allows them to prove an optimal parallel repetition theorem. There is another inde-
pendent work of Jutla [26], which improved the Chernoff-type theorem of Impagliazzo

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems103

et al. [24] by a variant of their reduction. Jutla improved the constant in the expo-
nent of the bound to match that of the Chernoff bound. However, the bound is worse
than the optimal information-theoretic bounds obtained by us and Holenstein and
Schoenebeck.

Formally, we prove the following threshold repetition theorem for three-message
protocols in this section. We present the better analysis of Holenstein and Schoenebeck
[22] since it is more elegant and gives better parameters. We will discuss how our
original analysis was different from that of Holenstein and Schoenebeck later in this
section. The following theorem says that if 〈P,V〉 has soundness error δ, then the
corresponding parallel protocol 〈Pn,Vn,k〉 has soundness error P (n, k, δ) + ngl.

Theorem 4.7 Let V ∈ PPT be a three-message verifier. There exists a prover strat-
egy P∗ such that for every common input x ∈ {0, 1}∗, every n, k ∈ N with k ≤ n,
every δ, ξ ∈ (0, 1), and every parallel prover strategy Pn∗,

1. Pr[〈Pn∗,Vn,k〉(x) = 1] ≥ P (n, k, δ) + ξ ⇒

Pr[〈P∗(Pn∗)(n, k, δ, ξ),V〉(x) = 1] ≥ δ +
ξ

10n
.

2. P∗(·)(x, n, k, δ, ξ) runs in time poly(|x|, n, ξ−1) given oracle access to Pn∗(x).

We first recall the notation and ideas for proving direct product theorems from
Section 3.3. Recall that the three messages of 〈P∗,V〉 and 〈Pn∗,Vn,k〉 are denoted
by w, v, p and ~w,~v, ~p respectively. We use c to denote V’s private coins, and write
v = V(w, c) or simply v = V(c) when the prover’s first message w is clear from the
context. We assume without loss of generality that Pn∗ is deterministic, and hence
~w is fixed and the outcome of 〈Pn∗,Vn,k〉(x) is determined by Vn,k’s private coins
~c = (c1, . . . , cn). With a slight abuse of notation, we write “Pn∗(~c) convinces V−i,”
or “Pn∗(vi,~c−i) convinces V−i,” to denote the subverifiers V−i accepting in the cor-
responding interaction 〈Pn∗,Vn,k〉(x). Similarly, “Pn∗(~c) convinces ≥ t of Vn,k,” and
“Pn∗(~c) convinces ≥ t of V−1,” mean at least t subverifiers of Vn,k and V−1 accept in
the corresponding interaction, respectively.

Also recall the common framework that the interaction of 〈P∗,V〉 simulates the
interaction of 〈Pn∗,Vn,k〉, where (1) P∗ first selects coordinate i, (2) V generates
random coins c = ci, which determine the message vi = Vi(ci), and then (3) P∗ selects
the remaining n−1 sequences of coins ~c−i, which determine messages ~v−i. P

∗ succeeds
iff Pn∗ convinces Vi in the corresponding interaction (i.e., Vi with coins ci accepts the
interaction (wi, vi, pi).).

Finally, recall that the challenge is that P∗ can only compute the decision of the
n−1 internal subverifiers V−i but cannot predict V’s decision from the transcript, since
P∗ does not know V’s private coin ci. In Section 3.3, we considered a naive strategy,
where P∗ only checks whether all internal subverifiers accept. More precisely, P∗

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems104

uses sampling to select a ~c−i such that Pn∗ convinces all V−i in the corresponding
interaction.

We observed that this naive strategy does not work when there are“bad correla-
tions” in the “success pattern” of Pn∗. Then, we presented a correlation reduction in
Figure 3.5, which exploits such bad correlations to convert a parallel prover strategy
Pn∗ to another parallel prover strategy Pn

′∗ with smaller n′ < n and without such
bad correlations.

More precisely, we sample coins c∗1 of the first subverifier V1, and estimate by
sampling the probability that Pn∗ convinces V−1 conditioned on V1’s coins are c∗1. If
the probability is at least δn−1, then we can construct a prover strategy Pn−1∗ that
convinces Vn−1,n−1 with probability at least δn−1, and we can iterate this process on
Pn−1∗. On the other hand, if we cannot find such c∗1 after many samples, we obtain
an extra property that for most coins c∗1, Pr[Pn∗ convinces V−1|c1 = c∗1] ≤ δn−1.2 We
proved that the naive strategy works when applies to a prover strategy Pn∗ with this
extra property. Intuitively (though not accurate3), this is because

Pr[P∗ convinces V] “=” Pr[Pn∗ convinces Vn,n|Pn∗ convinces V−1]

=
Pr[Pn∗ convinces Vn,n]

Pr[Pn∗ convinces V−1]
≥ δ

For the case of threshold verifiers, we consider the following natural generalization.
The starting point is a parallel prover strategy Pn∗ such that

Pr[Pn∗ convinces ≥ k of Vn,k] ≥ P (n, k, δ).

We apply a natural generalization of the correlation reduction procedure to convert
Pn∗ to some Pn

′∗. There are two natural conditions to consider. First, if there exist
coins c∗1 of subverifier V1 such that

Pr[Pn∗ convinces ≥ k of V−1|c1 = c∗1] ≥ P (n− 1, k, δ),

then we can construct a Pn−1∗ that convinces Vn−1,k with probability P (n − 1, k, δ),
and iterate the process on Pn−1∗. Similarly, if there exist coins c∗1 of subverifier V1

such that

Pr[Pn∗ convinces ≥ k − 1 of V−1|c1 = c∗1] ≥ P (n− 1, k − 1, δ),

2For intuition, we omit various sampling errors and necessary slackness parameters in the follow-
ing informal discussion.

3The success probability of P∗ is actually Ec∗1 [Pr[Pn∗ convinces Vn,n|Pn∗ convinces V−1|c1 =
c∗1]], and hence, to lower bound the success probability of P∗, we need the property that
Pr[Pn∗ convinces V−1|c1 = c∗1] ≤ δn−1 for most c∗1, as opposed to only Pr[Pn∗ convinces V−1] ≤
δn−1. Nevertheless, it is instructive to think of the above (over-simplified) formula for intuition.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems105

then we can construct a Pn−1∗ that convinces Vn−1,k−1 with probability P (n− 1, k −
1, δ), and iterate the process on Pn−1∗. On the other hand, if we cannot find such c∗1
after many samples, we obtain extra properties that for most coins c∗1,

• Pr[Pn∗ convinces ≥ k of V−1|c1 = c∗1] ≤ P (n− 1, k, δ),

• Pr[Pn∗ convinces ≥ k − 1 of V−1|c1 = c∗1] ≤ P (n− 1, k − 1, δ).

Intuitively, since Pn∗ cannot convince V−1 well by the above conditions, in order to
convinces Vn,k with good probability, Pn∗ must convince V1 well, especially when Pn∗

convinces exactly k−1 of V−1. Therefore, we consider a variant of the naive strategy,
where P∗ embeds V = V1 at the first coordinate of Vn,k, and uses sampling to select
a ~c−1 such that Pn∗ convinces exactly k − 1 subverifiers of V−1. Again, intuitively
(though not accurate), we have

Pr[P∗ convinces V]

“=” Pr[Pn∗ convinces V1 ∧ (k − 1 of V−1)]

=
Pr[Pn∗ convinces V1 ∧ (k − 1 of V−1)]

Pr[Pn∗ convinces k − 1 of V−1]

=
Pr[Pn∗ convinces ≥ k of Vn,k]− Pr[Pn∗ convinces ≥ k of V−1]

Pr[Pn∗ convinces ≥ k − 1 of V−1]− Pr[Pn∗ convinces ≥ k of V−1]

≥ P (n, k, δ)− Pr[Pn∗ convinces ≥ k of V−1]

P (n− 1, k − 1, δ)− Pr[Pn∗ convinces ≥ k of V−1]

≥ P (n, k, δ)− P (n− 1, k, δ)

P (n− 1, k − 1, δ)− P (n− 1, k, δ)

=
Pr[X1 = 1 ∧

∑n
i=2 Xi = k − 1]

Pr[
∑n

i=2Xi = k − 1]
= δ,

where

• The numerator of the third equality says that the event that Pn∗ convinces V1

and exactly k − 1 of V−1 is equivalent to the event that Pn∗ convinces at least
k of Vn,k but less than k of V−1.

• The denominator of the third equality says that the event that Pn∗ convinces
exactly k− 1 of V−1 is equivalent to the event that Pn∗ convinces at least k− 1
of V−1 but less than k of V−1.

• The first inequality follows by the fact that Pr[Pn∗ convinces ≥ k of Vn,k] ≥
P (n, k, δ) and Pr[Pn∗ convinces ≥ k − 1 of V−1] ≤ P (n− 1, k − 1, δ).

• The second inequality follows by the fact that Pr[Pn∗ convinces ≥ k of V−1] ≤
P (n− 1, k, δ) and the inequality

b

a
≥ b− x
a− x

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems106

for any a ≥ b ≥ x ≥ 0.

Note that the key of the above calculation is the third equality, where we decompose
the events that used by the naive reduction prover strategy into the events that
controlled by the correlation reduction procedure.

The aforementioned natural generalization of the reduction of Canetti et al. [2] pre-
sented in Section 3.3 indeed works. However, it requires a careful implementation. In
particular, note that the generalized correlation reduction procedure converts a Pn∗ for
Vn,k with success probability P (n, k, δ) to some Pn

′∗ for Vn
′,k′ with success probability

P (n′, k′, δ), for some n′ ≤ n and k′ ≤ k′. It is possible that P (n′, k′, δ) � P (n, k, δ).
For example, k = n/2, δ = 1/2 and n′ = k′ = n/2. Note that P (n, n/2, 1/2) ≥ 1/2,
but P (n/2, n/2, 1/2) = 2−n/2. If n = ω(log s), then the returned Pn

′∗ has negligible
success probability, which is not useful for efficient black-box reduction.

To resolve this issue, Holenstein and Schoenebeck [22] exploited the slackness pa-
rameter ξ carefully to keep the success probability noticeable (always at least Ω(ξ/n))
during the correlation reduction procedure. To make this work, it also requires a care-
ful analysis of the reduction. Therefore, they were able to make the reduction run
in time poly(|x|, n, ξ−1) and prove tight efficient parallel repetition theorem for all
parameter ranges. Furthermore, they extended the above reduction to handle any
monotone verifier and obtained a tight monotone repetition theorem.

On the other hand, we overlooked their way of exploiting the slackness parameter,
and hence, our implementation of the above reduction ran in time poly(|x|, δ−n, (1−
δ)−n), which is only efficient for constant δ and n = O(log s). Instead, we exploited the
slackness parameter in a different way to obtain parallel repetition theorem for general
n, k = poly(s). Roughly speaking, we applied generic transformations (in the spirit
of the one presented in Section 4.1) to convert Pn∗ to some Pn

′∗ with n′ = O(log s)
before applying the above reduction. As mentioned, we obtained the same bounds
for Chernoff-type region, but slightly worse bounds when the threshold is small. Our
result had an additional limitation that it required the initial soundness error δ to be
constant.

In the following sections, we formalize the above reduction, and present the better
analysis of Holenstein and Schoenebeck [22].

4.2.1 Correlation Reduction for Threshold Verifiers

In this section, we present a formal description of the generalized correlation
reduction procedure for threshold verifiers in Figure 4.2, and state its property in
Lemma 4.8. Recall that the starting point is a (deterministic) parallel prover Pn∗

for Vn,k with success probability at least P (n, k, δ) + ξ for some slackness parameter
ξ. The procedure is similar to that in Figure 3.5 of Section 3.3, and is informally
discussed in the previous section. We note that although the value P (n, k, δ) can
decrease exponentially during the iteration of the procedure, the slackness parameter

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems107

remains at least ξ/n throughout the procedure.

Sub-Routine FindC(Pn∗, n, k, δ, ξ)
/* Find correlations in the success pattern of Pn∗ on the first coordinate. */

/* Return P(n−1)∗ if such correlation is found. Otherwise, return ⊥ */

Repeat the following at most M1 = O
(
n
ξ
· log n

ξ

)
times:

• Sample random coins c∗1 and estimate

– pk(c
∗
1)

def
= Pr[Pn∗ convinces ≥ k of V−1|c1 = c∗1], and

– pk−1(c∗1)
def
= Pr[Pn∗ convinces ≥ k − 1 of V−1|c1 = c∗1]

by sampling. Namely, randomly sample M2 = O
(
n2

ξ2
· log n

ξ

)
independent

copies of ~c−1’s, check if Pn∗ convinces ≥ k (resp., k− 1) of V−1 on (c∗i ,~c−i),
and compute estimators

– p̂k(c
∗
i) = |{~c−i : Pn∗ convinces ≥ k of V−1 on (c∗1,~c−1)}|/M2.

– p̂k−1(c∗i) = |{~c−i : Pn∗ convinces ≥ k − 1 of V−1 on (c∗1,~c−1)}|/M2.

• If p̂k(c
∗
1) ≥ P (n − 1, k, δ) + (1 − (1/n)) · ξ, then return integer k and a

parallel prover P(n−1)∗(c∗1) for Vn−1,k defined as follows: P(n−1)∗(c∗1) interacts
with Vn−1,k by simulating the interaction of Pn∗ and Vn,k, where P(n−1)∗(c∗1)
simulates Pn∗ and the first coordinate V1 with coin c∗1 honestly, and Vn−1,k

plays the remaining coordinates V−1 of Vn,k.

• If p̂k−1(c∗1) ≥ P (n− 1, k − 1, δ) + (1− (1/n)) · ξ, then return integer k − 1
and the same parallel prover P(n−1)∗(c∗1) as above (but for Vn−1,k−1).

Return ⊥ after M1 (failure) attempts.

CR(Pn∗, n, k, δ, ξ)
/* Implicitly, there are a PPT verifier V and an input x as part of the input. */

/* Iteratively exploit correlation in the success pattern of Pn∗ to obtain P(n−1)∗.*/

Iteratively apply FindC until n = 1 or FindC returns ⊥, namely

• Call FindC(Pn∗, n, k, δ, ξ). If FindC returns a number k′ and P(n−1)∗, then
set ξ ←

(
1− 1

n

)
· ξ, n← n− 1, and k ← k′ (so that Pn∗ refers to the prover

strategy returned by FindC).

Return the final Pn∗ and the corresponding threshold k.

Figure 4.2: Correlation reduction for threshold verifiers.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems108

The property of the generalized correlation reduction procedure is summarized in
the following lemma, which informally says that the returned Pn

′∗ (with threshold
k′) satisfies that either (1) n′ = 1 and Pn

′∗ convinces V with probability at least δ,
or (2) Pn

′∗ convinces Vn
′,k′ with probability at least P (n′, k′, δ) + Ω(n′ξ/n), and for

most coins c∗1, Pr[Pn
′∗ convinces ≥ k′ of V−1|c1 = c∗1] ≤ P (n′−1, k′, δ)+O(n′ξ/n) and

Pr[Pn
′∗ convinces ≥ k′ − 1 of V−1|c1 = c∗1] ≤ P (n′ − 1, k′ − 1, δ) +O(n′ξ/n).

Consider a PPT verifier V (not necessarily three-message), an input x ∈ {0, 1}∗,
parameters n, k ∈ N , δ, ξ ∈ (0, 1), and a deterministic parallel prover Pn∗ for Vn,k be
given as in Figure 4.2.

Lemma 4.8 If Pn∗ has success probability at least (P (n, k, δ) + ξ) in convincing Vn,k

on input x, then with probability at least (1 − (ξ/10n)) over the randomness of CR,
CR(Pn∗, n, k, δ, ξ) outputs a deterministic prover strategy Pn

′∗ with threshold k′ satis-
fying the following properties.

• Pr[〈Pn′∗,Vn′,k′〉(x) = 1] ≥ P (n′, k′, δ) + ((10n′ − 1)/10n) · ξ.

• Either n′ = 1, or with probability at least (1− (ξ/10n)) over V1’s coins c∗1,

– Pr[Pn
′∗ convinces ≥ k′ of V−1|c1 = c∗1] ≤ P (n′−1, k′, δ)+ 10(n′−1)+1

10n
· ξ, and

– Pr[Pn
′∗ convinces ≥ k′ − 1 of V−1|c1 = c∗1] ≤ P (n′−1, k′−1, δ)+ 10(n′−1)+1

10n
·

ξ.

Furthermore, CR(Pn∗, n, k, δ, ξ) can be implemented with oracle access to Pn∗ with
runtime poly(|x|, n, ξ−1), and the output Pn

′∗ can be implemented in time poly(|x|, n)
given oracle access to Pn∗.

Lemma 4.8 can be proved by a straightforward generalization of the proof of
Lemma 3.13. We omit the proof to avoid repetitive arguments.

4.2.2 Reduction Prover Strategy P∗

In this section, we present a formal description of our reduction prover strategy P∗

for proving Theorem 4.7 in Figure 4.3. As discussed, P∗ first applies the correlation
reduction procedure CR to the given (deterministic) parallel prover Pn∗ to obtain a
Pn
′∗ with extra properties stated in Lemma 4.8. Then P∗ applies a variant of the

naive strategy to Pn
′∗, namely, P∗ embeds V in the first coordinate of Vn

′,k′ , and uses
sampling to select a ~c−1 such that Pn

′∗ convinces exactly k′ − 1 of V−1.
We proceed to analyze the success probability of P∗. As before, it is instructive to

analyze the reduction in the ideal case where there are no sampling errors. Specifically,
we consider an ideal scenario (where there are no sampling errors in both the CR
procedure and sampling ~c−1) that satisfies the following properties:

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems109

Prover Strategy P∗(x, n, k, δ, ξ)
/* P∗ interacts with V and is given oracle access to Pn∗. */

• P∗ applies CR to Pn∗ to obtain Pn
′∗ = CR(Pn∗, n, k, δ, ξ), and a threshold k′.

• If n′ = 1, P∗ interacts with V by running Pn
′∗; otherwise, P∗ does the following.

• P∗ runs Pn
′∗ to generate ~w, and sends w1 to V.

• Upon receiving v1 = v from V, P∗ repeats the following at most M =

O
(
n
ξ · log n

ξ

)
times.

– P∗ generates random coins ~c−1 = (c2, . . . , cn′). Then P∗ checks if
Pn
′∗(v1,~c−1) convinces exactly k′ − 1 of V−1. Namely, P∗ computes

~v−1 = V−1(~c−1) and ~p = Pn
′∗(v1, ~v−1), and checks if Vj with coin cj ac-

cepts transcript (wj , vj , pj) for exactly k′ − 1 of j ∈ {2, . . . , n}. If so, P∗

sends p1 to V and terminates.

• If all the M attempts fail, P∗ sends ⊥ to V (or simply abort).

Figure 4.3: Reduction prover strategy P∗ for three-message protocols with threshold
verifiers.

• The Pn
′∗ and threshold k′ returned by CR (assuming that n′ > 1 as the n′ = 1

case is trivial) always satisfy the following properties:

– Pr[〈Pn′∗,Vn′,k′〉(x) = 1] ≥ P (n′, k′, δ) + n′

n
· ξ.

– For every c∗1,

Pr[Pn
′∗ convinces ≥ k′ of V−1|c1 = c∗1] ≤ P (n′ − 1, k′, δ) +

n′ − 1

n
· ξ,

Pr[Pn
′∗ convinces ≥ k′ − 1 of V−1|c1 = c∗1] ≤ P (n′−1, k′−1, δ)+

n′ − 1

n
·ξ.

• If there exist ~c−1 such that Pn
′∗ convinces exactly k′ − 1 of V−1 on (v1,~c−1),

then P∗ selects a uniformly random such ~c−1. (This is achieved by randomly
sampling a unbounded number of ~c−1 as opposed to at most M times in Figure
4.3.)

We argue that (in this ideal scenario) the success probability of P∗ can be expressed
in the following formula:

Pr[〈P∗,V〉(x) = 1] = E
c∗1

[
Pr[Pn

′∗ convinces V1 ∧ (k′ − 1 of V−1)|c1 = c∗1]

Pr[Pn′∗ convinces k′ − 1 of V−1|c1 = c∗1]

]
.4

4Here, we take a convention that 0/0 = 0.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems110

First, the expectation operator corresponds to that V uses uniformly random coins c∗1.
Second, note that P∗ samples a random ~c−1 conditioning on Pn

′∗ convinces exactly
k′ − 1 of V−1 on (c∗1,~c−1), and P∗ succeeds iff Pn

′∗ also convinces V1 on (c∗1,~c−1).
Conditioned on V’s coin being c∗1, the success probability of P∗ is precisely

Pr[Pn
′∗ convinces V1 ∧ (k′ − 1 of V−1)|c1 = c∗1]

Pr[Pn′∗ convinces k′ − 1 of V−1|c1 = c∗1]
.

We will use the above properties of Pn
′∗ to lower bound the above expectation.

To simplify the notation, we first introduce the following shorthand notations.

• We use (≥ k′) to denote the event that Pn
′∗ convinces at least k′ of Vn

′,k′ , and

p(≥ k′)
def
= Pr[Pn

′∗ convinces ≥ k′ of Vn
′,k′],

p(≥ k′|c∗1)
def
= Pr[Pn

′∗ convinces ≥ k′ of Vn
′,k′|c1 = c∗1].

• We use (1, k′− 1) to denote the event that Pn
′∗ convinces V1 and exactly k′− 1

of V−1, and (∗,≥ k′) to denote the event that Pn
′∗ convinces at least k′ of V−1

(i.e., ignore V1’s verdict). Similarly, we define

p(1, k′ − 1)
def
= Pr[Pn

′∗ convinces V1 ∧ (k′ − 1 of V−1)],

p(∗,≥ k′|c∗1)
def
= Pr[Pn

′∗ convinces ≥ k′ of V−1|c1 = c∗1].

We perform the following calculation similar to that in previous section to lower
bound the expectation.

E
c∗1

[
p(1, k′ − 1|c∗1)

p(∗, k′ − 1|c∗1)

]
= E

c∗1

[
p(≥ k′|c∗1)− p(∗,≥ k′|c∗1)

p(∗,≥ k′ − 1|c∗1)− p(∗,≥ k′|c∗1)

]
≥ E

c∗1

[
p(≥ k′|c∗1)−

(
P (n′ − 1, k′, δ) + n′−1

n
· ξ
)(

P (n′ − 1, k′ − 1, δ) + n′−1
n
· ξ
)
−
(
P (n′ − 1, k′, δ) + n′−1

n
· ξ
)]

≥
(
P (n′, k′, δ) + n′

n
· ξ
)
−
(
P (n′ − 1, k′, δ) + n′−1

n
· ξ
)

P (n′ − 1, k′ − 1, δ)− P (n′ − 1, k′, δ)

=
Pr[X1 = 1 ∧

∑n′

i=2Xi = k′ − 1] + 1
n
· ξ

Pr[
∑n′

i=2Xi = k′ − 1]

≥ δ +
ξ

n
.

This completes the analysis in the ideal scenario.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems111

We proceed to analyze the actual (non-ideal) prover strategy P∗, where the chal-
lenge is to show that the sampling errors do not lower the success probability too
much. The sampling errors are handled in a similar way to the analysis for the direct
product case in Section 3.3. We shall show that if Pn∗ has success probability at
least P (n, k, δ) + ξ in convincing Vn,k, then P∗ can succeed with probability at least
δ + (ξ/10n).

Recall that by Lemma 4.8, with probability at least (1 − (ξ/10n)) over the ran-
domness of CR, the Pn

′∗ returned by CR satisfies two good properties. Let us call
a Pn

′∗ returned by CR good if Pn
′

satisfies the two properties stated in the lemma.
Informally, Lemma 4.8 allows us to focus on good Pn

′∗’s with a loss of of at most
(ξ/10n) on the success probability, since Pn

′∗ is not good with probability at most
(ξ/10n). Also observe that by definition, when Pn

′∗ is good and n′ = 1, P∗ can succeed
with probability at least δ + (9/10n) · ξ. Therefore, it remains to analyze the success
probability of P∗ for the case that the Pn

′∗ returned by CR is good and n′ > 1.
Fix a good Pn

′∗ with threshold k′ returned by CR with n′ > 1. Lemma 4.8 says
that Pn

′∗ satisfies

• p(≥ k′) = Ec∗1
[p(≥ k′|c∗1)] ≥ P (n′, k′, δ) + ((10n′ − 1)/10n) · ξ.

• With probability at least (1− (ξ/10n)) over c∗1,

– p(∗,≥ k′|c∗1) ≤ P (n′ − 1, k′, δ) + 10(n′−1)+1
10n

· ξ, and

– p(∗,≥ k′ − 1|c∗1) ≤ P (n′ − 1, k′ − 1, δ) + 10(n′−1)+1
10n

· ξ.

Let us call c∗1 is good and denote it by c∗1 ∈ Good if the above inequalities holds. In
other words, we define

Good = {c∗1 : c∗1 satisfies the above inequalities.} .

By a similar argument as that in the analysis of the ideal scenario, we observe
that the success probability of P∗ can be expressed as

Pr[〈P∗,V〉(x) = 1|Pn′] = E
c∗1

[
p(1, k′ − 1|c∗1)

p(∗, k′ − 1|c∗1)
·
(
1− (1− p(1, k′ − 1|c∗1))M

)]
,

where
(
1− (1− p(1, k′ − 1|c∗1))M

)
is the probability that P∗ can find a ~c−1 such that

Pn
′∗ convinces exactly k′ − 1 of V−1 on (c∗1,~c−1) from at most M random samples of

~c−1. Our goal is to lower bound the expectation.
We recall Claim 3.14 in Section 3.3 to handle the extra error term

(
1− (1− p(1, k′ − 1|c∗1))M

)
.

Claim 4.9 Let γ ∈ (0, 1). If M ∈ N satisfies (1− γ)M ≤ γ, then for every α, β with
0 ≤ α ≤ β ≤ 1, we have

α

β
·
(
1− (1− β)M

)
≥ (α− γ)+

β
,

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems112

where (x)+
def
= max{x, 0}.5

Choosing the constant in M = O
(
n
ξ

log n
ξ

)
properly so that (1 − (ξ/10n))M ≤

(ξ/10n), and using the above claim, we have

E
c∗1

[
p(1, k′ − 1|c∗1)

p(∗, k′ − 1|c∗1)
·
(
1− (1− p(∗, k′ − 1|c∗1))M

)]
≥ E

c∗1

[
(p(1, k′ − 1|c∗1)− (ξ/10n))+

p(∗, k′ − 1|c∗1)

]
.

Also, we can get rid of bad c∗1 by

E
c∗1

[
(p(1, k′ − 1|c∗1)− (ξ/10n))+

p(∗, k′ − 1|c∗1)

]
≥ E

c∗1

[
(p(1, k′ − 1|c∗1)− (ξ/10n))+ · 1[c∗1 ∈ Good]

p(∗, k′ − 1|c∗1)

]
,

where 1[E] = 1 if the event E is true, and 0 otherwise. We can then perform a similar
calculation as in the ideal scenario:

E
c∗1

[
(p(1, k′ − 1|c∗1)− (ξ/10n))+ · 1[c∗1 ∈ Good]

p(∗, k′ − 1|c∗1)

]
= E

c∗1

[
(p(≥ k′|c∗1)− p(∗,≥ k′|c∗1)− (ξ/10n))+ · 1[c∗1 ∈ Good]

p(∗,≥ k′ − 1|c∗1)− p(∗,≥ k′|c∗1)

]

≥ E
c∗1


(
p(≥ k′|c∗1)−

(
P (n′ − 1, k′, δ) + 10(n′−1)+1

10n
· ξ
)
− (ξ/10n)

)
+
· 1[c∗1 ∈ Good](

P (n′ − 1, k′ − 1, δ) + 10(n′−1)+1
10n

· ξ
)
−
(
P (n′ − 1, k′, δ) + 10(n′−1)+1

10n
· ξ
)


=
Ec∗1

[(
p(≥ k′|c∗1)− P (n′ − 1, k′, δ)− 10(n′−1)+2

10n
· ξ
)

+
· 1[c∗1 ∈ Good]

]
Pr
[∑n′

i=2 Xi = k′ − 1
] ,

where we can bound the numerator by

E
c∗1

[(
p(≥ k′|c∗1)− P (n′ − 1, k′, δ)− 10(n′ − 1) + 2

10n
· ξ
)

+

· 1[c∗1 ∈ Good]

]
≥ E

c∗1

[p(≥ k′|c∗1) · 1[c∗1 ∈ Good]]−
(
P (n′ − 1, k′, δ) +

10(n′ − 1) + 2

10n
· ξ
)

≥ E
c∗1

[p(≥ k′|c∗1)]− Pr[c∗1 /∈ Good]−
(
P (n′ − 1, k′, δ) +

10(n′ − 1) + 2

10n
· ξ
)

≥
(
P (n′, k′, δ) +

10n′ − 1

10n
· ξ
)
− ξ

10n
−
(
P (n′ − 1, k′, δ) +

10(n′ − 1) + 2

10n
· ξ
)

= Pr

[
X1 = 1 ∧

n′∑
i=2

Xi = k′ − 1

]
+

10n′ − 4

10n
· ξ.

5Again, we use a convention that 0/0
def
= 0.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems113

Putting things together, for every good Pn
′∗ with threshold k′ returned by CR

with n′ > 1, we have

Pr[〈P∗,V〉(x) = 1|Pn′∗] ≥
Pr
[
X1 = 1 ∧

∑n′

i=2 Xi = k′ − 1
]

+ 10n′−4
10n

· ξ

Pr
[∑n′

i=2Xi = k′ − 1
] ≥ δ +

2ξ

10n
.

It follows that

Pr[〈P∗,V〉(x) = 1]

≥ Pr[〈P∗,V〉(x) = 1|Pn′∗ is good]− Pr[Pn
′∗ is not good]

≥ δ +
2ξ

10n
− ξ

10n

≥ δ +
ξ

10n
,

which completes the analysis.

4.2.3 Discussion

For the sake of completeness, we formally state the threshold repetition theorem
we obtained and the more general parallel repetition theorem with monotone verifiers
of Holenstein and Schoenebeck [22], and briefly discuss how our original analysis is
different. We first state the result of Holenstein and Schoenebeck [22].

Theorem 4.10 ([22]) Let V ∈ PPT be a three-message verifier. There exists a
prover strategy P∗ such that for every common input x ∈ {0, 1}∗, every n ∈ N, δ, ξ ∈
(0, 1), every efficient combining function g : {0, 1}n → {0, 1} (given as a circuit), and

parallel prover strategy Pn∗, let ε
def
= Pr[g(X1, . . . , Xn) = 1] where X1, . . . , Xn are i.i.d.

random bits with Pr[Xi = 1] = δ, we have

1. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε+ ξ ⇒

Pr[〈P∗(Pn∗)(n, g, δ, ξ),V〉(x) = 1] ≥ δ +
ξ

10n
,

2. P∗(·)(x, n, δ, ξ) runs in time poly(|x|, n, ξ−1) given oracle access to Pn∗(x).

As mentioned earlier in this section, both we and Holenstein and Schoenebeck [22]
consider the same reduction idea, but our implementation is suboptimal so that the
runtime of our reduction is poly(|x|, δ−n, (1−δ)−n) instead of poly(|x|, n, ξ−1). Hence,
our reduction is efficiently only when n = O(log s). Nevertheless, we can still prove
the following threshold repetition theorems for general n, k = poly(s).

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems114

Theorem 4.11 Let 〈P,V〉 be a three-message protocol with input domain Λ, let δ, α ∈
(0, 1) be constants, and let n, k : N → N be efficiently computable functions with
1 ≤ k ≤ n ≤ poly(s). If 〈P,V〉 has soundness error δ,

1. then 〈Pn,Vn,k〉 has soundness error P (n, k, (1 + α)δ) + ngl.

2. if in addition, k ≥ (1 + γ)δn for some constant γ > 0, then 〈Pn,Vn,k〉 has
soundness error P (n, k, δ) + ngl.

We briefly sketch our idea of proving the above theorem, where we omit various
sampling errors and rounding issues for simplicity. Our idea is to apply the following
simple transformation to reduce the number of repetition n to O(log s) before applying
our reduction. Given a parallel prover strategy Pn∗ for Vn,k with success probability ε,
our transformation outputs a parallel prover strategy Pn

′∗ for Vn
′,k′ with k′ = k ·(n′/n)

and ε′ = ε · (n′/n).
The Pn

′∗ is defined as follows. Pn
′∗ interacts with Vn

′,k′ by simulating the interac-
tion of Pn∗ and Vn,k. Pn

′∗ partitions the n coordinates of Vn,k into t = (n/n′) (disjoint)
blocks, embeds Vn

′,k′ in a random block of Vn,k, and then simply simulates Pn∗ and
the remaining t−1 blocks of Vn,k honestly. Note that when Pn∗ convinces Vn,k, by an
averaging argument, there must be a block i ∈ [t] such that Pn∗ convinces at least k′

out of n′ subverifiers in this block. Pn
′∗ can guess this block correctly with probability

1/t, and hence Pn
′∗ can successfully convince Vn

′,k′ with probability at least ε′ = ε/t.
At the first glance, the loss of factor t in the success probability is large so that

when we apply our reduction to Pn
′∗, we may not be able to obtain a good bound. For-

tunately, note that we only need to apply the transformation when n = ω(log s), and
thanks to the necessary negligible slackness presented in Theorem 4.11, the resulting
reduction prover strategy can indeed succeed with desired probability.

To see this, let us consider the Chernoff-type case where the threshold k ≥ (1 +
γ)δn for some constant γ > 0. Recall that the starting point of the reduction is a Pn∗

with success probability ε = P (n, k, δ) + ξ for some noticeable slackness ξ. Note that
when n = ω(log s), the probability P (n, k, δ) = e−Ω(γ2δn) = s−ω(1) is negligible. Hence,
ξ is dominant term in ε = P (n, k, δ) + ξ. By choosing n′ = c log s for sufficiently large
constant c, we can have ε′ = ε/t ≥ P (n′, k′, δ). It follows that when we apply our
reduction to Pn

′∗, we can obtain a prover strategy with success probability at least δ.
A similar argument can be applied to the general case to prove the first bullet of the
above Theorem 4.11.

4.3 Efficient Parallel Repetition Theorem for

Constant-round Public-Coin Protocols

In this section, we prove a tight efficient parallel repetition theorem for constant-
round public-coin protocols with arbitrary monotone verifiers, which says that sound-

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems115

ness error behaves as if the different executions were completely independent. More
precisely, if a constant-round public-coin protocol 〈P,V〉 has soundness error δ, then
the parallel protocol 〈Pn,Vn,g〉 has soundness error Pr[g(X1, . . . , Xn) = 1]+ngl, where
g is any monotone combining function, and X1, . . . , Xn are i.i.d. random bits with
Pr[Xi = 1] = δ.

We prove it by analyzing a “recursive sampling” strategy of Pass and Venkita-
subramaniam [30], who used the reduction to prove a tight direct product theorem
for constant-round public-coin protocols. We show that the same reduction actu-
ally gives more general parallel repetition theorems. Namely, if there exists a Pn∗

with success probability at least Pr[g(X1, . . . , Xn) = 1] in convincing Vn,g, then the
reduction prover strategy P∗ can succeed with probability at least roughly δ. This
reduction is very different from the reduction in Section 3.2 for general public-coin
protocols.

Formally, we prove the following theorem. Note that the reduction runs in time ex-
ponential in the number of rounds m, and hence only gives efficient parallel repetition
theorem when the number of rounds is constant.

Theorem 4.12 Let V ∈ PPT be a m-round public-coin verifier. There exists a prover
strategy P∗ such that for every common input x ∈ {0, 1}∗, every n ∈ N, δ, ξ ∈ (0, 1),
every efficient combining function g : {0, 1}n → {0, 1}, and parallel prover strategy

Pn∗, if we let ε
def
= Pr[g(X1, . . . , Xn) = 1] where X1, . . . , Xn are i.i.d. random bits with

Pr[Xi = 1] = δ, we have

1. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε+ ξ

⇒ Pr[〈P∗(Pn∗)(n, g, δ, ξ),V〉(x) = 1] ≥ δ,

2. P∗(·)(x, n, δ, ξ) runs in time poly(|x|, 2m2
, nm, ξ−m) given oracle access to Pn∗(x).

We first recall the notation for public-coin protocols, and then discuss the re-
duction prover strategy for proving the above theorem. Recall that we assume the
verifier speaks first, and we denote the verifier V’s (resp., the prover P’s) messages by
v1, . . . , vm (resp., p1, . . . , pm). The messages of the n-fold parallel repetition 〈Pn,Vn,g〉
of 〈P,V〉 are denoted by ~v1 = (v1,1, . . . , v1,n), ~v2, . . . , ~vm, and ~p1, . . . , ~pm, respectively.
We use d1, . . . , dn to denote the verdict bits of Vn,g, and d = g(d1, . . . , dn) is the ver-

dict of Vn,g. Throughout this section, ~X = (X1, . . . , Xn) are i.i.d. random bits with

Pr[Xi = 1] = δ, and ε
def
= Pr[g(~X) = 1] = Pr[g(X1, . . . , Xn) = 1].

Similarly to Lemma 2.5 and 2.6, we assume without loss of generality that Pn∗

is deterministic, and hence the interaction of 〈Pn∗,Vn,g〉(x) is determined solely by
Vn,g’s messages (~v1, . . . , ~vm). For convenience, we ignore Pn∗’s messages and refer
to (~v1, . . . , ~vm) as the transcript of 〈Pn∗,Vn,g〉(x). We also write Pr[〈Pn∗,Vn,n〉(x) =

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems116

1|~v1, . . . , ~vj] as the success probability of Pn∗ conditioned on the partial transcript be-
ing (~v1, . . . , ~vj). Similarly, Pr[Pn∗ convinces Vi|~v1, . . . , ~vj−1, vj,i] is the probability that
Pn∗ convinces the i-th subverifier Vi conditioned on partial transcript (~v1, . . . , ~vj−1, vj,i).

We proceed to discuss the recursive sampling strategy of Pass and Venkitasub-
ramaniam [30]. Recall the common framework that P∗ interacts with V by simu-
lating the interaction of 〈Pn∗,Vn,g〉, where P∗ embeds V = Vi in some coordinate
i ∈ [n] of Vn,g, and they jointly select the parallel verifier Vn,g’s messages ~v1, . . . , ~vm.
This can be viewed as a game played between P∗ and V, where P∗’s moves are
(i, ~v1,−i, ~v2,−i, . . . , ~vm,−i) and V’s moves are (v1,i, v2,i, . . . , vm,i). In the game, V plays
uniformly random strategy, and the goal is to design strategies for P∗ to achieve a
good success probability.

Pass and Venkitasubramaniam [30] considered an optimal strategy P∗opt, where at
each round, P∗opt selects an optimal move (either i ∈ [n] or ~vj,−i) that maximizes his
success probability in the future. They proved that, for the direct product case, if Pn∗

has success probability δn, then P∗opt can succeed with probability at least δ. However,
the issue is that the optimal strategy P∗opt cannot be implemented efficiently.

They further observed that, although P∗opt cannot be implemented efficiently, P∗opt
can be “approximated” by an efficient recursive sampling strategy P∗rec, which uses
sampling to find approximately optimal moves. The name “recursive sampling” comes
from that, to approximate the optimal strategy, P∗rec needs to estimate his own suc-
cess probability after taking a certain move, which requires P∗rec to simulate himself
recursively. This is the reason that P∗rec has runtime exponential in the number of
rounds m, and hence only gives efficient parallel repetition theorems for constant-
round protocols. They proved that P∗rec can also succeed with probability at least
roughly δ, which gives a tight direct product theorem.6

We observe that the recursive sampling strategy, while being only efficient for
constant-round protocols, gives tight parallel repetition theorems for the most gen-
eral monotone verifiers. This contrasts to the case of general (super-constant-round)
protocols, where we only know how to prove direct product and Chernoff-type the-
orem. We extends the above two steps to prove the more general parallel repetition
theorem. The second step is the same, where the same analysis of Pass and Venki-
tasubramaniam [30] relates lower bounds on success probability of P∗rec to that of
P∗opt.

Our contribution is in the first step, where we lower bound the success probability
of the optimal strategy P∗opt when given a parallel prover strategy Pn∗ for a general
verifier Vn,g with some monotone combining function g. For the direct product case,
Pass and Venkitasubramaniam [30] lower bound the success probability of P∗opt by
induction with the same induction hypothesis as our analysis of rejection sampling

6As a technical remark, we emphasize that the success probability of P∗opt can be much higher
than that of P∗rec. What Pass and Venkitasubramaniam [30] proved actually relates the lower bounds
on the success probabilities of P∗rec and P∗opt.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems117

strategy in Section 3.2. Namely, the induction hypothesis says that for every partial
interaction (~v1, . . . , ~vj),

n∏
i=1

Pr[P∗opt convinces V|i, ~v1, . . . , ~vj] ≥ Pr[Pn∗ convinces Vn,g|~v1, . . . , ~vj],

where Pr[P∗opt convinces V|i, ~v1, . . . , ~vj] denotes the success probability of P∗opt condi-
tioned on P∗opt plays moves (i, ~v1,−i, . . . , ~vj,−i) and V plays moves (v1,i, . . . , vj,i). It is
unclear how to modify the induction hypothesis to analyze the success probability of
P∗opt when given Pn∗ for a general Vn,g.

We instead use a coupling argument to analyze the general case. Let (D1, . . . , Dn)
be indicator random variables of the verdict bits of the n subverifiers in 〈Pn∗,Vn,g〉.
We define indicator random variables (R1, . . . , Rn) coupled with (D1, . . . , Dn) such
that

1. Ri ≥ Di for every i ∈ [n] with probability 1, and

2. Ri’s are mutually independent with Pr[Ri = 1] = Pr[P∗opt convinces V|i].

Note that the success probability of P∗opt is maxi{Pr[P∗opt convinces V|i]}. Suppose
Pr[Pn∗ convinces Vn,g] ≥ ε, then we have

Pr[g(~R) = 1] ≥ Pr[g(~D) = 1] ≥ ε = Pr[g(~X) = 1],

where the first inequality follows by the monotonicity of g. Furthermore, the proba-
bility Pr[g(~R) = 1] is a monotone increasing function of the probabilities Pr[Ri = 1].
This implies that P∗opt can succeed with probability at least

max
i
{Pr[Ri = 1]} ≥ Pr[Xi = 1] = δ.

We shall present and analyze the optimal strategy P∗opt formally in the next section,
and then present the recursive sampling strategy P∗rec in Section 4.3.2.

4.3.1 Optimal Prover Strategies P∗opt

In this section, we formally define and analyze the optimal strategy P∗opt. Recall
that we view the interaction of P∗ and V as a game, where P∗ first takes a move
i ∈ [n], and then V and P∗ take moves vj,i and ~vj,−i alternately for j = 1, . . . ,m. At
each round of the game, V simply plays a uniformly random move, and the optimal
strategy P∗opt selects an optimal move i ∈ [n] or ~vj,−i that maximizes his success
probability in the future.

To formally define the optimal strategy P∗opt, we define functions γi(·), which
correspond to the success probability of P∗opt conditioned on partial interactions of
〈P∗opt,V〉.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems118

Definition 4.13 Let V be a m-round public-coin verifier, n ∈ N, Pn∗ a n-fold parallel
prover strategy, and x ∈ {0, 1}∗ an input. We define [0, 1]-valued functions γi(·)
corresponding to the interaction 〈Pn∗,Vn〉(x) inductively as follows.7

First, for every i ∈ [n] and complete transcript (~v1, . . . , ~vm), we define

γi(~v1, . . . , ~vm)
def
=

{
1 if Pn∗ convinces Vi on interaction (~v1, . . . , ~vm),

0 otherwise.

Then, for j = m,m−1, . . . , 1, for every i ∈ [n] and partial transcript (~v1, . . . , ~vj−1, vj,i),
we define

γi(~v1, . . . , ~vj−1, vj,i)
def
= max

~vj,−i

{γi(~v1, . . . , ~vj)},

γi(~v1, . . . , ~vj−1)
def
= E

vj,i
[γi(~v1, . . . , ~vj−1, vj,i)].

Finally, we define

γ
def
= max

i∈[n]
{γi}.

With the above definition, we give a formal description of P∗opt in Figure 4.4. By
construction, it is not hard to verify inductively that for every partial interaction
(i, h̄) = (i, ~v1, . . . , ~vj) and (i, h̄) = (i, ~v1, . . . , ~vj−1, vj,i),

Pr[P∗opt convinces V|i, h̄] = γi(h̄).

We proceed to analyze the success probability of P∗opt. We shall show that if Pn∗

convinces Vn,g with probability ε = Pr[g(~X) = 1], then P∗opt can convince V with
probability at least δ. Formally, we prove the following Lemma.

Lemma 4.14 Let V be a public-coin verifier. Let n ∈ N, δ ∈ (0, 1) and let g :
{0, 1}n → {0, 1} be a monotone function. Let Pn∗ be a parallel prover strategy and

x ∈ {0, 1}∗ an input such that Pr[〈Pn∗,Vn,g〉(x) = 1] ≥ ε = Pr[g(~X) = 1], where
~X = (X1, . . . , Xn) are i.i.d. random bits with Pr[Xi = 1] = δ. Then we have

Pr[〈P∗(P
n∗)

opt (n),V〉(x) = 1] ≥ δ.

Proof. As outlined in the previous section, we prove the lemma by a coupling
argument. Define ~D = (D1, . . . , Dn) to be the indicator random variables of the
verdict bits of the n subverifiers of Vn,g in the interaction 〈Pn∗,Vn,g〉(x). Note that
the randomness of this probability space is the verifier’s messages ~v1, . . . , ~vm, which
are uniformly random strings. We will construct indicator random variables ~R =
(R1, . . . , Rn) coupled with ~D that satisfy the following two conditions.

7The definition does not depend on the combining function g used by the parallel verifier Vn so
we drop the superscript g from the notation.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems119

Prover Strategy P∗opt(x, n)
/* P∗opt interacts with V and is given oracle access to Pn∗ for some Vn,g. */

/* The interaction of 〈P∗opt,V〉 simulates the interaction of 〈Pn∗,Vn,g〉. */

• P∗opt selects a coordinate i such that γi = γ.

• For each round j ∈ [m], upon receiving vj,i = vj from V, P∗opt selects a ~vj,−i such
that

γi(~v1, . . . , ~vj) = γi(~v1, . . . , ~vj−1, vj,i) = max
~v′j,i

{γi(~v1, . . . , ~vj−1, vj,i, ~v
′
j,−i)}

as his move in this round, and runs Pn∗ on (vj,i, ~vj,−i) to generate ~pj and sends
pj,i to V.

Figure 4.4: The optimal prover strategy P∗opt for public-coin protocols.

1. Ri ≥ Di for every i ∈ [n] with probability 1, and

2. Ri’s are mutually independent with Pr[Ri = 1] = Pr[P∗opt convinces V|i] = γi.

We will construct the desired random variables ~R = (R1, . . . , Rn) inductively.

We start by defining ~Rm = ~D, and inductively construct ~Rj = (Rj,1, . . . , Rj,n) for
j = m−1, . . . , 0 in the same probability space that satisfies the following two invariant
conditions.

1. Rj,i ≥ Di for every i ∈ [n] with probability 1.

2. For every partial transcript h̄ = (~v1, . . . , ~vj), the conditional random variables
(Rj,1, . . . , Rj,n)|h̄ are mutually independent with Pr[Rj,i = 1] = γi(h̄).

Note that the final ~R0 = (R0,1, . . . , R0,n) are the desired random variables. Also, it
is easy to verify that the above two invariant conditions hold for the base case j = m
trivially, as ~Rm = ~D and there is no randomness after conditioning on the complete
transcript ~v1, . . . , ~vm.

We proceed to construct ~Rj−1 from ~Rj. We define ~Rj−1 by defining its conditional

distribution ~Rj−1|~v1,...,~vj conditioned on every partial transcript ~v1, . . . , ~vj. By the in-
variant conditions, (Rj,1, . . . , Rj,n)|~v1,...,~vj are independent bits with Pr[(Rj,i|~v1,...,~vj) =
1] = γi(~v1, . . . , ~vj). Since

γi(~v1, . . . , ~vj−1, vj,i) = max
~v′j,−i

{γi(~v1, . . . , ~vj−1, vj,i, ~v
′
j,−i)} ≥ γi(~v1, . . . , ~vj)

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems120

for every i ∈ [n], we can define (Rj−1,1, . . . , Rj−1,n)|~v1,...,~vj with the following two
properties easily.8

• Rj,i|~v1,...,~vj ≤ Rj−1,i|~v1,...,~vj for i = 1, . . . , n with probability 1.

• (Rj−1,1, . . . , Rj−1,n)|~v1,...,~vj are independent bits with Pr[Rj−1,i|~v1,...,~vj = 1] =
γi(~v1, . . . , ~vj−1, vj,i).

This completes the definition of ~Rj−1. We now check that the constructed ~Rj−1 satis-
fies the two invariant conditions. The first condition holds because Di ≤ Rj,i ≤ Rj−1,i

for every i = 1, . . . , n with probability 1. The second condition holds because once
we fix ~v1, . . . , ~vj−1, the probability of Rj−1,i = 1 depends only on the vj,i component
of ~vj, and the vj,i’s are independent. More formally, for every ~v1, . . . , ~vj−1, every
i = 1, . . . , n and every ~r−i = (r1, . . . , ri−1, ri+1, . . . , rn) ∈ {0, 1}n−1, we have

Pr[Rj−1,i = 1|~v1, . . . , ~vj−1, ~Rj−1,−i = ~r−i]

= E
~vj

[Pr[Rj−1,i = 1|~v1, . . . , ~vj, ~Rj−1,−i = ~r−i]]

= E
~vj

[γi(~v1, . . . , ~vj−1, vj,i)] (∵ Rj−1,i and ~Rj−1,−i are independent given ~v1, . . . , ~vj)

= E
vj,i

[γi(~v1, . . . , ~vj−1, vj,i)]

= γi(~v1, . . . , ~vj−1)

To summarize, we constructed ~R = ~R0 such that Ri ≥ Di for every i ∈ [n] with
probability 1, and Ri’s are mutually independent with Pr[Ri = 1] = γi. Recall that
the success probability of P∗opt is γ = maxi{γi}. By the monotonicity of g, we have

Pr[g(~R) = 1] ≥ Pr[g(~D) = 1] ≥ ε = Pr[g(~X) = 1].

Furthermore, the probability Pr[g(~R) = 1] is a monotone increasing function of the
probabilities γi’s. This implies that P∗opt can succeed with probability at least

γ = max
i
{Pr[Ri = 1]} ≥ Pr[Xi = 1] = δ,

as desired.

4.3.2 Recursive Sampling Strategy P∗rec

In this section, we present the recursive sampling strategy P∗rec of Pass and Venki-
tasubramaniam [30], which is an efficient reduction prover strategy that approximates
the optimal strategy P∗opt presented in the previous section.

8For example, when Rj,i = 1, we set Rj−1,i = 1, and when Rj,i = 0, we toss fresh independent
coins and set Rj−1,i = 1 with appropriate probability to make Pr[Rj−1,i = 1] = γi(~v1, . . . , ~vj−1, vj,i).

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems121

The idea is intuitive, although the analysis is involved. Recall that the optimal
strategy P∗opt selects an optimal move that maximizes his success probability after
taking the move. P∗rec tries to find a nearly optimal move by sampling. Consider for
example that P∗rec needs to select a move ~vj,−i at j-th round. P∗rec uses sampling to
generate several candidate moves ~v1

j,−i, . . . , ~v
M
j,−i, uses sampling again to estimate his

own success probability after taking these moves, and select the best one of them (with
highest estimated success probability) as his move. Note that in order to estimate his
own success probability after taking a certain move ~vj,−i, P

∗
rec needs to simulate the

interaction of himself and V in the remaining rounds, which uses sampling to estimate
his own success probability again. Hence, P∗rec performs sampling recursively and is
called the recursive sampling strategy.

Recall that in 〈P∗,V〉, the moves of P∗ and V are (i, ~v1,−i, . . . , ~vm,−i) and (v1,i, . . . , vm,i),
respectively. Partial interactions of 〈P∗,V〉 can be described by (i, ~v1, . . . , ~vj) and
(i, ~v1, . . . , ~vj−1, vj,i). We define γrec(·) as follows to denote the success probability of
P∗rec conditioned on partial interactions.

γreci (~v1, . . . , ~vj)
def
= Pr[〈P∗rec,V〉(x) = 1|i, ~v1, . . . , ~vj], and

γreci (~v1, . . . , ~vj−1, vj,i)
def
= Pr[〈P∗rec,V〉(x) = 1|i, ~v1, . . . , ~vj−1, vj,i].

A formal description of P∗rec can be found in Figure 4.5.
We proceed to analyze the success probability of P∗rec. We first note that P∗rec

cannot always approximate the optimal strategy P∗opt with similar success probability,
since P∗rec may never see the best move from sampling, and it could be the case that
the best move is significantly better than all other moves. Instead, our goal is to show
that P∗rec can approximately achieve the lower bound on the success probability we
proved for P∗opt.

Observe that although P∗rec cannot find the best move, from the M samples, P∗rec
can find a sample that is one of the “top” α-fraction of moves with high probability.
Hence, P∗rec can select some top moves at every round. Now, if the optimal strategy
P∗opt is not allowed to choose these top α-fraction of moves, then intuitively, P∗opt
should not be able to succeed with probability significantly higher than P∗rec.

Specifically, we consider a modified parallel prover strategy P̂n∗ from Pn∗, where
for every partial interaction ~v1, . . . , ~vj, if the messages ~vj,−i is of the top α-fraction

of moves for P∗rec for corresponding partial interaction (i, ~v1, . . . , ~vj−1, vj,i), then P̂n∗

simply aborts (so that P̂n∗ fails to convinces any Vi). Intuitively, given oracle access
to this P̂n∗ effectively turns off the option of P∗opt to take the top α-fraction of moves

of P∗rec. Formally, for a given parameter α ∈ (0, 1) and interaction 〈P∗(P
n∗)

rec ,V〉(x), we
define α-top partial interactions as follows.

Definition 4.15 We say that a partial interaction (i, ~v1, . . . , vj,i, ~vj,−i) = (i, h̄, ~vj,−i)

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems122

Prover Strategy P∗rec(x, n, δ, ξ)
/* P∗rec interacts with V and is given oracle access to Pn∗. */

/* The interaction of 〈P∗rec,V〉 simulates the interaction of 〈Pn∗,Vn〉. */

• Let α = (ξ/2mn) and η = (ξ/16n).

• In the first move, for every i ∈ [n], P∗rec estimates his success probabilities after
taking move i

γreci = Pr[P∗rec convinces V|i]

by sampling, and selects the one with highest (estimated) probability as his first
move.

– Namely, P∗rec simulates the continuation of the interaction after taking first

move i for M0 = O
(

1
η2

log n
η

)
times, and computes estimators

γ̃reci
def
= (# successful interaction)/M0.

• For each round j ∈ [m], upon receiving vj,i = vj from V, P∗rec samples

M = O
(

1
α ·
(
m+ log 1

η

))
random moves ~v1

j,−i, . . . , ~v
M
j,−i, estimates his success

probabilities after taking each move ~v`j,−i for ` ∈ [M]

γreci (~v1, . . . , ~vj−1, vj,i, ~v
`
j,−i) = Pr[P∗rec convinces V|i, ~v1, . . . , ~vj−1, vj,i, ~v

`
j,−i]

by sampling, and selects the one with highest (estimated) probability as his move.

– Namely, P∗rec simulates the continuation of the interaction after taking the

move ~v`j,−i for Mj = O

((
4j

η

)2
·
(
j + log M

η

))
times, and computes esti-

mators

γ̃reci (~v1, . . . , ~vj−1, vj,i, ~v
`
j,−i)

def
= (# successful interaction)/Mj .

– Let ~vj,−i be the selected move. P∗rec runs Pn∗ on (vj,i, ~vj,−i) to generate ~pj
and sends pj,i to V.

Figure 4.5: Recursive sampling strategy P∗rec for constant-round public-coin protocols.

of the interaction of 〈P∗(P
n∗)

rec ,V〉(x) to be α-top if

Pr
~v′j,−i

[γreci (h̄, ~vj,−i) ≤ γreci (h̄, ~v′j,−i)] ≤ α,

and we call the corresponding move ~vj,−i as an α-top move with respect to (i, h̄).

With the above definition, a formal description of the modified parallel prover P̂n∗

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems123

Prover Strategy P̂n∗(x)

/* P̂n∗ depends on a parameter α ∈ (0, 1) and interaction 〈P∗(P
n∗)

rec ,V〉(x). */

/* P̂n∗ “turns off” the α-top moves of 〈P∗(P
n∗)

rec ,V〉(x) for some parameter α ∈ (0, 1) */

• For each round j ∈ [m], upon receiving ~vj from Vn, P̂n∗ checks if there exists an

i ∈ [n] such that (i, ~v1, . . . , ~vj) is a α-top partial interaction of 〈P∗(P
n∗)

rec ,V〉(x). If

so, P̂n∗ aborts and fails; otherwise, P̂n∗ runs Pn∗ on ~vj , and sends the outputted
~pj to Vn.

Figure 4.6: Modified parallel prover strategy P̂n∗ that “turns off” the α-top moves
of 〈P∗(P

n∗)
rec ,V〉(x).

can be found in Figure 4.6. We proceed to lower bound the success probability of P∗rec
given oracle access to Pn∗ to that of P∗opt given oracle access to P̂n∗ in the following
lemma.

Lemma 4.16 Let V be a public-coin verifier, n ∈ N, δ, ξ ∈ (0, 1) parameters, x ∈
{0, 1}∗ an input, Pn∗ a parallel prover strategy, and P̂n∗ the modified prover strategy

with respect to α = (ξ/2mn) and 〈P∗(P
n∗)

rec (n, δ, ξ),V〉(x). We have

Pr[〈P∗(Pn∗)
rec (n, δ, ξ),V〉(x) = 1] ≥ Pr[〈P∗(P̂

n∗)
opt (n),V〉(x) = 1]− 4η,

where η = (ξ/16n).

Proof. We prove the statement by backward induction on the round j = m,m −
1, . . . , 1, 0. Recall that γreci (·) denotes the success probability of P

∗(Pn∗)
rec conditioned

on partial interactions. We use γ̂i(·) to denote the success probability of P
∗(P̃n∗)
opt . We

use the following two induction hypotheses for each round j.

1. For every partial interaction (i, h̄) = (i, ~v1, . . . , ~vj), γ
rec
i (h̄) ≥ γ̂i(h̄)− η/4j.

2. For every partial interaction (i, h̄) = (i, ~v1, . . . , ~vj−1, vj,i), γ
rec
i (h̄) ≥ γ̂i(h̄) −

η/4j−1.

The base case of our induction is the first induction hypothesis with j = m, where
we conditioned on complete interactions. The base case holds by observing that the
probabilities are 1 iff Pn∗ (resp, P̂n∗) convinces Vi on interaction (~v1, . . . , ~vm). We
proceed to show that for every j ∈ m,

• The first induction hypothesis with round j implies the second induction hy-
pothesis with round j.

• The second induction hypothesis with round j implies the first induction hy-
pothesis with round j − 1.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems124

We prove the second claim first, as it is simpler. Consider a fixed j ∈ [m] and a par-

tial interaction (i, h̄) = (i, ~v1, . . . , ~vj−1). Note that in both interactions 〈P∗(P
n∗)

rec ,V〉(x)

and 〈P∗(P̂
n∗)

opt ,V〉(x), V plays moves vj,i uniformly at random. We have

γreci (h̄) = E
vj,i

[
γreci (h̄, vj,i)

]
and γ̂i(h̄) = E

vj,i

[
γ̂i(h̄, vj,i)

]
.

It follows by the second induction hypothesis that

γreci (h̄) = E
vj,i

[
γreci (h̄, vj,i)

]
≥ E

vj,i

[
γ̂i(h̄, vj,i)− (η/4j−1)

]
= γ̂i(h̄)− (η/4j−1).

We proceed to prove the first claim. Again, fix a j ∈ [m] and a partial interaction

(i, h̄) = (i, ~v1, . . . , ~vj−1, vj,i). Recall that P
∗(P̂n∗)
opt plays optimal strategy, we have

γ̂i(h̄) = max
~vj,−i

{γ̂i(h̄, ~vj,−i)}.

Let ~v∗j,−i be the move selected by P
∗(P̂n∗)
opt that maximizes γ̂i(h̄, ~vj,−i). Since P∗opt is

given P̂n∗, where the α-top moves are turned off, we know that ~v∗j,−i cannot be a
α-top move.

On the other hand, P
∗(Pn∗)
rec selects his ~vj,−i by samplingM candidates ~v1

j,−i, . . . , ~v
M
j,−i,

and select the best one according to his estimation. We shall argue that with high

probability, P
∗(Pn∗)
rec selects a move ~v′j,−i that is comparable to the move ~v∗j,−i for P

∗(P̂n∗)
opt .

First, let us consider all moves ~vj,−i that is at least as good as ~v∗j,−i for P
∗(Pn∗)
rec .

Namely, we consider the set of moves

H
def
= {~vj,−i : γreci (h̄, ~vj,−i) ≥ γreci (h̄, ~v∗j,−i)}.

Note that H is strictly larger than the set of α-top moves, since ~v∗j,−i is not a α-top
move. Furthermore, we have

Pr
~vj,−i

[~vj,−i ∈ H] ≥ α.

Now, by choosing the constants in the big-O notations of M and Mj’s properly, we
have

• With probability at least 1 − (η/(2 · 4j)) over the randomness of choosing
~v1
j,−i, . . . , ~v

M
j,−i, there exists some `∗ ∈ [M] such that ~v`

∗
j,−i ∈ H.

• With probability at least 1 − (η/(2 · 4j)) over the randomness of estimating
γ̃reci (·), for every ` ∈ [M],

|γreci (h̄, ~v`j,−i)− γ̃reci (h̄, ~v`j,−i)| ≤ (η/4j).

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems125

When both events hold, P
∗(Pn∗)
rec selects a move ~v′j,−i such that

γreci (h̄, ~v′j,−i)

≥ γ̃reci (h̄, ~v′j,−i)− (η/4j) (estimators have small error)

≥ γ̃reci (h̄, ~v`
∗

j,−i)− (η/4j) (P∗rec selects ~v′j,−i with highest estimators)

≥ γreci (h̄, ~v`
∗

j,−i)− (2η/4j) (estimators have small error)

≥ γreci (h̄, ~v∗j,−i)− (2η/4j) (by definition of H)

≥ γ̂i(h̄, ~v
∗
j,−i)− (3η/4j) (by induction hypothesis)

= γ̂i(h̄)− (3η/4j).

By an union bound, both events hold with probability at least 1 − (η/4j), and
hence

γreci (h̄) ≥ (γ̂i(h̄)− 3η/4j)− (η/4j) = γ̂i(h̄)− (η/4j−1).

This finish the proof of induction. We proceed to use the first induction hypothesis
with j = 0 to prove the lemma. The induction hypothesis says that

γreci ≥ γ̂i − η ∀i ∈ [n].

Let i∗ ∈ [n] be the coordinate that maximizes γ̂i. By a similar argument as above,
with probability at least 1− η, all estimators have error less than η, and in this case,
P
∗(Pn∗)
rec selects a coordinate i′ with

γreci′ ≥ γ̃reci′ − η ≥ γ̃reci∗ − η ≥ γreci∗ − 2η ≥ γ̂reci∗ − 3η.

It follows that the success probability of P
∗(Pn∗)
rec is at least

Pr[〈P∗(Pn∗)
rec ,V〉(x) = 1] ≥ (γ̂reci∗ − 3η)− η = Pr[〈P∗(P̂

n∗)
opt ,V〉(x) = 1]− 4η,

as desired.

Finally, we claim that by construction, P̂n∗ aborts with probability at most nm ·
α = ξ/2, and hence

Pr[〈P̂n∗,Vn,g〉(x) = 1] ≥ Pr[〈Pn∗,Vn,g〉(x) = 1]− ξ/2.

This is because that, by definition, for every partial interaction (i, ~v1, . . . , ~vj−1, vj,i) of
〈P∗rec,V〉,

Pr
~vj,−i

[~vj,−i is an α-top move] ≤ α.

Hence, conditioned on every partial transcript (~v1, . . . , ~vj−1), P̂n∗ aborts at the j-th
round with probability at most n · α. By a union bound over the number of rounds,
P̂n∗ abort with probability at most nm · α.

Chapter 4: Efficient Chernoff-type and Threshold/Monotone Repetition Theorems126

We are ready to prove Theorem 4.12.
Proof. (of Theorem 4.12) Consider the corresponding P̂n∗ with respect to α =

(ξ/2mn) and 〈P∗(P
n∗)

rec (n, δ, ξ),V〉(x). By the above claim, we have

Pr[〈P̂n∗,Vn,g〉(x) = 1] ≥ Pr[〈Pn∗,Vn,g〉(x) = 1]− ξ/2 ≥ ε+ ξ/2.

Now, consider i.i.d. random bits ~X ′ = (X ′1, . . . , X
′
n) with Pr[X ′i = 1] = δ′

def
= δ+(ξ/4n).

By a union bound, the statistical distance

∆(~X, ~X ′) ≤ n · ξ
4n

=
ξ

4
.

Since g is a deterministic function, we have

Pr[g(~X ′) = 1] ≤ Pr[g(~X) = 1] + ξ/4 < ε+ ξ/2.

Hence, by Lemma 4.14, we have Pr[〈P∗(P̂
n∗)

opt ,V〉(x) = 1] ≥ δ′, and by Lemma 4.16,

Pr[〈P∗(Pn∗)
rec ,V〉(x) = 1] ≥ Pr[〈P∗(P̂

n∗)
opt ,V〉(x) = 1]− 4η ≥

(
δ +

ξ

4n

)
− ξ

4n
= δ,

which gives the desired lower bound on the success probability of P∗rec.
Finally, for the runtime of P∗rec, observe that at each move, P∗rec calls itself recur-

sively poly(2m, n, ξ−1) times. The runtime of P∗rec is poly(|x|, 2m2
, nm, ξ−m).

Chapter 5

Applications to Security
Amplification for Cryptographic
Primitives

In this chapter, we present applications of efficient parallel repetition theorems
(and the reductions for proving the theorems) to the field of security amplification
for cryptographic primitives.

Security amplification for cryptographic primitives is a basic question in cryp-
tography that has been studied since the seminal work of Yao [38]. In contrast to
general cryptographic tasks where we construct cryptographic primitives from more
basic primitives and computational hardness assumptions, the task of security am-
plification asks whether we can construct a fully secure cryptographic primitive from
the same primitive with weak security. For example, given a weak one-way func-
tion, where no PPT algorithm can invert on more than 99% of the inputs, can we
construct a fully secure one-way function, where no PPT algorithm can invert on a
non-negligible fraction of the inputs?

In addition to being a natural question in its own right, security amplification
is a useful step in constructing cryptographic primitives. Instead of constructing a
primitive from scratch, we first construct one with weaker security first, and then
amplify its security to obtain a fully secure one. Security amplification is also a way
to understand and minimize our assumptions, as it asks what is the quantitatively
weakest form of security that implies the desired security.

Security amplification has been extensively studied in recent years for a variety
of primitives with different types of security properties. To name a few, it has been
studied for encryption schemes [9, 21], commitment schemes [5, 37, 17], oblivious
transfer [5, 37], CAPTCHAs [2, 24, 26], message authentication codes (MACs), digital
signatures, and pseudorandom functions (PRFs) [7].

In such tasks, it is also desirable that the constructions are efficient, where the
efficiency can be measured in various ways, such as communication complexity, round

127

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 128

complexity, or the number of calls to the weak primitive. (Parallel) repetition, when
it works, usually gives a simple and efficient way to achieve security amplification. For
example, one simple way to amplify the security of one-way functions is to concatenate
the outputs of a given weak one-way function on several independent inputs.

As mentioned in the introduction (Chapter 1), efficient parallel repetition the-
orems are useful tools to analyze such constructions. For example, the security of
one-way functions can be captured as the soundness of a two-message interactive pro-
tocols, where the verifier sends f(x) and accepts if he receives some x′ from the prover
with f(x′) = f(x). The above security amplification of one-way function corresponds
exactly to a parallel repetition of this protocol, and hence the corresponding parallel
repetition theorem implies security of the constructed one-way function.

In many other cases, although the security property of primitives can also be
captured by the soundness property of certain interactive protocols, the primitives
are more interactive in nature so that their security cannot be captured by a class of
protocols where parallel repetition theorems are available. Nevertheless, the security
property may have additional structure so that the black-box reductions used to
prove parallel repetition theorems can be implemented in the corresponding settings
to prove corresponding repetition theorems. There are also cases that require more
involved constructions than (parallel) repetitions to amplify the security, but parallel
repetition theorems are still useful in analyzing the constructions.

We present two such examples in this chapter, where we improve the efficiency of
security amplification for several primitives by proving/improving the corresponding
parallel repetition theorems and/or proposing better constructions. We propose a
more efficient security amplification for commitment schemes in Section 5.1. Then
in Section 5.2, we improve the analysis of parallel repetition for “dynamic weakly
verifiable puzzle systems” of Dodis, Impagliazzo, Jaiswal, and Kabanets [7]. As a
consequence, this improves the efficiency of security amplification for message au-
thentication codes (MACs), digital signatures, and pseudorandom functions (PRFs).

In addition, we show in Section 5.1.2 that the threshold repetition theorem for
“two-phase puzzle systems” implies sequential repetition theorem for computationally
sound protocols with threshold verifiers.

5.1 Security Amplification for Commitment Schemes

Commitment schemes are interactive protocols that are digital analogues of safes,
where (in the commit stage), a sender Alice can put a value inside the safe and send it
to a receiver Bob without leaking any information about the value (hiding property),
and later on (in the reveal stage), Alice can only open the safe in one way to reveal a
unique value to Bob (binding property). The goal of security amplification is to turn
a weak bit-commitment scheme Com0, where both properties can be broken with a
bounded but non-negligible probability, to a fully secure one, where both properties

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 129

can be broken with only a negligible probability.
More precisely, we say a bit-commitment scheme Com0 is p-hiding if no (PPT

or unbounded) adversarial receiver, who may deviate from the prescribed protocol
arbitrarily, can guess the committed bit correctly with probability better than (1 +
p)/2, and q-binding if no (PPT or unbounded) adversarial sender can open in two
ways with probability better than q. The goal is to construct a secure (i.e., ngl-hiding
and ngl-binding for some negligible function ngl) commitment scheme Com from a
weak Com0 that is p-hiding and q-binding for, say, constant p and q. It is desirable
that the transformation is black-box (i.e., uses Com0 in a black-box matter) since it
is simpler and more efficient.

Security amplification for commitment schemes has been studied in [5, 37, 17]
from information-theoretic to computational settings. Damg̊ard, Kilian and Salvail [5]
studied the question in the (simpler) information-theoretic setting, where the secu-
rity holds against unbounded adversaries. Wullschleger [37] extended the result to the
computational and passive setting, where the security holds against efficient (PPT)
and semi-honest adversaries. The result of Wullschleger can be further extend to
the active setting by applying the generic Goldreich-Micali-Wigderson compiler [15].
However, the compiler makes the construction non-black-box and blows up the com-
plexity significantly.1 Finally, Halevi and Rabin [17] proved security amplification in
the general computational and active setting.

All previous works focus on feasibility results. Namely, for what values of p and q is
the security amplification achievable. In the information-theoretic setting, Damg̊ard,
Kilian and Salvail [5] showed that a black-box transformation is possible if and only if
p+ q ≤ 1− 1/poly(s), where s is a security parameter. Wullschleger [37] showed the
same result holds for the computational and passive setting. Halevi and Rabin [17]
analyzed the transformation of [5] in the computational setting and proved that a
black-box transformation is possible whenever p + q ≤ 1 − 1/polylog(s). Recently
and independent of our work, Holenstein and Schoenebeck [22] improved the result to
be tight. Namely. they showed that in the computational setting, black-box security
amplification is achievable if and only if p+ q ≤ 1− 1/poly(s).

However, in terms of efficiency, the existing transformations are suboptimal. To
measure the efficiency, we consider the number of black-box calls to Com0 that Com
makes when p and q are constants with p+ q < 1. We note that in the computational
setting, black-box calls to Com0 need to be done sequentially,2 and hence the number
of black-box calls affects not only the communication complexity, but also the round

1Another non-black-box solution is to first construct a one-way function from Com0, which can
be done provided p+ q ≤ 1− 1/poly(s) [25], and then construct a secure commitment scheme from
the one-way function [29, 18]. However, this construction is indirect and also highly inefficient.

2In general, the commit stage can consist of multiple rounds. If the black-box calls are done in
parallel, one can show, by modifying the negative example of Bellare, Impagliazzo, and Naor [1] for
computationally sound protocols, that the security may not be amplified at all.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 130

Efficiency (constants p, q) Feasibility
Work Number of Length of Rate Applicable range

black-box calls committed string of parameters

[17] ω(log2 s) 1 ω(log2 s) p+ q < 1− 1/poly log(s)

[22] ω(log2 s) 1 ω(log2 s) p+ q < 1− 1/poly(s)
Ours ω(log s) O(log s) ω(1) p+ q < 1− 1/poly log(s)

Ours + [22] ω(log s) O(log s) ω(1) p+ q < 1− 1/poly(s)

Figure 5.1: Summary of results on security amplification for commitment schemes
in the computational setting. Efficiency measures the cost of amplifying commit-
ment schemes from constant security to negligible security. Feasibility refers to the
parameter range that security amplification is achievable.

complexity of the resulting protocol.
All existing solutions requires ω(log2 s) black-box calls to securely commit a single

bit, where s is the security parameter. At a high level, the reason is that they amplify
the hiding and binding property separately. Amplifying each property from constant
to negligible seems to require ω(log s) black-box calls, which is the case of the existing
constructions and results in ω(log2 s) black-box calls in total.

Furthermore, the existing transformations construct bit-commitment schemes from
a (weak) bit commitment scheme Com0. When a sender Alice wants to commit to a
string x ∈ {0, 1}∗, she needs to use the resulting bit-commitment schemes to commit
to x bit by bit separately, each of which requires ω(log2 s) black-box calls to Com0.
It is natural to ask if we can do better in terms of the rate, i.e., the number of black-
box calls per committed bit. For example, can we commit to a string with o(log s)
black-box calls per bit?

Our improvements. We give a transformation that amplifies a (weak) bit com-
mitment scheme Com0 with constant security to a O(log s)-bit string commitment
scheme with negligible security using only ω(log s) black-box calls to Com0, where
O(log s) (resp., ω(log s)) denotes an arbitrary O(log s) (resp., ω(log s)) function of the
security parameter s. In terms of rate, we achieve ω(1) black-box calls per committed
bit. We use error-correcting codes and randomness extractors to amplify both hiding
and binding properties simultaneously, which allow us to bypass the ω(log2 s) barrier
of the previous results. A summary of our result and existing results can be found in
Figure 5.1.

Application of parallel repetition theorems. In analyzing our construction,
we need to upper bound the probability that an adversarial sender (resp., receiver)
breaks the binding (resp., hiding) property of at least r out of n invocations of Com0

for 1 ≤ r ≤ n. Note that, although we argued that the calls to Com0 in the commit

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 131

stage needs to be done sequentially, all commitments (of Com0) are decommitted in
parallel in the reveal stage. We model the security of commitment schemes as (the
hardness of) solving “two-phase” (interactive) puzzle systems (implicit in [17]), and
study the hardness of the puzzle systems under this type of repetition.

We observe that, while the scenario is different from parallel repetition for in-
teractive protocols, the reduction algorithm for three-message protocols presented in
Section 4.2 can be implemented in this scenario, yielding a tight threshold repetition
theorem for two-phase puzzle systems.

We remark that, independent of our work, Holenstein and Schoenebeck [22] came
up with the same observation. In fact, Holenstein and Schoenebeck [22] proved their
more general tight monotone repetition theorem (described in Section 4.2.3) in the
context of two-phase puzzle systems (which they referred to interactive weakly veri-
fiable puzzle systems), and used it to analyze their construction of security amplifi-
cation for commitment schemes.

We proceed to present our construction in following sections. We start with a for-
mal definition of commitment schemes and some preliminaries in Section 5.1.1. Then
we define two-phase puzzle system and present a corresponding threshold repetition
theorem in Section 5.1.2. As a small digression, we also argue that the threshold
repetition theorem of two-phase puzzle system implies sequential repetition theorem
for computationally sound protocols in Section 5.1.2. We present our construction in
Section 5.1.3, and analyze it in Section 5.1.4 and 5.1.5.

5.1.1 Preliminaries and Theorem Statement

In this section, we give a formal definition of commitment schemes and present
our theorem statement. We will also state two preliminary lemmas that we will use
at the end of this section. We consider a standard model where the communication
is over a noiseless channel and the decommitment is non-interactive [13, 17].

Definition 5.1 (Commitment Scheme) A commitment scheme is an interac-
tive protocol Com = (S,R) with the following properties:

1. Scheme Com consists of two stages: a commit stage and a reveal stage. In
both stages, the sender S and the receiver R receive a security parameter 1s

as common input.

2. At the beginning of the commit stage, sender S receives a private input v ∈
{0, 1}t, which denotes the string to which S is supposed to commit. The com-
mitment stage results in a joint output, which we call the commitment x =
output((S(v), R)(1s)), and a private output for S, which we call the decom-
mitment string d = outputS((S(v), R)(1s)). Without loss of generality, x can
be taken to be the full transcript of the interaction between S and R, and d to
be the private coin tosses of S.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 132

3. In the reveal stage, sender S sends the pair (v, d), where d is the decommitment
string for string v. Receiver R accepts or rejects based on v, d, x.

4. Both sender S and receiver R are efficient, i.e., both run in probabilistic poly-
nomial time in the security parameter s.

5. R will always accept with probability 1−ngl if both the sender S and the receiver
R follow their prescribed strategy. If R accepts with probability 1, we say Com
has perfect correctness.

6. When the commit string v is just a bit in {0, 1}, we call Com a bit-commitment
scheme. Otherwise, we call Com a t-bit string-commitment scheme.

Remark 5.2 The assumption of a non-interactive reveal stage is essential in both
our work and the previous work [17]. This assumption can be made without loss of
generality as long as no additional property (e.g., if the sender wants to decommit in
a zero-knowledge manner) is required, because in the reveal stage, the sender S can
send his coin tosses to the receiver R, who can check the consistency and simulate the
protocol. On the other hand, the assumption of perfect correctness can be relaxed to
(1− ngl)-correctness in both works.

We proceed to define the hiding and binding properties of commitment schemes.
To facilitate the presentation of our results and analysis, we are precise about the
adversary’s running time in the definition and define the binding property in terms
of binding games.

Definition 5.3 (p-hiding against time T) A commitment scheme Com = (S,R)
is p-hiding against uniform time T if for every probabilistic time T cheating re-
ceiver R∗, the distributions (viewR∗(S(Ut), R

∗), Ut) and (viewR∗(S(Ut), R
∗), U ′t) are

p-indistinguishable for time T , where U ′t is an i.i.d. copy of Ut. That is, for every
probabilistic time T distinguisher D,

|Pr[D(viewR∗(S(Ut), R
∗), Ut) = 1]− Pr[D(viewR∗(S(Ut), R

∗), U ′t) = 1]| ≤ p/2

We say Com is p-hiding if for every constant c, Com(1s) is p-hiding against time sc

for sufficiently large security parameter s.

We remark that the hiding property above is defined as the indistinguishability
for random values, which does not generally imply the standard semantic security for
the hiding property. Nevertheless, it is easy to transform a commitment scheme Com
with the above hiding property to one with standard semantic security – one can use
Com to commit to a random string r ∈R {0, 1}t, and use r as a one-time pad to hide
the actual string v that the sender wants to commit to.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 133

Remark 5.4 For bit-commitment schemes, p-hiding is equivalent to saying that the
receiver can guess the committed bit with probability at most 1/2 + p/2. Formally,
for every time T predictor P ,

Pr[P (viewR∗(S(U1), R∗)) = U1)] ≤ 1/2 + p/2.

Definition 5.5 (Binding Game) The binding game for a commitment scheme
Com = (S,R) is played between a honest receiver R, and (S∗, F), a cheating sender
S∗ with a decommitment finder F . The game consists of two stages:

1. In the commit stage, S∗ interacts with R to produce a view viewS∗(S
∗, R).

2. In the decommitment finding stage, F gets the view viewS∗(S
∗, R), and produces

two decommitment strings (s, d) and (s′, d′).

(S∗, F) succeeds if in the reveal stage, R accepts both decommitment strings (s, d)
and (s′, d′).

Definition 5.6 (q-binding against time T) A commitment scheme Com = (S,R)
is q-binding against time T , if in the binding game, for every time T pair (S∗, F),
the success probability of (S∗, F) is at most q. We say Com is q-binding if for ev-
ery constant c, Com(1s) is q-binding against time sc for sufficiently large security
parameter s.

Definition 5.7 (security of commitment schemes) A commitment scheme Com
is (p, q)-secure (against time T) if Com is p-hiding and q-binding (against time T).
Com is secure if for every constant c, Com(1s) is (s−c, s−c)-secure for sufficiently
large security parameter s.

Theorem statement. We proceed to state our theorem on efficient security am-
plification for commitment schemes. The following theorem says that we can securely
commit to a O(log s)-bit string using only ω(log s) black-box call to a weak commit-
ment scheme Com0 with constant hiding and binding properties.

Theorem 5.8 Let p, q ∈ (0, 1) be constants with p + q < 1. Suppose there ex-
ists a (p, q)-secure bit commitment scheme Com0. Then for every t(s) ≤ poly(s),
n(s) = ω(t+log s) where s is the security parameter, there exists a secure t-bit string-
commitment scheme Com that makes only n black-box calls to Com0.

Preliminary lemmas. We proceed to state two preliminary lemmas that we use
in the analysis of our construction. The first lemma says that a random (systematic)
linear codes is a good error correcting code (in terms of min-distance of the code)
with overwhelming probability. The lemma can be proved by standard probabilistic
methods. The constants in the lemma are actually small.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 134

Definition 5.9 The Hamming distance of two strings x and y is the number of
coordinates i such that xi 6= yi. Let C : {0, 1}n → {0, 1}n′ be a code. The minimum
distance of C is the minimum Hamming distance over all pairs of codewords C(x)
and C(y) such that x 6= y.

Lemma 5.10 There exist universal constants d0, d1 such that the following holds. Let
k be a positive integer, and γ, δ ∈ [0, 1] be numbers such that γ > d0 ·δ log(1/δ). Let n
be an integer such that n > d1 ·k/δ. Let C : {0, 1}n → {0, 1}(1+γ)n be a random linear
code defined by C(m) = (m,Am), where A ∈ {0, 1}γn×n is a random 0-1 matrix.
Then C has minimum distance at least δ · n with probability at least 1− 2−k/2.

We also need the classic Goldreich-Levin theorem, which says that we can extract
pseudorandom bits from (computationally) unpredictable distributions.

Lemma 5.11 (Goldreich-Levin [14]) There is an oracle algorithm B(·) such that
for any x ∈ {0, 1}n and any oracle A satisfying

Pr
r←Un

[A(r) = x · r] > 1

2
+ γ,

BA makes O(n/γ2) queries to A and then efficiently outputs a list of size O(1/γ2)
elements such that x is in the list with probability greater equal than 1

2
.

5.1.2 Two-Phase Puzzles Systems

In this section, we define two-phase puzzle systems to capture the security (both
binding and hiding) properties of commitment schemes. Informally, a two-phase
puzzle system P consists of a puzzle generation phase and a puzzle solving phase.
In the puzzle generation phase, a solver S interacts with P to generate a puzzle p,
and then in the puzzle solving phase, S sends an answer a to P. P accepts if the
answer a is correct. We mention that this model generalizes the “weakly verifiable
puzzle systems” of Canetti, Halevi, and Steiner [2] in that we allow interactive puzzle
generation.

Definition 5.12 (Two-Phase Puzzle System) A two-phase puzzle system P =
(G, V) consists of a PPT (interactive) puzzle generator G and a deterministic polynomial-
time puzzle verifier V . Let S be a solver for P. The interaction of 〈S,P〉 consists of
two phases, where the first phase corresponds to the puzzle generation phase, and
the second is the puzzle solving phase. More precisely,

• In the first phase, the solver and the generator jointly generate a puzzle p ←
〈S, G(c)〉(1s), where c is the private coins of G. The generation of p may take
polynomially many rounds.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 135

• In the second phase, S sends an answer a = S(p) to P

• In the end of the protocol, P verifies the answer using V and accepts iff V (c, a) =
1 (i.e., the answer a is correct).

Note that S does not know the coins c of G, so S may not be able to verify the
correctness of an answer a.

Definition 5.13 (Hardness of Solving a Puzzle) A two-phase puzzle system P
is δ-hard against time T = T (s) if for every time T solver S, the success probability
of S is at most δ. We say P is δ-hard if P is δ-hard against time sc for all constant
c.

Interested in relating the hardness of solving (at least) r out of n puzzles to the
hardness of solving a single puzzle, we proceed to define (n, r)-repetition of a two-
phase puzzle system.

Definition 5.14 ((n, r)-Repetition of Two-Phase Puzzle Systems) Let P = (G, V)
be a two-phase puzzle system. We define the (n, r)-repetition of P to be a two-phase
puzzle system Pn,r = (Gn, V n,r) such that (1) in the first phase, Pn,r sequentially
generates n puzzles with a solver, and (2) Pn,r accepts the n-fold answer received
from the solver in the second phase if at least r out of n answers are correct. More
precisely, let Sn be a solver for Pn,r. The interaction of 〈Sn,Pn,r〉 is defined below.

• In the first phase, 〈Sn, Gn(c1, . . . , cn)〉 generates n puzzles (p1, . . . , pn) sequen-
tially by running 〈Sn, G(ci)〉(1s) for i = 1, 2, . . . , n.

• In the second phase, Sn sends a n-fold answer ~a = (a1, . . . , an)← Sn(~p) to Pn,r.

• At the end of the protocol, Pn,r accepts iff at least r copies of V (ci, ai) accept.

We remark that although in the above definition, the puzzles are generated sequen-
tially, it captures the parallel repetition of weakly verifiable puzzle systems considered
by Canetti, Halevi and Steiner [2]. In our model, the solver starts to solve the puzzles
after all of them are generated. Thus, when the puzzles are generated solely by P,
which is the case of the weakly-verifiable puzzle systems, parallel generation and se-
quential generation are equivalent. We also remark that in order to obtain hardness
amplification results, we cannot consider parallel repetition in the (interactive) puzzle
generation phase. Indeed, the negative example of Bellare, Impagliazzo, and Naor [1]
for interactive arguments can be adapted to our model, showing that the hardness
may not be amplified for the case of parallel puzzle generation.

As an example, we argue that the hardness of two-phase puzzle systems captures
the binding property of a commitment scheme Com0 = (S,R) as follows. The solver
S plays the role of a cheating sender S∗ and the generator G plays the role of the

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 136

honest receiver R. Then the puzzle is the commitment generated jointly by S and
G according to the commitment scheme Com0. A valid answer for the puzzle is a
pair of decommitment strings ((v, d), (v′, d′)) that are both accepted by the receiver
R. Thus, Com0 being q-binding against time T corresponds to the puzzle system
begin q-hard against time T , and the hardness of breaking the binding property of
at least r out of n sequentially committed commitments translates to the hardness of
(n, r)-repetition of the corresponding puzzle system.

We proceed to present a tight threshold repetition theorem for two-phase puzzle
systems, which says that the hardness of two-phase puzzle systems behaves as in-
dependent events under (n, r)-repetition. Namely, if a two-phase puzzle system P
is δ-hard, then its (n, r)-repetition Pn,r has hardness P (n, r, δ) + ngl, where ngl is a
negligible function and P (n, r, δ) = Pr[

∑
iXi ≥ r] with Xi’s being i.i.d. random bits

with Pr[Xi = 1] = δ.

Theorem 5.15 Let P be a two-phase puzzle system. There exists a solver S∗ such
that for every security parameter s ∈ N, every n, r ∈ N with r ≤ n, every δ, ξ ∈ (0, 1),
and every solver Sn∗ for Pn,r,

1. Pr[〈Sn∗,Pn,r〉(1s) = 1] ≥ P (n, r, δ) + ξ

⇒ Pr[〈S∗(Sn∗)(n, r, δ, ξ),P〉(1s) = 1] ≥ δ +
ξ

10n
.

2. P∗(·)(1s, n, r, δ, ξ) runs in time poly(s, n, ξ−1) given oracle access to Sn∗(1s).

As mentioned earlier in this section, although (n, r)-repetition of two-phase puzzle
system is different from parallel repetition of interactive protocols, the reduction
algorithm presented in Section 4.2 for proving threshold repetition theorem for three-
message protocols can be implemented in this model. Note that the puzzle P plays
the role of the verifier V and the solver S∗ plays the role of prover P∗. To verify this
claim, let us investigate the correlation reduction procedure in Figure 4.2 and the
reduction prover strategy defined in Figure 4.3.

• Recall that in the correlation reduction CR, P∗ does not interact with V at all.
In CR, P∗ simply runs the interaction 〈Pn∗,Vn,k〉 internally with different coins,
and constructs a prover Pn

′∗ for Vn
′,k′ for some k′ ≤ n′ ≤ n. The constructed

Pn
′∗ interacts with Vn

′,k′ by simulating the interaction of 〈Pn∗,Vn,k〉, where
Pn
′∗ plays Pn∗ and the first n − n′ subverifiers of Vn,k with certain fixed coins

c∗1, . . . , c
∗
n−n′ .

It is not hard to see that the correlation reduction CR can be implemented in
two-phase puzzle systems as well, where S∗ converts Sn∗ for Pn,r into Sn

′∗ for
Pn′,r′ for some r′ ≤ n′ ≤ n.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 137

• Similarly, recall that P∗ interacts with V by simulating the interaction of Pn
′
and

Vn
′,k′ with V embedded in the first coordinate of Vn

′,k′ , and when P∗ receives
message v = v1 from V, P∗ repeatedly samples coins ~c−1 of V−1 and checks if
Pn
′∗ convinces exactly k′ − 1 of V−1. Once P∗ finds such coins, he sends Pn∗’s

answer to v1 to V.

Recall that in (n′, r′)-repetition, the puzzles are generated sequentially. S∗ can
first run Sn

′∗ to interact with P and generate the actual puzzle p = p1. Then S∗

repeatedly samples coins ~c−1 of P−1, simulates 〈Sn′∗,Pn′,r′〉, and checks if Sn
′∗

makes exactly r′ − 1 of P−1 accept. Once S∗ finds such coins, he sends Sn
′∗’s

answer to p1 to P.

It follows that Theorem 5.15 can be proved by exactly the same analysis of the
same reduction presented in Section 4.2.

Digression – Application to Sequential Repetition for Computationally
Sound Protocols As mentioned in the introduction, while it is believed that com-
putational soundness behaves well under sequential repetition, it seems that only a
direct product theorem is found in literature [6]. Here, we observe that sequential
repetition of interactive protocols can be viewed as a degenerate case of repetition of
two-phase puzzle system defined above. Indeed, we can view an interactive protocol
〈P,V〉 as a two-phase puzzle system P, where P plays the role of a solver S, V play the
role of puzzle generator in P, and there is no puzzle solving phase (i.e., P decides to
accept/reject only based on the “puzzle” generated in the puzzle generation phase).
Recall that in a two-phase puzzle system, the repetition of puzzle generation phase
is done sequentially, which corresponds to the sequential repetition of 〈P,V〉.

Therefore, Theorem 5.15 implies tight sequential repetition theorem for computa-
tionally sound protocols with threshold verifiers. In fact, the result of Holenstein and
Schoenebeck [22] implies that tight sequential repetition theorem holds for computa-
tionally sound protocols with monotone verifiers.

5.1.3 Outline of Our Construction

In this section, we discuss our construction of efficient black-box security amplifi-
cation for commitment schemes in the computational setting, where the security holds
against PPT and active adversaries. We start by reviewing the previous construction
of Halevi and Rabin [17], and then discuss its limitations and our improvement. The
construction in [17] uses the following two transformations, each of which improves
one property significantly without hurting the other property too much.

• Secret-sharing transformation. Let Com0 be a bit commitment scheme,
and n ∈ N be a parameter. The transformation gives a bit commitment scheme
Com = (S,R) as follows. To commit to a bit b ∈ {0, 1}, S generates random

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 138

b1, b2, . . . bn ∈ {0, 1} such that
⊕

i∈[n] bi = b, i.e. a secret sharing of b, and then
uses Com0 to sequentially commit to each bi to R.

Intuitively, this transformation improves the hiding property, since an adver-
sarial R∗ needs to learn all bits b1, . . . , bn to recover b, but it hurts the binding
property, since an adversarial S∗ only needs to cheat on any single bit bi to
decommit in two ways. Indeed, Halevi and Rabin proved that if Com0 is (p, q)-
secure, then Com is (pn, 1− (1− q)n)-secure.3

• Repetition transformation. Let Com0 be a bit commitment scheme, and
n ∈ N be a parameter. The transformation gives a bit commitment scheme
Com = (S,R) as follows. To commit a bit b ∈ {0, 1} to R, S sequentially uses
Com0 n times to commit to the same bit b to R.

Intuitively, this transformation improves the binding property, since an adver-
sarial S∗ needs to cheat on all copies of Com0 to decommit in two ways, but
it hurts the hiding property, since an adversarial R∗ can learn the bit b from
any copy of the commitments. Indeed, Halevi and Rabin proved that if Com0

is (p, q)-secure, then Com is (1− (1− p)n, qn)-secure.

Halevi and Rabin showed that, as long as p and q satisfy p+ q ≤ 1−1/polylog(s),
then given a (p, q)-secure (weak) bit commitment scheme Com0, one can apply the
above two transformations alternately to obtain a secure bit commitment scheme
Com. To measure the efficiency, consider the case where both p and q are constants
with p + q < 1. Since improving either hiding or binding property from constant
to negligible requires ω(log s) invocations to Com0, and the above transformations
improve two properties separately, the construction of Halevi and Rabin requires at
least ω(log2 s) black-box calls to Com0.

Remark 5.16 Independent of our work, Holenstein and Schoenebeck [22] present a
different construction that improves the result of Halevi and Rabin in the following
sense. For any (p, q)-secure bit commitment scheme Com0 with p+ q ≤ 1− 1/poly(s)
(rather than 1 − 1/polylog(s)), their construction gives a secure bit commitment
scheme Com using poly(s) black-box calls to Com0. Their construction uses Valiant’s
monotone formula for majority [33] to improve both properties. However, a closer
inspection shows that their construction is equivalent to applying the secret sharing
transformation and a variant of repetition transformation (with the same effect on
the parameters) alternately. Hence, in terms of the efficiency, their construction also
requires at least ω(log2 s) black-box calls to amplify a (p, q)-secure weak commitment
scheme with constant p and q to a secure one.

To bypass the ω(log2 s) barrier of the existing constructions, our main idea is
to use error-correcting codes and randomness extractors to amplify both hiding and

3We omit the negligible slackness in the informal discussion.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 139

binding properties simultaneously. For intuition, we give an informal description of
our transformation first. Let us informally use Com0(b) to denote a commitment of
a bit b, and let C : {0, 1}n → {0, 1}n′ be an error-correcting code with minimum
distance at least δ · n′. Also, let Ext : {0, 1}n × {0, 1}d → {0, 1}t a strong random-
ness extractor — Ext is a function such that for every source X over {0, 1}n with
sufficiently large (min-)entropy, the distribution (Ud,Ext(X,Ud)), where Ud denotes
a uniformly random d-bit string, is statistically close to uniform (i.e., Ext extracts
randomness from X using seed Ud).

Our transformation uses Com0, C and Ext to commit to a string v ∈ {0, 1}t as fol-
lows (recall that we obtain string commitment schemes as opposed to bit commitment
schemes of other existing constructions).

• Commit Stage: the sender S samples a message m ∈R {0, 1}n uniformly at
random, and sequentially commits to each bit of the codeword C(m) using
Com0, which generates commitments

Com0(C(m))
def
= (Com0(C(m)1), . . . ,Com0(C(m)n′)).

Then S samples a uniform seed z ∈R {0, 1}d, and sends the seed z with v ⊕
Ext(m, z) to the receiver R. In sum, the commitment is

Com(v) = (Com0(C(m)), z, v ⊕ Ext(m, z)).

• Reveal Stage: the sender S sends the value v, the message m and reveals each
committed bit of C(m) to R, who checks consistency and accepts or rejects
accordingly.

Intuitively, the binding property is improved because for an adversarial sender S∗

to cheat, S∗ needs to decommit C(m) into two valid codewords. Since the code C has
good minimum distance, S∗ needs to successfully cheat on at least δ · n′ committed
bits out of n′ commit bits. The q-binding property of Com0 says that, for each
committed bit, S∗ can cheat with probability at most q. Thus, in expectation, S∗

can cheat on only q · n′ commit bits. If q < (0.9)δ, the Chernoff bound suggests
that S∗ should be able to cheat on at least δ · n′ commit bits with only exponentially
small probability in n′. On the other hand, the hiding property is improved because
after seeing the commitments of C(m), an adversarial receiver R∗ has only partial
information about m by the p-hiding property of Com0. Thus, Ext extracts the
remaining (computational) entropy from m, which is used to hide the value v. Ideally,
when both p and q are constants, we can set both n, n′ = ω(log s) and commit to
Ω(n)-bit string. However, there are a few difficulties:

• First, although it is not difficult to formalize the above intuition in the information-
theoretic setting, analyzing the above construction in the computational setting
requires new ideas. We will discuss this issue in detail in Section 5.1.4.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 140

• The second issue is that the above construction requires both p and q are small
constants.4 This is not a big issue, since we can apply the transformation of
Halevi and Rabin [17] first to make both p and q sufficiently small using constant
number of black box calls.

• Finally, another limitation of the above construction is that, we can only prove
security of our construction in the “known-security” setting. Namely, we can
only amplify the security to a fixed polynomial s−c (using O(log s) black-box
calls and committing to a O(log s)-bit string) as opposed to an unspecified
negligible function. The reason is that the reduction of our security proof for
the hiding property is efficient only when n′ = O(log s). A natural idea is
to achieve the standard asymptotic security is to apply the transformations of
Halevi and Rabin to amplify the security to negligible. This indeed works for
bit-commitment scheme and blows the number of black-box calls by only a ω(1)
factor. However, since the output of our construction is a string commitment
scheme, we need to generalize the transformations of Halevi and Rabin to a
string version. Fortunately, this can be done, and the details can be found in
Section 5.1.5.

In sum, our efficient security amplification for commitment schemes consists of
three steps: given a (p, q)-secure bit commitment scheme Com0 with constants p+q <
1, (1) we first apply the transformations of Halevi and Rabin to obtain a (p′, q′)-secure
bit commitment scheme Com1 with sufficiently small constants p′, q′, which costs a
constant number of black box calls, (2) we apply the above construction to obtain a
(s−c, s−c)-secure O(log s)-bit string commitment scheme Com2, which costs O(log s)
black box calls, and (3) we apply a string version of the transformations of Halevi and
Rabin [17] to obtain a secure O(log s)-bit string commitment scheme Com3, which
costs ω(1) black box calls. The number of black-box calls multiply over steps, and
hence the resulting Com3 uses ω(log s) black-box calls to Com0.

We proceed to give a formal description of the above construction and its analysis
in Section 5.1.4, and present a string version of the transformations of Halevi and
Rabin used in the third step and prove Theorem 5.8 in Section 5.1.5.

4The reason for this limitation is a bit involved: The sender S commits to a random code-
word C(m) of length n′, which consists of only n bits of entropy. Informally, the commitments
Com0(C(m)) may leak n′ · p bits of information. Hence, we need n > n′ · p so that there is entropy
left for extraction. So p is upper-bounded by the rate n/n′ of the code. On the other hand, q
is upper-bounded by the distance δ of the code. Thus both are bounded due to the rate-distance
tradeoffs for binary error-correcting codes.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 141

5.1.4 Efficient Security Amplification in the Known-Security
Setting

In this section, we present a transformation that converts a (p, q)-secure bit com-
mitment scheme Com0 to a (s−c, s−c)-secure O(log s)-bit string commitment scheme
Com using O(log s) black-box calls to Com0, where c is an arbitrary constant. Our
transformation uses error-correcting codes and randomness extractors to amplify both
hiding and binding properties simultaneously. The transformation requires using a
systematic code with good distance and the “Goldreich-Levin” extractor. We will
discuss the reason when we discuss the proof of security below. A formal description
of our transformation can be found in Figure 5.2.

We will show that if Com0 is a (p, q)-secure bit commitment scheme for small
constants p, q, then by setting n, `, t = O(log s) properly, the resulting string commit-
ment scheme is (s−c, s−c)-secure for some constant c. Note that both parties in Com
run in time polynomial in n, `, t, and the running time of Com0, which is efficient.
Formally, we prove the following theorem.

Theorem 5.17 The following holds for all sufficiently small constants p, q ∈ (0, 1),
and k = O(log s): Suppose there exists a (p, q)-secure (weak) bit-commitment scheme
Com0, then there exists an efficient (2−k, 2−k)-secure t = Ω(k)-bit string-commitment
scheme Com that makes O(k) black-box calls to Com0. Specifically, Com = T (Com0, n, `, t)
for appropriate chosen n, ` = O(k), and t = Ω(k).

We proceed to formalize the aforementioned intuition to analyze the hiding and
binding properties.

Analysis of the Binding Property

We first recall the intuition of why the binding property is improved with a bit
more detail. Recall that in the construction, the sender S is supposed to commit to
each bit of a valid codeword C(m) = (m,Am) using Com0, where C is a random
linear code chosen by the receiver R. By Lemma 5.10, C has good min-distance
δ · n with overwhelming probability. For an adversarial sender S∗ to cheat, S∗ needs
to decommit the n + ` commitments into two valid codewords C(m1), C(m2), which
means that S∗ needs to successfully cheat on at least δ · n commitments out of n+ `
commitments. Intuitively, if breaking the binding property of each commitment were
independent events with success probability at most q, and if δ ·n ≥ (1.1) · q · (n+ `),
then by Chernoff bounds, the success probability of S∗ should be exponentially small
in n.

Of course, the events are not independent since S∗ has chance to correlate his strat-
egy for different instances. However, breaking the binding property of sequentially
committed bits can be modeled as repetition of two-phase puzzle systems, and hence
the above intuition follows by the the threshold repetition theorem (Theorem 5.15),

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 142

Transformation T (Com0, n, `, t):

• Inputs. A bit commitment scheme Com0, and parameters n, `, t ∈ N.

• Outputs. A t-bit string-commitment scheme Com = (S,R) defined as
follows.

• Commit Stage. Let v ∈ {0, 1}t be the string to which S is committing
to.

1. R samples a uniformly random matrix A← {0, 1}`×n, and sends A to
S.

/* i.e., R selects a random systematic linear code C(m)
def
= (m,Am). */

2. S samples the following uniformly at random: a message m← {0, 1}n
and a matrix Z ← {0, 1}t×n.

/* Z is a random seed for the (strong) randomness extractor Ext(m,Z)
def
=

Zm.*/

3. S uses Com0 to commit to each bit of m and each bit of Am to R
sequentially. Let ~x = (x1, . . . , xn) and ~y = (y1, . . . , y`) denote the
commitment of each bit respectively.

/* i.e., S commits to each bit of the codeword C(m). */

4. S sends (Z, v ⊕ Zm) to R, where v ⊕ Zm is the bit-wise xor of v and
Zm.

/* i.e., S uses Ext(m,Z) as a one-time pad to hide the commit string v. */

In sum, the commitment of v is (A, ~x, ~y, Z, v ⊕ Zm).

• Reveal Stage. S sends v and its coin tosses r to R, and R checks that v
and r are consistent with the honest sender’s algorithm.

Figure 5.2: Our black-box transformation T (Com0, n, `, t).

which says the success probability of S∗ behaves the same as the case of independent
events.

Formally, we prove the following lemma, which essentially says that when q is
sufficiently smaller than the min-distance of the code, the binding property is am-
plified in an exponential rate. We formulate the lemma in concrete parameters for
preciseness. For intuition, think of n, ` = Θ(k), k = O(log s), and T = sω(1).

Lemma 5.18 (Binding) Let d0 be the universal constant in Lemma 5.10. There
exists a universal constant c1 such that the following holds.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 143

For any q ∈ (0, 1), n, k, `, t, T0, T ∈ N satisfying (i) d0 · (3q) · log(1/3q) < 1, (ii)
n ≥ c1 · k/q, (iii) n > ` ≥ d0 · (3q) · log(1/3q) · n, and (iv) n, t ≤ poly(s), if a
bit-commitment scheme Com0 = (S0, R0) is q-binding against time T , then Com =
T (Com0, n, `, t) is 2−k-binding against time T ′ = T/poly(s, 2k).

Proof. Let S∗ be a time T ′ cheating sender. We want to show that in the binding
game,

Pr[S∗ succeeds] ≤ 2−k.

Recall that in the binding game, the honest receiver R first sends a random 0-1
matrix A to S∗, which defines a systematic linear code C : {0, 1}n → {0, 1}n+` by
C(m) = (m,Am), and then (S∗, R) is supposed to use Com0 (n+ `) times to commit
each bit of a random codeword C(m). For S∗ to win the game, he needs to decommit
the (n+ `) bits into two valid codewords in C. We use

Pr[S∗ succeeds]

≤ Pr[C has min-distance < δn] + Pr[S∗ succeeds ∧ C has min-distance ≥ δn],

and upper bound both probabilities.
First we want to apply Lemma 5.10 to say that C is a good code with high

probability. Let d0, d1 be the constants in the Lemma 5.10, δ = 3q, and γ =
d0δ log(1/δ). We set c1 > 3d1 so that n ≥ d1 · k/δ. By Lemma 5.10, we have
Pr[C has min-distance < δn] ≤ 2−k/2.

Then we want to upper bound the second probability by 2−k/2. Suppose to the
contrary that

Pr[S∗ succeeds ∧ C has min-distance ≥ δn] > 2−k/2.

As argued in Section 5.1.2, we can view breaking the binding property of Com0 as
solving a two-phase puzzle system P = (G, V), where G plays the role of R0, and V
verifies if both two decommitments are valid. It follows that the above events implies
S∗ solves at least δn out of n + ` puzzles, i.e., succeeds in the (n + `, δn)-repetition
Pn+`,δn = (Gn+`, V n+`,δn). In other words, S∗ is a time T ′ solver Sn∗ for Pn+`,δn with
success probability at least 2−k/2.

By Theorem 5.15 (with parameter ξ = 2−k/4), there is a solver S∗ for P with
success probability at least δ′, provided δ′ satisfies P (n+`, δn, δ′) ≤ 2−k/4, and S∗ runs
in time poly(s, n+ `, (2−k/4)−1) ·T ′ (since S∗ makes at most poly(s, n+ `, (2−k/4)−1)
oracle calls to Sn∗, each of which can be simulated in time T ′). In other words, there
exists a S∗0 that breaks the binding property of Com0 with probability δ′ with the
above runtime.

Recall that δ = 3q, and n > `, we have δn = 3qn > 1.5q(n + `). By a standard
Chernoff bound, we have

P (n+ `, δn, 1.2q) ≤ 2−δn/c

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 144

for some constant c that is independent of q and k. Thus, we can set c1 = max{3d1, 6c}
so that n ≥ c1 · k/q and n > ` implies 2−δn/c ≤ 2−k/4. Hence, we may set δ′ = 1.2q
to obtain a solver S∗ for P with success probability at least q and S∗ runs in time
poly(s, 2k) · T ′. This contradicts the fact that Com0 is q-binding against time T =
T ′ · poly(2k, T0).

Since both probabilities are at most 2−k/2, we have Pr[S∗ succeed] ≤ 2−k, as
desired.

Analysis of the Hiding Property

We first recall the intuitive entropy argument of why the hiding property is im-
proved with a bit more detail. Recall that in the construction, the sender S samples
a random n-bit message m, which contains n bits of entropy. Then S commits to
each bit of the codeword C(m) = (m,Am), each of them leaking a little (≈ p bits)
of information about m. Intuitively, if we set the parameters so that there is (com-
putational) entropy left in m, S can use randomness extractor to extract a string
Ext(x, Z) that is (pseudo-)random from an adversarial receiver R∗’s point of view,
and use it as one-time-pad to hide the commit value v.

To formalize this intuition in the computational setting, we argue that it is very
hard for R∗ to predict the whole message m after he sees the n+ ` commitments, and
hence one can apply the Goldreich-Levin theorem to extract pseudo-random bits.
This is why our transformation requires to use the Goldreich-Levin extractor. To
argue that m is hard to predict from the commitments (~x, ~y), we first argue that m
is hard to predict from ~x. We can view predicting n sequentially committed message
bits of m from the commitments ~x as n-fold direct product of a two-phase puzzle
system. By the threshold repetition theorem (Theorem 5.15), the success probability
of R∗ is at most ((1 + p)/2)n (up to a negligible term). Observing that ~y contains at
most ` bits of information about m, the success probability of R∗ to predict m from
(~x, ~y) is at most 2` · ((1 + p)/2)n. Hence, by the Goldreich-Levin theorem, we can
extract Ω(log(2` · ((1 + p)/2)n)) pseudorandom bits.

Formally, we prove the following lemma, which essentially says that we can extract
Ω(log(2`·((1+p)/2)n)) pseudorandom bits. Again, we formulate the lemma in concrete
parameters for preciseness, and we use parameter α = 1− p for clarity. For intuition,
think of n, ` = Θ(k), k = O(log s) and T = sω(1).

Lemma 5.19 (Hiding) There exists a universal constant c2 such that the following
holds. For every α ∈ (0, 1), n, k, `, t, T0, T ∈ N satisfying (i) 2c2 · k/α ≥ n ≥ c2 · k/α
and (ii) `, t ≤ αn/12 ≤ poly(s), if Com0 = (S0, R0) is a (1− α)-hiding against time
T , then Com = T (Com0, n, `, t) is 2−k-hiding against time T ′ = T/poly(s, 2k).

Proof. We prove the contrapositive statement. Suppose Com is not 2−k-hiding
against time T ′, then there exists a time T ′ cheating receiver R∗, and a time T ′

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 145

distinguisher D such that

|Pr[D(viewR∗(S(Ut), R
∗)(1k), Ut) = 1]− Pr[D(viewR∗(S(Ut), R

∗)(1k), U ′t) = 1]| > 2−k

Let us understand the view of R∗ better. In the commit stage, R∗ tosses some coins
r, sends some 0-1 matrix A to S, and reaches some configuration σ. We can assume
without loss of generality that σ contains r and A. Next, the honest sender S plays the
role of S0 in Com0, and commits to n random bits m← {0, 1}n, and ` parity bits Am.
Again, let C : {0, 1}n → {0, 1}n+` be the linear code defined by C(m) = (m,Am). In
each interaction i = 1, . . . , n + `, R∗ plays a cheating receiver R∗0,i, and gets a view

xi
def
= viewR∗0,i

(S0(C(m)i), R
∗
0,i). Let ~x = (x1, . . . , xn+`). Finally, R∗ receives a random

matrix Z, and s⊕ Zm, where s is the string that S commits to. In sum, the view of
R∗ in (S(s), R∗)(1k) can be described by (σ, ~x, Z, s⊕ Zm). Thus, we have,

|Pr[D((σ, ~x, Z, Ut ⊕ Zm), Ut) = 1]− Pr[D((σ, ~x, Z, Ut ⊕ Zm), U ′t) = 1]| > 2−k

This implies the existence of time T ′ +O(t) distinguisher D′ such that5

|Pr[D′((σ, ~x, Z, Zm) = 1]− Pr[D′((σ, ~x, Z, Ut) = 1]| > 2−k

Let Z = (z1, . . . , zt), where each zi is a row of Z. We can write Zm as (z1·m, . . . , zt·m).
By the equivalence of pseudorandomness and next-bit unpredictability, there is a time
T ′ +O(t) next-bit-predictor P such that

Pr[P (σ, ~x, Z, z1 ·m, . . . , zi−1 ·m) = zi ·m] > 1/2 + 2−k/t

where the probability is also taken on a random choice of i ∈ [t].
For convenience, we let Z−i = (z1, . . . , zi−1, zi+1, . . . , zt), and write (σ, ~x, Z, z1 ·

m, . . . , zi−1 ·m) as (σ, ~x, Z−i, z1 ·m, . . . , zi−1 ·m, zi) (i.e., move zi to the last coordinate).
By a Markov argument, with probability at least 2−k/2t over random (i, σ, ~x, Z−i, z1 ·
m, . . . , zi−1 ·m),

Pr
zi

[P (σ, ~x, Z−i, z1 ·m, . . . , zi−1 ·m, zi) = zi ·m] > 1/2 + 2−k/2t

We can view P (σ, ~x, Z−i, z1 ·m, . . . , zi−1 ·m, ·) as a corrupted Hadamard encoding of
m. By the Goldreich-Levin Theorem (Lemma 5.11), if

Pr
zi

[P (σ, ~x, Z−i, z1 ·m, . . . , zi−1 ·m, zi) = zi ·m] > 1/2 + 2−k/2t,

5On input (σ, ~x, Z, a), D′ simply samples a fresh copy of uniform bits U ′t , and feeds ((σ, ~x, Z, U ′t⊕
a), U ′t) to D. If a is drawn from Zm, then D gets distribution ((σ, ~x, Z, U ′t ⊕ Zm), U ′t), and if a is
drawn from Ut, then D gets ((σ, ~x, Z, U ′t ⊕ Ut), U ′t) = ((σ, ~x, Z, Ut ⊕ Zm), U ′t).

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 146

we can make O(n · t2 · 22k) queries to P (σ, ~x, Z−i, z1 ·m, . . . , zi−1 ·m, ·) and guess m
correctly with probability Ω((2−k/t)2). Therefore, there exists a time (T ′ + O(t)) ·
O(n · t2 · 22k) algorithm B such that

Pr[B(σ, ~x, Z−i, z1 ·m, . . . , zi−1 ·m) = m] ≥ (2−k/2t) · Ω((2−k/t)2) = Ω((2−k/t)3)

Now, suppose we only get input σ and x1, . . . , xn, we claim that we can still
guess m correctly with probability at least 2−(`+t−1) · Ω(2−3k/t3). The idea is to
generate the rest of the input (xn+1, . . . , xn+`, Z−i, z1 · m, . . . , zi−1 · m) with correct
distribution, and feed it to B. Observe that xn+1, . . . , xn+` are generated by the
interaction of a honest S, who plays the role of S0 to commit each bit of (Am), and
a cheating receiver R∗, who has the view (σ, x1, . . . , xn) and plays a cheating sender
R∗0,i. Since we have the view (σ, x1, . . . , xn) of R∗, if we can guess (Am) correctly, then
we can simulate the interaction of S and R∗, and generate the correct distribution
of (xn+1, . . . , xn+`) in time T ′ · poly(s, `). Finally, we can simply guess the value of
(z1 ·m, . . . , zi−1 ·m), which is at most t− 1 bits. In sum, if we can guess the value of
(Am) and (z1 ·m, . . . , zi−1 ·m) correctly, then we can generate the correct distribution
of B’s input (σ, ~x, Z−i, z1 ·m, . . . , zi−1 ·m) in time T ′ · poly(s, `). Since we only need
to guess at most (` + t − 1) bits, we can guess it correctly with probability at least
2−(`+t−1). Therefore, we have a time (T ′ + O(t)) · O(n · t2 · 22k) + T ′ · poly(s, `) =
T ′ · poly(s, 2k) algorithm B′ such that

Pr[B′(σ, x1, . . . , xn) = m] ≥ 2−(`+t−1) · Ω(2−3k/t3) = Ω(2−(3k+`+t−1)/t3)

Next, we observe that breaking the weak hiding property of Com0 can also be
viewed as a two-phase puzzle system P, where the puzzle generator plays the role of
the honest sender S0 who commits to a random bit b, and the solver S∗ is required to
guess the commit bit b correctly. Note that in Com, the first n bits to which S commits
are independent random bits m, we can view the combination of R∗, who interacts
with S and generates (σ, x1, . . . , xn), and B′, who takes (σ, x1, . . . , xn) as input and
guesses m, as a solver Sn∗ for the (n, n)-repetition Pn,n. Furthermore, the above
inequality says that the success probability of Sn∗ is at least Ω(2−(3k+`+t−1)/t3), and
the runtime of Sn∗ is T ′ ·poly(2k, s). By Theorem 5.15 (with the slackness parameter
ξ = Ω(2−(3k+`+t−1)/t3)), there is a solver S∗ for P with success probability at least δ′,
provided δ′ satisfies δ′n ≤ Ω(2−(3k+`+t−1)/t3), and S∗ runs in time poly(s, n, (δ′)−n) ·
T ′ = T ′ · poly(s, 2k). In other words, there exists a R∗0 with runtime T ′ · poly(s, 2k)
that guesses a random committed bit correctly with probability at least δ′.

By Remark 5.4, Com0 being (1 − α)-hiding against time T means that for every
time T cheating receiver R∗0, and time T predictor P ,

Pr[P (viewR∗0
(S0(U1), R∗0)(1k)) = U1] ≤ 1/2 + (1− α)/2 = 1− α/2.

To get a contradiction, we set δ′ = (1 − α/4), and set c2 large enough so that the
conditions (i) and (ii) imply

Ω(2−(3k+`+t−1)/t4) ≥ e−αn/4 ≥ (1− α/4)n.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 147

It follows that the R∗0 constructed above runs in time T ′ · poly(s, 2k) < T such that

Pr[P (viewR∗0
(S0(U1), R∗0)(1k)) = U1] > 1− α/2,

a contradiction.
Finally, we use Lemma 5.18 and 5.19 with properly chosen parameters to prove

Theorem 5.17.
Proof. (of Theorem 5.17) We set the parameters n, k, and ` as follows: n =

max{ c1k
q
, c2k

1−p} = Θ(k), ` = d0(3q) log(3q) · n, and t = (1−p)n
12

= Ω(k), where c1, c2, d0

are the constants in the Lemma 5.10, 5.18, and 5.19. The theorem follows directly
from Lemma 5.18 and 5.19.

5.1.5 Security Amplification for String Commitment Schemes

In this section, we generalize the transformations of Halevi and Rabin [17] to the
case of string commitment schemes, with the goal of amplifying the (s−c, s−c)-secure
string commitment scheme obtained from our transformation to achieve negligible se-
curity. This is a simpler task since the starting point is an almost secure commitment
scheme, and this task can be done by applying a secret-sharing transformation first
and then a repetition transformation. A formal description of the transformations
can be found in Figure 5.3.

Secret-sharing SS(Com0, u). Let Com0 be a t-bit string commitment scheme,
and u ∈ N be a parameter. The transformation gives a t-bit string commitment
scheme Com = (S,R) as follows. To commit a value v ∈ {0, 1}t to R, S generates
random v1, v2, . . . vn ∈ {0, 1}t such that v1⊕v2⊕· · ·⊕vu = v, where ⊕ denotes the
bit-wise xor of vi’s (i.e. a secret sharing of v), and then uses Com0 to sequentially
commit to each vi to R.

Repetition R(Com0, u). Let Com0 be a t-bit string commitment scheme, and
u ∈ N be a parameter. The transformation gives a t-bit string commitment
scheme Com = (S,R) as follows. To commit a value v ∈ {0, 1}t to R, S sequen-
tially uses Com0 u times to commit to the same value v to R.

Figure 5.3: Secret-sharing and repetition transformation for string commitment
schemes.

We proceed to analyze the binding and hiding properties of the resulting commit-
ment schemes of the two transformations. For the binding property, the analysis is
essentially the same as in [17]: for repetition, it requires to break all u commitments
of Com0, and for secret-sharing, it requires to break only 1 out of u commitments of

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 148

Com0, which can be modeled as solving corresponding repetition of two-phase puzzles.
Theorem 5.15 (or the direct product and hardness degradation theorems of Halevi
and Rabin [17]) implies the following lemma.

Lemma 5.20 ([17]) Let Com0 be a t-bit string-commitment scheme, u = u(s) ≤
poly(s) a efficiently computable function, and q ∈ (0, 1) a constant. Suppose Com0 is
q-binding, then R(Com0, u) is (qu + ngl)-binding, and SS(Com0, u) is (1− (1− q)u +
ngl)-binding.

On the other hand, analyzing the hiding property is tricker. For the secret-sharing
transformation, we need a string version of XOR Lemma to show that the hiding
property is amplified. Maurer and Tessaro [27] proved a more general result (Theorem
2 of [27]) in the context of composing “random systems,” which implies the following
lemma.

Lemma 5.21 ([27]) Let Com0 be a t-bit string-commitment scheme, and Com =
SS(Com0, u) with efficiently computable u = u(s) ≤ poly(s). If Com0 is p-hiding,
then Com is (pu + ngl)-hiding.

We next show that repetition transformation preserves the (negligible) hiding
property. This is sufficient for our purpose since we will apply the secret-sharing
transformation to amplify the hiding property to negligible before applying the rep-
etition transformation.

Lemma 5.22 Let Com0 = (S0, R0) be a t-bit string-commitment scheme, and Com =
R(Com0, u) with efficiently computable u = u(s) ≤ poly(s). If Com0 is ngl-hiding, so
is Com.

Proof. Recall that the hiding property of Com0 says that for every PPT adversar-
ial receiver R∗0, the distribution (viewR∗0

(S0(Ut), R
∗
0), Ut) and (viewR∗0

(S0(Ut), R
∗
0), U ′t)

are computationally indistinguishable, where U ′t is an independent copy of Ut. To
simplify the notation, we use Com0(Ut) to denote viewR∗0

(S0(Ut), R
∗
0), and so hiding

property is represented by (Com0(Ut), Ut) ≈c (Com0(Ut), U
′
t). Also, by abusing the

notation, we denote Com(Ut) = (Com0(Ut), . . . ,Com0(Ut)). Our goal is to prove that
if (Com0(Ut), Ut) ≈c (Com0(Ut), U

′
t), then (Com(Ut), Ut) ≈c (Com(Ut), U

′
t), i.e.,

(Com0(Ut), . . . ,Com0(Ut), Ut) ≈c (Com0(Ut), . . . ,Com0(Ut), U
′
t).

Note that in the above distributions, the u copies of Com0(Ut) are not independent,
since implicitly, R∗ can correlate different copies.

We will show that both distributions are computationally indistinguishable to

(Com(U1
t),Com(U2

t),Com(U3
t), . . . ,Com(Uu

t), Ut),

where the U i
t ’s are i.i.d. copies of Ut. This implies (Com(Ut), Ut) ≈c (Com(Ut), U

′
t).

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 149

Claim 5.23 (Com0(U1
t), . . . ,Com0(Uu

t), Ut) ≈c (Com0(Ut), . . . ,Com0(Ut), Ut).

Proof of claim: We prove the claim by contradiction. Assume that
there exists a PPT adversary R∗ (who sequentially interacts with S0) such
that the distributions

(Com0(U1
t), . . . ,Com0(Uu

t), Ut) and (Com0(Ut), . . . ,Com0(Ut), Ut)

are distinguishable by a PPT distinguisher D∗ with noticeable advantage
ε. We show by a hybrid argument that there exist a PPT adversary
R∗0 (interacting with S0) and a PPT distinguisher D∗0 that distinguishes
distributions

(viewR∗0
(S0(Ut), R

∗
0), Ut) and (viewR∗0

(S0(U ′t), R
∗
0), Ut)

with probability ε/u.
The adversary R∗0 (interacting with either S0(Ut) or S0(U ′t)) is defined

as follows. R∗0 selects a uniformly random coordinate i ∈ [u] and simulates
R∗ internally. For j = 1, 2, . . . , i−1, R∗0 internally simulates the interaction
of R∗ and S0(U j

t) sequentially, where U j
t ’s are i.i.d. copies of Ut. Then R∗0

interacts with the external S0 by continuing running R∗.
We proceed to define the distinguisher D∗0. Note that the view of R∗0

contains i, Com0(U1
t), . . . ,Com0(U i−1

t), either Com0(Ut) or Com0(U ′t), and
the state of R∗ after i sequential interactions with S0. Also note that D∗0
receives Ut as well. Hence, we can let D∗0 simulate the continuation of u−i
sequential interactions of R∗ and S0(Ut), and generate either distribution

(Com0(U1
t), . . . ,Com0(U i−1

t),Com0(Ut),Com0(Ut), . . . ,Com0(Ut), Ut),

or distribution

(Com0(U1
t), . . . ,Com0(U i−1

t),Com0(U ′t),Com0(Ut), . . . ,Com0(Ut), Ut).

Then D∗0 runs D∗ on the above distribution.
Now, for i ∈ {0, 1, . . . , u}, we define hybrid distributions

Hi
def
=(Com0(U1

t), . . . ,Com0(U i−1
t),Com0(U i

t),Com0(Ut), . . . ,Com0(Ut), Ut).

Observe that when R∗0 selects coordinate i ∈ [u] and interacts with S0(Ut)
(resp., S0(U ′t)), D

∗
0 feeds in D∗ the hybrid Hi−1 (resp., Hi). By a standard

hybrid argument, D∗0 can distinguish

(viewR∗0
(S0(Ut), R

∗
0), Ut) and (viewR∗0

(S0(U ′t), R
∗
0), Ut)

with probability ε/u. This contradicts the hiding property of Com0 and
completes the proof of the claim. 2

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 150

Now, observe that the above claim also implies

(Com(Ut), . . . ,Com(Ut)) ≈c (Com(U1
t), . . . ,Com(Uu

t)),

which implies

(Com0(Ut), . . . ,Com0(Ut), U
′
t) ≈c (Com0(U1

t), . . . ,Com0(Uu
t), U ′t).

Hence, we have

(Com0(Ut), . . . ,Com0(Ut), Ut)

≈c (Com0(U1
t), . . . ,Com0(Uu

t), Ut)

≈c (Com0(Ut), . . . ,Com0(Ut), U
′
t),

as desired.
Finally, we present a formal description of our final construction of efficient secu-

rity amplification for commitment schemes in Figure 5.4, and complete the proof of
Theorem 5.8.

Final Construction.

• Inputs. A (p, q)-secure bit commitment scheme Com0 with p+ q < 1.

• Outputs. A secure t-bit string-commitment scheme Com with t =
O(log s).

1. Apply the transformations of Halevi and Rabin alternately to obtain a
(p′, q′)-secure bit commitment scheme Com1 with sufficiently small con-
stants p′, q′.

2. Apply our transformations T (Com1, n, `, t) to obtain a (s−c, s−c)-secure t-
bit string commitment scheme Com2, where n, ` = O(log s), and c is some
constant.

3. Let a = a(s) be an arbitrary ω(1) function. Apply SS(Com2, a) to obtain
a (ngl, a · s−c + ngl)-secure t-bit string commitment scheme Com3.

4. Apply R(Com3, a) to obtain a secure t-bit string commitment scheme Com.

Figure 5.4: Efficient security amplification of commitment schemes.

Theorem 5.24 (Theorem 5.8 restated) Let p, q ∈ (0, 1) be constants with p+q <
1. Suppose there exists a (p, q)-secure bit commitment scheme Com0. Then for every

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 151

t(s) ≤ poly(s), n(s) = ω(t + log s) where s is the security parameter, there exists
a secure t-bit string-commitment scheme Com that makes only n black-box call to
Com0.

Proof. We first prove the theorem for the case where t(s) = O(log s). In this case,
the desired commitment scheme Com is defined in Figure 5.4. The fact that Com is
a secure string commitment scheme follows straightforwardly from Theorem 5.17 and
Lemma 5.20, 5.21, 5.22. Observing the Com1 makes O(1) black-box calls to Com0,
Com2 makes O(log s) black-box calls to Com1, Com3 makes ω(1) black-box calls to
Com2, and finally Com makes ω(1) black-box calls to Com3, the total number of
black-box calls that Com makes to Com0 is ω(log s), as desired.

For general t(s) ≤ poly(s), we simply divide the t-bit string into blocks of length
O(log s), and use Com to commit to each block. Standard hybrid arguments show
that the security of committing each block implies the security of committing the
whole string.

5.2 Security Amplification for Dynamic Weakly Ver-

ifiable Puzzles

In this section, we briefly discuss the work of Dodis, Impagliazzo, Jaiswal, and
Kabanets [7] on security amplification for “dynamic weakly verifiable puzzle systems,”
and our improved analysis to their corresponding Chernoff-type theorem.

In [7], Dodis et al. defined dynamic weakly verifiable puzzle systems to capture the
security properties of several cryptographic primitives such as message authentication
codes (MACs), signature schemes (SIGs), and pseudorandom functions (PRFs). They
considered parallel repetition of dynamic WVPs, proved a Chernoff-type theorem
for this model, and used it to amplify the security of the corresponding primitives
efficiently. Our contribution is to improve the bound of their Chernoff-type theorem
to almost match the corresponding information-theoretic bound. As a consequence,
we improve the efficiency of security amplification for the corresponding cryptographic
primitives.

We will not present a full analysis in this section, but only outline the analysis
of Dodis et al. and discuss our improvement. Hence, we try to state the definitions
of Dodis et al. verbatim for the convenience of reference, except for some small
notational change to make it more compatible with the rest of this thesis.

5.2.1 Dynamic Weakly Verifiable Puzzle Systems

We proceed to introduce the dynamic weakly verifiable puzzle systems (dynamic
WVPs, for short) of Dodis, Impagliazzo, Jaiswal, and Kabanets [7], which are a gen-
eralization of weakly verifiable puzzle systems of Canetti, Halevi, and Steiner [2]. It

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 152

is illustrative to motivate the model by considering the example of message authen-
tication codes (MACs) under chosen-message attacks. Hence, we start by reviewing
the definition of message authentication codes.

Message authentication codes are cryptographic primitives that allows two parties
Alice and Bob, who share a key sk, to ensure the the integrity and authenticity of the
messages they exchange. A MAC Π consists of two algorithms Π = (Tag,Ver). When
Alice wants to send a message m to Bob, Alice also computes a tag σ = Tagsk(m)
and sends (m,σ) to Bob, who can verify the integrity of the message by checking if
Versk(m,σ) = 1. We require both completeness and security properties for MACs.
The completeness says that when Alice is honest, Bob should accept with probability
1. For security, one standard way to formalize security is to consider the following
chosen message attack (CMA) game.

The game is played between a challenger C and an adversary A. First, C generates
a uniformly random key sk. Then C plays the role of an oracle, which allows A to
make an arbitrary number of Tag and Ver queries. Namely, A can either send a
message m to C and get back Tagsk(m), or sends a message-tag pair (m,σ) to C
and get back Versk(m,σ). A succeeds if A ever makes a Ver query (m∗, σ∗) such that
Versk(m

∗, σ∗) = 1, but he never queried Tag on m∗ before.
A MAC Π is secure (or unforgeable under chosen message attack) if no PPT

adversary A can succeed with non-negligible probability. For weaker security, we say
that Π is δ-secure if no PPT adversary A can succeed with probability higher than δ.
Security amplification for MACs asks if we can convert a δ-secure MAC into a fully
secure one. A natural way to do it is by repetition. Namely, we can consider a n-fold
repetition Πn = (Tagn,Vern) of Π, where Tagn uses n copies of keys ~sk = (sk1, . . . , skn),
and on input a message m, outputs ~σ = Tagn~sk(m) = (Tagsk1(m), . . . ,Tagskn(m)). For
verification, Vern can either accept if all Verski(m,σi) = 1 for every i ∈ [n], or accept
if at least a certain threshold number of tags are valid.

We remark that the above security property of a MAC Π can be viewed as the
soundness of a corresponding interactive protocol 〈P,V〉 (with unspecified number of
rounds), where P and V play the role of A and C, respectively. Furthermore, the
security of Πn corresponds to the soundness of the n-fold parallel repetition of 〈P,V〉.
However, 〈P,V〉 is a private-coin protocol with more than four messages, and hence,
by the negative example of [1, 31] presented in Section 1.1.1, a parallel repetition
theorem is not available for analyzing the security of Πn.

Instead, Dodis et al. [7] model the security of MACs as follows.

Definition 5.25 (Dynamic Weakly Verifiable Puzzles [7]) A dynamic weakly
verifiable puzzle P is defined by an efficiently samplable distribution D on pairs of
strings (p, c), where w.l.o.g., c is a sequence of uniformly random coins. Unlike the
case of weakly verifiable puzzles, the string p defines a set of puzzles, (p, q) for q ∈ Q
(for some set Q of indices). There is a PPT computable relation R that specifies
which answers are solutions for which of these puzzles: R(c, q, r) = 1 iff response r is

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 153

correct answer to puzzle q in the collection determined by c. Finally, there is also a
PPT computable hint function H(c, q).

The solver S receives the string p from P, and can make a number of queries to
P: query hint(q) asks for H(c, q), the hint for puzzle number q; a verification query
V (q, r) asks whether R(c, q, r) = 1. The solver S succeeds if S makes an accepting
verification query for a q where it has not previously made a hint query on q.

It is not hard to see that dynamic WVPs captures the security of MACs. The
coins c correspond to the key sk, and the string p is just an empty string for the
case of MACs. The set Q are set of messages m. Finally, the functions H and R
correspond to Tag and Ver, respectively. Dodis et al. argued that dynamic WVPs
can be used to capture the security of signature schemes (SIGs), and pseudorandom
functions (PRFs) as well.

As in Section 5.1 for two-phase puzzle systems, we say that P is δ-hard against
time T if for every solver S with runtime at most T , the success probability of S is at
most δ. We proceed to define parallel repetition of dynamic WVPs to capture n-fold
repetition Πn of a MAC Π.

Definition 5.26 (Parallel Repetition of Dynamic WVPs [7]) Given a dynamic
WVP P with D, R,Q and H, and integers n ≥ k ≥ 1, its (n, k)-parallel repeti-
tion is a dynamic WVP Pn,k with the product distribution Dn producing n-tuples
(p1, c1), . . . , (pn, cn). For a given n-tuple ~c = (c1, . . . , cn) and a query q ∈ Q, the new
hint function is Hn(~c, q) = (H(c1, q), . . . , H(cn, q)). The new relation Rn,k((c1, . . . , cn),
q, (r1, . . . , rn)) evaluates to true if there is a subset S ⊂ [n] of size at least k such that
∧i∈SR(ci, q, ri).

A solver Sn for the (n, k)-repetition Pn,k may ask hint queries hintn(q), getting
Hn(~c, q) as the answer. A verification query V n(q, ~r) asks if Rn,k(~c, q, ~r) = 1, for an
n-tuple ~r = (r1, . . . , rn). We say that the solver succeeds if it makes an accepting
verification query for a q where it has not previously made a hint query on q.

Again, it is not hard to see that the (n, k)-repetition Pn,k of P corresponds to
n-fold repetition Πn,k of a MAC Π, where the verification algorithm Vn,k accepts iff
at least k out of n tags are valid. Dodis et al. [7] proved the following Chernoff-type
theorem for dynamic WVPs, which says that if P is (1 − δ)-hard, then Pn,k with
k = n · (1− (1− γ)δ) is e−Ω(γ2δn)-hard.

Theorem 5.27 (Chernoff-type Theorem for Dynamic WVPs [7]) Let n, k ∈ N
and δ, γ ∈ (0, 1) be parameters such that k = n · (1− (1− γ)δ). Let P be a dynamic
WVP with runtime t′ and Pn,k the corresponding (n, k)-repetition. Suppose there
exists a time t solver Sn for Pn,k with success probability at least ε, where

ε ≥ (800/γδ) · (h+ v) · e−γ2δn/40,

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 154

and h is the number of hint queries, and v the number of verification queries made
by Sn. Then there is a solver S for P with success probability at least (1 − δ) and
runtime poly(t, t′, h, v, ε−1, log(1/γδ)).6

In comparison, the information-theoretic Chernoff bounds (if applicable) gives
a upper bound e−γ

2δn/2 on the success probability, but the above theorem gives a
bound e−γ

2δn/40, which is suboptimal. We improve the bound to almost match the
corresponding information theoretical bound. In particular, our bound improve the
constant in the exponent to 2. The constant improvement could be significant, since
it means that for the purpose of security amplification, we can reduce the number of
repetitions by a multiplicative factor of 20 for achieving the desired security.

We will outline the analysis of Dodis et al. in next section, and discuss our
improvement in Section 5.2.3.

5.2.2 Outline of the Analysis of Dodis et al. [7]

In this section, we outline the analysis of Dodis, Impagliazzo, Jaiswal, and Ka-
banets [7] for proving Theorem 5.31.

Dodis et al. proved the theorem by an efficient black-box reduction. They ob-
served that the “soft-decision” reduction algorithm of Impagliazzo, Jaiswal, and Ka-
banets [24] for weakly verifiable puzzles can be generalized to the dynamic WVP
setting. Recall we mentioned in Section 3.3.4 and 3.4.8 that the idea of soft-decision
was first used by Bellare, Impagliazzo, and Naor [1] for proving a direct product
theorem for three-message protocols, and was later used by several works [24, 7, 20].

For simplicity, let us assume Sn makes only one verification query in the following
informal discussion. The idea of soft-decision is as follows. The soft-decision reduction
solver S solves the puzzle P by simulating the given parallel solver Sn for solving Pn,k.
S embeds the real puzzle P in a random coordinate i ∈ [n] of Pn,k, and simulates Sn,
and the remaining n− 1 puzzles P−i by himself. More precise, after receiving p = pi
from P, S generates (~p−i,~c−i) of P−i, and simulates Sn. To handle Sn’s hint query
hint(q), S simply forwards hint(q) to get H(ci, q), and prepares the answers of P−i by
himself. When Sn comes up with a solution and makes a verification query V n(q∗, ~r∗),
S uses “soft-decision” to decide whether to accept and forward the solution (q∗, r∗i)
to P. Specifically, if the solution (q∗, ~r∗−i) solves at least k of P−i, then S accepts
and forwards the solution to P. Otherwise, S forwards the solution with probability
ρk−t, where ρ ∈ (0, 1) is a parameter, and t is the number of puzzles P−i that accept
(q∗, ~r∗−i). Namely, the probability that S accepts the solution decays exponentially in

6We note that the parametrization of the above Chernoff-type theorem of Dodis et al. is slightly
different from the parametrization we used in Section 4.1. In Section, we assume the soundness error
of 〈P,V〉 is δ, and consider threshold k = (1 + γ)δn. Here, Dodis et al. assume hardness of P is
(1− δ), and consider threshold k = n− (1−γ)δn = (1− (1−γ)δ)n. Nevertheless, in both parameter

ranges, the standard Chernoff bounds give upper bounds e−γ
2δn/2 on probability.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 155

the number of internal puzzles not solved by (q∗, ~r∗−i). When S decides to not accept
the solution (q∗, r∗i), S restarts the whole process again. Namely, S selects another
random coordinate in which to embed P, generates new n − 1 internal puzzles, and
so on.

However, note that S only solves P if S can come up with a fresh solution (q, r),
where S never queried hint(q) before. In the above reduction, S may simulate Sn

many times, each of which makes several hint queries, and the final solution (q∗, r∗i)
forwarded by S may not be fresh due to the hint queries made by previous simulation
of Sn. Dodis et al. use a Valiant-Vazirani type argument [34] to resolve this issue.
Roughly, they use a hash function hash to partition the set Q into a solution set
Q0 = hash−1(0), and a hint set Q1 = Q\Q0, and modify the given parallel solver Sn

to a solver S̃
n

that only makes hint queries with q ∈ Q1 and one verification query
with q ∈ Q0. More precisely, S̃

n
simply runs Sn with the following modification:

• S̃
n

terminates if Sn makes a hint query with q /∈ Q1.

• S̃
n

only forwards the first verification query of Sn with q ∈ Q0, and ignores
all the remaining verification queries of Sn (i.e., simply returns 0 to Sn and
continues to run Sn).

Let ε be the success probability of Sn and h and v the number of hint and verifi-
cation queries made by Sn. They show that one can efficiently find a hash function
hash such that the modified solver S̃

n
has success probability ε/8(h+ v). Note that

the issue with the freshness of solutions goes away when the soft-decision reduction
is applied to S̃, which gives good success probability for solving P.

Dodis et al. [7] formalized the above argument in the following two lemmas, and
Theorem 5.31 follows straightforwardly by the lemmas. Let n, k ∈ N be parameters,
P a dynamic WVP and Pn,k the (n, k)-repetition of P.

Lemma 5.28 Let Sn be a solver for Pn,k with success probability ε and runtime t that
makes at most h hint queries and v verification queries. Then there is a probabilis-
tic algorithm runs in time poly(t, h, v, ε−1) and with high probability outputs a hash
function hash such that the corresponding modified solver S̃

n
has success probability

at least ε/8(h+ v). Furthermore, S̃
n

only makes one verification query.

Lemma 5.29 Let S̃
n

be the modified solver of Sn as in the conclusion of Lemma
5.28 with respect to Pn,k and a hash function hash. If S̃

n
has runtime t and success

probability at least ε′ = (100/γδ) · e−γ2δn/40 for some γ, δ ∈ (0, 1), then there is
a probabilistic solver S for P with success probability at least 1 − δ and runtime
poly(t, t′, ε′−1, log(1/γδ)), where t′ is the runtime of P.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 156

5.2.3 Our Improvement

As in the setting of two-phase puzzle systems in Section 5.1, we observe that not
only the soft-decision reduction but also our reduction for three-message protocols
presented in Section 4.2 can be implemented in the setting of dynamic WVPs, which
gives bounds on the success probability that match the information-theoretic bounds.
However, like the soft-decision reduction, there is an issue of “freshness” of the solution
of Sn, and hence, the reduction can only be applied to the modified solver S̃

n
as

before. This improves the bound of the second lemma (Lemma 5.29) of Dodis et al.
to optimal.

Lemma 5.30 Let S̃
n

be the modified solver of Sn with respect to a hash function
hash. If S̃

n
has runtime t and success probability ε′ = P (n, k, (1 − δ)) + ξ for some

δ, ξ ∈ (0, 1), then there is a probabilistic solver S for P with success probability at
least (1− δ) + (ξ/10n) and runtime poly(t, t′, ε′−1), where t′ is the runtime of P.

To prove Lemma 5.30, we verify that both the correlation reduction procedure in
Figure 4.2 and the reduction prover strategy defined in Figure 4.3 can be implemented
in this model. Then the lemma follows by exactly the same analysis presented in
Section 4.2.

• Recall that in the correlation reduction CR, P∗ does not interact with V at all.
In CR, P∗ simply runs the interaction 〈Pn∗,Vn,k〉 internally with different coins,
and constructs a prover Pn

′∗ for Vn
′,k′ for some k′ ≤ n′ ≤ n. The constructed

Pn
′∗ interacts with Vn

′,k′ by simulating the interaction of 〈Pn∗,Vn,k〉, where
Pn
′∗ plays Pn∗ and the first n − n′ subverifiers of Vn,k with certain fixed coins

c∗1, . . . , c
∗
n−n′ .

It is not hard to see that the correlation reduction CR can be implemented in

dynamic WVPs as well, where S converts S̃
n

for Pn,k into S̃
n′

for Pn′,k′ for some

k′ ≤ n′ ≤ n. Note that the resulting S̃
n′

preserves the partition structure of
Q = Q0 ∪Q1, and makes only one verification query like S̃

n
.

• Similarly, recall that P∗ interacts with V by simulating the interaction of Pn
′
and

Vn
′,k′ with V embedded in the first coordinate of Vn

′,k′ , and when P∗ receives
message v = v1 from V, P∗ repeatedly samples coins ~c−1 of V−1 and checks if
Pn
′∗ convinces exactly k′ − 1 of V−1.

Upon receiving a string p from P, S can also repeatedly sample (~c−1, ~p−1) of
P−1, simulate Sn

′
solving Pn′,k′ and forward the hint queries to P = P1, and

check if Sn
′

makes exactly k′ − 1 of P−1 accept.

Combining our Lemma 5.30 and the first lemma (Lemma 5.28) of Dodis et al. [7],
we improve the bound of Theorem 5.31.

Chapter 5: Applications to Security Amplification for Cryptographic Primitives 157

Theorem 5.31 (Chernoff-type Theorem for Dynamic WVPs) Let n, k ∈ N and
δ, γ ∈ (0, 1) be parameters such that k = n · (1− (1− γ)δ). Let P be a dynamic WVP
with runtime t′ and Pn,k the corresponding (n, k)-repetition. Suppose there exists a
time t solver Sn for Pn,k with success probability at least ε, where

ε ≥ 16(h+ v) · P (n, k, (1− δ)),

and h is the number of hint queries, and v the number of verification queries made
by Sn. Then there is a solver S for P with success probability at least (1 − δ) and
runtime poly(t, t′, h, v, ε−1).

In particular, note that by a standard Chernoff bound, P (n, k, (1− δ)) ≤ e−γ
2δn/2,

we improve the constant in the exponent from 40 to 2.

Bibliography

[1] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition
lower the error in computationally sound protocols? In FOCS, pages 374–383,
1997.

[2] Ran Canetti, Shai Halevi, and Michael Steiner. Hardness amplification of weakly
verifiable puzzles. In TCC, pages 17–33, 2005.

[3] Kai-Min Chung and Feng-Hao Liu. Parallel repetition theorems for interactive
arguments. In TCC, pages 19–36, 2010.

[4] Kai-Min Chung, Feng-Hao Liu, Chi-Jen Lu, and Bo-Yin Yang. Efficient string-
commitment from weak bit-commitment. In Masayuki Abe, editor, Proceedings
of the 16th International Conference on the Theory and Application of Cryptology
and Information Security (ASIACRYPT ’10). Springer-Verlag, 5-9 December
2010. To appear.

[5] Ivan Damg̊ard, Joe Kilian, and Louis Salvail. On the (im)possibility of basing
oblivious transfer and bit commitment on weakened security assumptions. In
EUROCRYPT, pages 56–73, 1999.

[6] Ivan Damg̊ard and Birgit Pfitzmann. Sequential iteration of interactive argu-
ments and an efficient zero-knowledge argument for np. In Kim Guldstrand
Larsen, Sven Skyum, and Glynn Winskel, editors, ICALP, volume 1443 of Lec-
ture Notes in Computer Science, pages 772–783. Springer, 1998.

[7] Yevgeniy Dodis, Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets.
Security amplification for interactivecryptographic primitives. In TCC, pages
128–145, 2009.

[8] Richard Durrett. Probability: Theorey and Examples. Third Edition. Duxbury,
2004.

[9] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption
schemes from decryption errors. In EUROCRYPT, pages 342–360, 2004.

158

Bibliography 159

[10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In Tal Rabin, editor,
CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 465–482.
Springer, 2010.

[11] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178, 2009.

[12] Oded Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudorandom-
ness. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

[13] Oded Goldreich. Foundations of Cryptography. Basic tools. Cambridge Univer-
sity Press, 2001.

[14] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In STOC, pages 25–32, 1989.

[15] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity and a methodology of cryptographic protocol design (extended
abstract). In FOCS, pages 174–187, 1986.

[16] Iftach Haitner. A parallel repetition theorem for any interactive argument. In
FOCS, 2009.

[17] Shai Halevi and Tal Rabin. Degradation and amplification of computational
hardness. In TCC, pages 626–643, 2008.

[18] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM J. Comput., 28(4):1364–
1396, 1999.

[19] Johan H̊astad, Rafael Pass, Krzysztof Pietrzak, and Douglas Wikström. An
efficient parallel repetition theorem. Unpublished manuscript, 2008.

[20] Johan H̊astad, Rafael Pass, Douglas Wikström, and Krzysztof Pietrzak. An
efficient parallel repetition theorem. In Micciancio [28], pages 1–18.

[21] Thomas Holenstein and Renato Renner. One-way secret-key agreement and
applications to circuit polarization and immunization of public-key encryption.
In CRYPTO, pages 478–493, 2005.

[22] Thomas Holenstein and Grant Schoenebeck. General hardness amplification of
predicates and puzzles. CoRR, abs/1002.3534, 2010.

[23] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Chernoff-type
direct product theorems. In CRYPTO, pages 500–516, 2007.

Bibliography 160

[24] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Chernoff-type
direct product theorems. J. Cryptology, 22(1):75–92, 2009.

[25] Russell Impagliazzo and Michael Luby. One-way functions are essential for com-
plexity based cryptography (extended abstract). In FOCS, pages 230–235, 1989.

[26] Charanjit S. Jutla. Almost optimal bounds for direct product threshold theorem.
In Micciancio [28], pages 37–51.

[27] Ueli Maurer and Stefano Tessaro. Computational indistinguishability amplifica-
tion: Tight product theorems for system composition. In Shai Halevi, editor,
Advances in Cryptology — CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 350–368. Springer-Verlag, August 2009.

[28] Daniele Micciancio, editor. Theory of Cryptography, 7th Theory of Cryptography
Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings,
volume 5978 of Lecture Notes in Computer Science. Springer, 2010.

[29] Moni Naor. Bit commitment using pseudo-randomness. In CRYPTO, pages
128–136, 1989.

[30] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. An efficient parallel
repetition theorem for arthur-merlin games. In STOC, pages 420–429, 2007.

[31] Krzysztof Pietrzak and Douglas Wikström. Parallel repetition of computationally
sound protocols revisited. In TCC, pages 86–102, 2007.

[32] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.

[33] Leslie G. Valiant. Short monotone formulae for the majority function. J. Algo-
rithms, 5(3):363–366, 1984.

[34] Leslie G. Valiant and Vijay V. Vazirani. Np is as easy as detecting unique
solutions. Theor. Comput. Sci., 47(3):85–93, 1986.

[35] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Henri Gilbert, editor, EURO-
CRYPT, volume 6110 of Lecture Notes in Computer Science, pages 24–43.
Springer, 2010.

[36] Douglas Wikström. An efficient concurrent repetition theorem. Cryptology
ePrint Archive, Report 2009/347, 2009.

[37] Jürg Wullschleger. Oblivious-transfer amplification. In EUROCRYPT, pages
555–572, 2007.

Bibliography 161

[38] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In FOCS, pages 80–91, 1982.

	Title Page
	Abstract
	Table of Contents
	Citations to Previously Published Work
	Acknowledgments
	Introduction
	Parallel Repetition for Computationally Sound Protocols
	Parallel Repetition May not Decrease Computational Soundness Error
	Efficient Parallel Repetition Theorems for Computationally Sound Protocols

	Applications to Security Amplification
	Roadmap

	Definitions and Preliminaries
	Computationally Sound Protocols
	Parallel Repetition of Protocols
	Preliminaries on Black-Box Reductions
	Additional Notation and Conventions

	Efficient Direct Product Theorems
	Efficient Direct Product Theorem for Three-Message Public-Coin Protocols
	Analysis of the Ideal Strategy P ideal*
	Analysis of the Prover Strategy P *
	Discussion

	Efficient Direct Product Theorem for Public-Coin Protocols
	Reduction Prover Strategies
	Our Tight Analysis to the Rejection Sampling Strategy
	Discussion

	Efficient Direct Product Theorem for Three-Message Protocols
	Correlation Reduction for Direct Product Verifiers
	Reduction Prover Strategy P *
	Analysis of the Prover Strategy P *
	Historical Notes and Discussion

	Efficient Direct Product Theorem for Computationally Simulatable Protocols
	Definition of Simulatability and Theorem Statement
	Reduction Prover Strategy
	Correlation Reduction
	Rejection Sampling
	Analysis of Perfectified Rejection Sampling Strategy P *(OV)rej
	Relating the Success Probability of P *rej and P *(OV)rej
	Proof of Theorem 3.16
	Discussion

	Making Any Protocol Computationally Simulatable
	Fully Homomorphic Encryption Schemes
	The Transformation
	Analysis of Our Transformation

	Efficient Chernoff-type and Threshold/Monotone Repetition Theorems
	Chernoff-type Theorem from Direct Product Theorem
	Discussion

	Efficient Threshold Repetition Theorem for Three-Message Protocols
	Correlation Reduction for Threshold Verifiers
	Reduction Prover Strategy P *
	Discussion

	Efficient Parallel Repetition Theorem for Constant-round Public-Coin Protocols
	Optimal Prover Strategies P *opt
	Recursive Sampling Strategy P *rec

	Applications to Security Amplification for Cryptographic Primitives
	Security Amplification for Commitment Schemes
	Preliminaries and Theorem Statement
	Two-Phase Puzzles Systems
	Outline of Our Construction
	Efficient Security Amplification in the Known-Security Setting
	Security Amplification for String Commitment Schemes

	Security Amplification for Dynamic Weakly Verifiable Puzzles
	Dynamic Weakly Verifiable Puzzle Systems
	Outline of the Analysis of Dodis et al. DodisIJK09
	Our Improvement

	Bibliography

