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Abstract—The smoothing parameter ηε(L) of a Euclidean
lattice L, introduced by Micciancio and Regev (FOCS’04;
SICOMP’07), is (informally) the smallest amount of Gaussian
noise that “smooths out” the discrete structure of L (up to
error ε). It plays a central role in the best known worst-
case/average-case reductions for lattice problems, a wealth of
lattice-based cryptographic constructions, and (implicitly) the
tightest known transference theorems for fundamental lattice
quantities.

In this work we initiate a study of the complexity of
approximating the smoothing parameter to within a factor γ,
denoted γ-GapSPP. We show that (for ε = 1/ poly(n)):
• (2+o(1))-GapSPP ∈ AM, via a Gaussian analogue of the

classic Goldreich-Goldwasser protocol (STOC’98);
• (1 + o(1))-GapSPP ∈ coAM, via a careful application of

the Goldwasser-Sipser (STOC’86) set size lower bound
protocol to thin shells in R

n;
• (2 + o(1))-GapSPP ∈ SZK ⊆ AM ∩ coAM (where SZK is

the class of problems having statistical zero-knowledge
proofs), by constructing a suitable instance-dependent
commitment scheme (for a slightly worse o(1)-term);

• (1 + o(1))-GapSPP can be solved in deterministic
2O(n) polylog(1/ε) time and 2O(n) space.

As an application, we demonstrate a tighter worst-case to
average-case reduction for basing cryptography on the worst-
case hardness of the GapSPP problem, with Õ(

√
n) smaller

approximation factor than the GapSVP problem. Central to
our results are two novel, and nearly tight, characterizations
of the magnitude of discrete Gaussian sums over L: the first
relates these directly to the Gaussian measure of the Voronoi
cell of L, and the second to the fraction of overlap between
Euclidean balls centered around points of L.

I. INTRODUCTION

A (full-rank) n-dimensional lattice L = L(B) =
{∑n

i=1 cibi : ci ∈ Z} is the set of all integer linear com-

binations of a set B = {b1, . . . ,bn} ⊂ R
n of linearly

independent vectors, called a basis of the lattice. It may also

be seen as a discrete additive subgroup of Rn. Lattices have

been studied in mathematics for hundreds of years, and more

recently have been at the center of many important develop-

ments in computer science, such as the LLL algorithm [25]

and its applications to cryptanalysis [13] and error-correcting

codes [12], and lattice-based cryptography [2] (including the

first fully homomorphic encryption scheme [16]).

Much recent progress in the computational study of

lattices, especially in the realms of worst-case/average-case

reductions and cryptography (as initiated by Ajtai [2]), has

been made possible by the machinery of Gaussian measures

and harmonic analysis. These tools were first employed for

such purposes by Regev [33] and Micciancio and Regev [26]

(see also, e.g., [1], [34], [29], [18], [17], [31]), following

their development by Banaszczyk [4], [5], [6] to prove

asymptotically tight (or nearly tight) transference theorems.

In particular, the notion from [26] of the smoothing
parameter ηε(L) of a lattice L plays a central role (sometimes

implicitly) the above-cited works, and so it is a key concept

in the study of lattices from several perspectives. Informally,

ηε(L) is the smallest amount s of Gaussian noise that

completely “smooths out” the discrete structure of L, up

to statistical error ε. Formally, it is the smallest s > 0 such

that the total Gaussian mass ρ1/s(w) := exp(−πs2‖w‖2),
summed over all nonzero dual lattice vectors w ∈ L∗ \ {0},
is at most ε.1 This condition is equivalent to the following

“smoothing” condition: the distribution of a continuous

Gaussian of width s, reduced modulo L, has point-wise

probability density within a (1 ± ε) factor of that of the

uniform distribution over Rn/L.

Given the smoothing parameter’s central role in many math-

ematical and computational aspects of lattices, we believe it

to be of comparable importance to other fundamental and

well-studied geometric lattice quantities like the minimum

distance, successive minima, covering radius, etc. While the

smoothing parameter can be estimated by relating it to these

other quantities [26], [29], [18], the bounds are quite coarse,

typically yielding only Ω̃(
√
n)-factor approximations.

We therefore initiate a study of the complexity of comput-

ing the smoothing parameter, with a focus on approximations.

More formally, for an approximation factor γ ≥ 1 and some

0 < ε < 1 (which may both be functions of the lattice

dimension n), we define γ-GapSPPε to be the promise

problem in which YES instances are lattices L for which

ηε(L) ≤ 1, and NO instances are those for which ηε(L) > γ.

The dependence on ε.: To understand the nature of

GapSPP, it is important to notice that the value of ε has a

large impact on the complexity of the problem. In particular,

by known relations between the smoothing parameter and

the shortest nonzero dual vector (see [26]), we have that√
log(1/ε)/π/λ1(L∗) ≤ ηε(L) ≤

√
n/λ1(L∗),

and hence for exponentially small error ε = 2−Ω(n) the

quantities ηε(L) and
√
n/λ1(L∗) are within a constant factor

of each other. Therefore, the (decision) Shortest Vector

1The dual lattice L∗ of L is the set of all y ∈ R
n for which 〈x,y〉 ∈ Z

for every x ∈ L.
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Problem γ-GapSVP is equivalent to γ-GapSPP2−Ω(n) , up to

a constant factor loss in the approximation. However, most

uses of the smoothing parameter in the literature (e.g., worst-

case to average-case reductions and transference theorems)

work with either inverse polynomial ε = n−O(1) or “just

barely” negligible ε = n−ω(1) (e.g., ε = n− logn). For such

values of ε, the loss in approximation factor between GapSPP
and GapSVP or other standard lattice problems can be as

large as Ω̃(
√
n), and as we will see, in this regime GapSPP

behaves qualitatively differently from these other problems.

A. Results and Techniques

In this work, we prove several (possibly surprising) upper

bounds on the complexity of γ-GapSPPε. Unless otherwise

specified, the stated results hold for the setting ε = n−O(1).

(We obtain results for smaller ε as well, but with slowly

degrading approximation factors.) Similar results hold for a

generalization of GapSPP which uses different values of ε for

YES and NO instances (see Definition II.3 and Corollary II.5

for further details).

At a high level, we obtain several of our main results by

noticing that the classic Goldreich-Goldwasser protocol [19],

which was originally designed for approximating (the comple-

ment of) the GapSVP problem, can in fact be seen as more

directly and tightly approximating the smoothing parameter

(of the dual lattice). When viewed from this perspective, we

show that slight variants of the GG protocol obtain an 2+o(1)
approximation for GapSPP, improving on the approximation

for GapSVP by a Õ(
√
n) factor. Furthermore, using the

known relations between GapSVP and GapSPP, one recover

the original approximation factor for GapSVP. To obtain

these tight approximation factors, as part of the main technical

contributions of this paper, we develop two novel and nearly

tight (up to a 2 + o(1) factor) geometric characterizations of

the smoothing parameter ηε(L) that elucidate the geometric

content of the parameter ε.

Arthur-Merlin Protocols.: We show that (2 + o(1))-
GapSPP ∈ AM ∩ coAM, and moreover, that (1 + o(1))-
GapSPP ∈ coAM. That is, we give constant-round inter-

active proof systems which allow an unbounded prover to

convince a randomized polynomial-time verifier that the

smoothing parameter is “small,” and that it is “large.” In

contrast with these positive results, we note that since the

smoothing parameter is effectively determined by a sum over

exponentially many lattice points, it is unclear whether γ-

GapSPP is in NP or coNP for γ = o(
√
n). (For γ = Ω(

√
n),

known connections to other lattice quantities imply that γ-

GapSPPε ∈ NP ∩ coNP.)

One important consequence of (2 + o(1))-GapSPP ∈
AM ∩ coAM is that the problem is not NP-hard (under

Karp reductions, or “smart” Cook reductions [22]), unless

coNP ⊆ AM [8] and the polynomial-time hierarchy collapses.

Our result should also be contrasted with analogous results

for approximating the Shortest and Closest Vector Problems,

which are only known to be in NP ∩ coAM for factors

γ ≥ c
√
n/ log n [19], and in NP ∩ coNP for factors

γ ≥ c
√
n [1], as well as the results for approximating the

Covering Radius Problem, whose 2-approximation is in AM
but is in coAM only for γ ≥ c

√
n/ log n, and in NP∩coNP

for γ ≥ √n [23].

To prove that (2 + o(1))-GapSPP ∈ AM, we use a

Gaussian analogue of the Goldreich-Goldwasser protocol

on the dual lattice L∗, where the verifier samples from

a Gaussian instead of a ball. (Interestingly, this leads to

imperfect completeness, which turns out to be important for

the tightness of the analysis.) More precisely, the verifier

samples x ∈ R
n from a Gaussian, reduces x modulo (a basis

of) the lattice L∗, and sends the result to the prover. The

prover’s task is to guess x, and the verifier accepts or rejects

accordingly. To prove that the protocol is complete and sound,

we crucially rely on the following novel characterization of

the smoothing parameter:

Voronoi Cell Characterization. For any ε ∈ (0, 1), a

scaling of the Voronoi cell2 V(L∗) by a factor 2ηε(L)
has Gaussian measure at least 1−ε, and an ηε(L)-scaling

has Gaussian measure at most 1/(1 + ε).

With this tool in hand, the analysis of the protocol is very

simple. By the maximum likelihood principle, the optimal

prover guesses correctly if and only if the verifier’s original

sample lands inside the Voronoi cell, and hence the verifier’s

acceptance probability is exactly the Gaussian measure of

V(L∗). See Section III for further details.

For proving (1 + o(1))-GapSPP ∈ coAM, we rely on the

classic set-size lower bound protocol of Goldwasser and

Sipser [21]. In order to prove that the discrete Gaussian mass

on L∗ \ {0} is large, we apply the protocol to thin shells in

R
n, and rely on a discrete Gaussian concentration inequality

of Banaszczyk [4]. See Section VI for an overview and full

details.

Statistical Zero Knowledge Protocol.: We prove that

(2 + o(1))-GapSPP ∈ SZK, the class of problems having

statistical zero-knowledge proofs. We note that this result

does not subsume the inclusion in AM ∩ coAM described

above (as one might suspect, given that SZK ⊆ AM∩coAM),

due to a slightly worse dependence ε in the o(1) term. To

prove the theorem, we construct a new instance-dependent

commitment scheme3 based on GapSPP, which is sufficiently

binding (for an honest committer) and hiding (to a dishonest

receiver). Constructing such a commitment scheme (with

some additionals observations in our case) is known to be

sufficient for obtaining an SZK protocol [24].

2The Voronoi cell V(L∗) is the set of points in R
n that are closer to 0

than any other lattice point of L∗, under �2 norm.
3Roughly speaking, an instance-dependent commitment scheme for a

language L is a commitment scheme that can depend on the instance x
and such that only one of the (statistical) hiding and binding properties are
required to hold, depending on whether x ∈ L.
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Our construction can be viewed as a generalization of an

instance-dependent commitment scheme for O(
√

n/ log n)-
GapSVP implicit in [27], which was also based on the

Goldreich-Goldwasser protocol and is perfectly binding. At

a very high level, the commitment scheme is based on

revealing a “random” perturbed lattice point in L, where

the perturbation is taken uniformly from a ball of radius r.

Roughly speaking, we get the binding property when there is

only one lattice within distance r of the revealed perturbation,

and get the hiding property when there are multiple such

lattice points (which allow for equivocation). It turns out

that the main measure of quality for the binding and hiding

property corresponds to the fraction of overlap between the

balls of radius r placed around lattice points of L: less overlap

means better binding, and more overlap yields better hiding.

In [27], this overlap is analyzed in terms of the length λ1 of

the shortest nonzero vector of L. In particular, if r ≤ λ1/2,

then the balls are completely disjoint (perfect binding), and

if r ≥ Ω(
√
n/ log n) · λ1, then a 1/ poly(n) fraction of the

ball around any lattice point overlaps with that of its nearest

neighbor in the lattice, which gives non-negligible hiding.
The main insight which allows us obtain improved ap-

proximation factors when basing the commitment scheme

on GapSPP is a new characterization of the smoothing

parameter, which allows to get very fine control on the

overlap.

Ball Overlap Characterization. For ε ≥ 2−o(n),

Euclidean balls of radius R =
√
n/(2π)/(2ηε(L∗))

centered at all points of L overlap in at most a 2ε
fraction of their mass, and balls of radius (2 + o(1))R
overlap in at least an ε/2 fraction of their mass.

From the above we are able to determine, to within a

factor 2 + o(1), whether balls placed at points of L overlap

in at most or at least an ε fraction of their mass, based solely

on the smoothing parameter (of the dual lattice). Intuitively,

this is because the smoothing parameter takes into account

all the lattice points in L, and hence is able to provide much

better “global” information about the overlap. We refer the

reader to Section IV for further details and discussion.
Application to Worst-Case/Average-Case Reductions.:

As an application, we also obtain a worst-case to average-

case reduction from GapSPP to the Learning With Errors

problem (LWE) [34], which has a tighter connection factor

than the known reductions from GapSVP [34], [30]. Roughly

speaking, the goal of LWE is to solve n-dimensional random

noisy linear equations modulo some q, where Gaussian

noise with standard deviation αq is added to each equation.

The LWE problem is extremely versatile as a basis for

numerous cryptographic constructions (e.g., [32], [18], [10],

[9]). Regev’s celebrated result [34] showed a quantum

reduction from solving worst-case γ-GapSVP (among other

problems) to solving LWE with γ = Õ(n/α). Furthermore,

Peikert [30] showed a corresponding classical reduction,

when the modulus q ≥ 2n/2. Therefore, the security of

LWE-based cryptographic constructions can be based on the

worst-case hardness of the GapSVP problem.
We observe that the reductions of [34], [30] in fact

implicitly solve the GapSPP problem. Thus, by slightly

modifying the last step of those reductions, we obtain

corresponding quantum/classical reductions from γ-GapSPPε

(with ε = negl(n)) to LWE with γ = O(
√
n/α). As

a consequence, the security of LWE-based cryptographic

constructions can be based on the worst-case hardness of a

potentially harder lattice problem.
The application to worst-case/average-case reduction fol-

lows by noting that the reduction of [30] solves GapSVP
by running the Goldreich-Goldwasser protocol, where the

prover’s strategy is simulated by using a bounded distance

decoding (BDD) oracle, which in turn is implemented using

the LWE oracle. To obtain a tighter reduction from GapSPP
to LWE, we observe that the quality of the BDD oracle

depends directly on the smoothing parameter, as opposed

to the length of the shortest vector. In light of this, we

instead solve GapSPP using the Gaussian analogue of the

Goldreich-Goldwasser protocol described above, while still

using a bounded distance decoding (BDD) oracle to simulate

the prover’s strategy. See Section V for further details.
Algorithm for GapSPP.: We give a deterministic

2O(n) polylog(1/ε)-time and 2O(n)-space algorithm for de-

ciding (1+o(1))-GapSPP. For this we use recent algorithms

of [28], [14] for enumerating lattice points in L∗ to estimate

the Gaussian mass. The full details are in Section VII.2.
Perspectives and Open Questions.: Our initial work on

the complexity of the GapSPP problem opens up several

directions for further study of the smoothing parameter from

a computational perspective. Perhaps the most intriguing

question is whether (2+ o(1))-GapSPP is SZK-complete. A

positive answer might lead to progress on the long-standing

goal of basing cryptography on general complexity classes.

Some reason for optimism comes from its rather unusual

complexity: like SZK-complete problems, (2+o(1))-GapSPP
is in SZK but is not known to be in NP or coNP. We are

unaware of any other problems (aside from SZK-complete

ones) having these characteristics.
In a related direction, in this work we focus on the standard

“L∞ notion” of the smoothing parameter ηε(L), whereas

the complexity of a related “L1 notion” of the smoothing

parameter, denoted η
(1)
ε (L), also seems quite interesting.

More precisely, ηε(L) can be defined equivalently as the

smallest parameter s such that the distribution of a continuous

Gaussian of width s, reduced modulo L, has point-wise

probability density within a (1 ± ε) factor of that of the

uniform distribution on R
n/L. The L1 variant η

(1)
ε (L) of

the smoothing parameter instead is defined to be the smallest

parameter s such that the statistical distance (i.e., half of the

L1 distance) between the above two distributions is at most

ε. (Clearly, η
(1)
ε (L) ≤ ηε(L).) By definition, the problem

of approximating the L1 smoothing parameter, denoted γ-
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GapSPP(1)
ε , appears to naturally reduce to a well-known

SZK-complete problem called Statistical Difference (SD)

problem [35], which is a promise problem asking whether

two input distributions (specified by circuits) have statistical

distance less than α or greater than β. Thus, the problem

appears to be in SZK and is another candidate SZK-complete

lattice problem. Unfortunately, the above argument relies

on η
(1)
ε (L) being a monotonic function in ε, which is a

basic property that we do not know how to prove (or

disprove)! In fact, we know very little about the L1 smoothing

parameter. Given the potentially interesting complexity of

γ-GapSPP(1)
ε , it seems worthwhile to further investigate

the L1 smoothing parameter, from both the geometric and

computational perspectives.

Finally, we note that our results generally apply only

in the setting where ε < 1. It seems quite interesting to

understand how the complexity of GapSPP changes for

larger ε. We remark that our geometric characterizations

only “half fail” for larger ε. More precisely, in the regime

ηε(L) ≥ 1, ε ≥ 1, we still get upper bounds on the Gaussian

measure of the Voronoi cell, as well as lower bounds on

the fraction of overlap for balls centered at lattice points.

For our AM protocol, this implies that the prover generally

fails to convince the verifier, and for our instant-dependent

commitment scheme, this implies that it is always hiding.

Interestingly, our coAM protocol still applies for larger ε,

almost without change. Here the main issue is that we do

not know a “good” geometric interpretation of the statement

ρ(L \ {0}) ≤ ε for any ε ≥ 1.

Organization.: The rest of the paper is organized as

follows. In Section II we give the basic preliminaries. In

Section III, we give our Arthur-Merlin protocol for showing

that (2+o(1))-GapSPP ∈ AM (Theorem III.1). In Section IV

we construct a statistical zero-knowledge proof for GapSPP
(Theorem IV.1). In Section V, we describe the reduction

from GapSPP to LWE (Theorem V.5). In Section VI, we

show that (1 + o(1))-GapSPP ∈ coAM (Theorem VI.1). In

Section VII.2 we give a deterministic algorithm for computing

the smoothing parameter (Theorem VII.1).

II. PRELIMINARIES

For sets A,B ⊆ R
n, denote their Minkowski sum

by A + B = {a+ b : a ∈ A,b ∈ B}. We let Bn
2 =

{x ∈ R
n : ‖x‖2 ≤ 1} denote the unit Euclidean ball in R

n,

and Sn−1 = ∂Bn
2 the unit sphere in R

n. Unless stated

otherwise, ‖·‖ denotes the Euclidean norm.

Lattices.: A lattice L ⊂ R
n with basis B, and its

dual L∗, are defined as in the introduction. For a basis B
and a vector x ∈ R

n, we let x mod B denote the unique

x̄ ∈ L + x such that x̄ =
∑n

i=1 cibi for ci ∈ [− 1
2 ,

1
2 ). It

can be computed efficiently from x and B (treated as matrix

of column vectors) as x̄ = x − B
B−1x�. We sometimes

instead write x mod L when the basis is implicit.

The Voronoi cell V(L) is the set of points in R
n that are

at least as close to 0 (under the �2 norm) as to any other

vector in L:

V(L) = {x ∈ R
n : ‖x‖2 ≤ ‖x− y‖2, ∀ y ∈ L \ {0}}

= {x ∈ R
n : 〈x,y〉 ≤ 1

2 〈y,x〉 , ∀ y ∈ L \ {0}}.
When the lattice in question is clear we shorten V(L) to V .

Note that V is a symmetric polytope that tiles space with

respect to L, i.e., L+ V = R
n and for all distinct x, y ∈ L,

the sets x+ V and y + V are interior disjoint.

Gaussian measures.: Define the Gaussian function

ρ : Rn → R
+ as ρ(x) = e−π‖x‖2 , and for real s > 0,

define ρs(x) = ρ(x/s) = e−π‖x‖2/s2 . For a countable subset

A ⊆ R
n, we define ρs(A) =

∑
x∈A ρs(x).

For a measurable subset A ⊆ R
n, we define the

Gaussian measure of A (parameterized by s > 0) as

γs(A) = 1
sn

∫
A
ρs(x) dx. Note that γs(R

n) = 1, so γs is

a probability measure. For parameter s > 0, we let Ds

be the corresponding continuous Gaussian distribution with

parameter s centered around 0:

Ds(A) = γs(A) ∀ measurable A ⊆ R
n.

Similarly, for any countable subset T ⊆ R
n for which ρs(T )

converges, define the discrete Gaussian distribution DT,s

over T by

DT,s(x) =
ρs(x)

ρs(T )
∀ x ∈ T.

We usually consider the discrete Gaussian over a lattice L,

i.e., where T = L, though there will be situations where T
corresponds a union of cosets of L. In all these cases, ρs(T )
converges.

The following gives the standard concentration bounds for

the continuous and discrete Gaussians.

Lemma II.1 ([4], [5]). Let X ∈ R
n be distributed as Ds or

DL,s for an n-dimensional lattice L. For any v ∈ R
n \ {0}

and t > 0, we have

Pr[〈X,v〉 ≥ t‖v‖] ≤ e−π(t/s)2 ,

and for ε > 0 we have

Pr[‖X‖2 ≥ (1 + ε)s2
n

2π
] ≤ ((1 + ε)e−ε)n/2,

which for 0 < ε < 1
2 is bounded by e−nε2/6.

The smoothing parameter.: We recall the definition of

the smoothing parameter from [26], and define the associated

computational problem GapSPP.

Definition II.2 (Smoothing Parameter). For a lattice L
and real ε > 0, the smoothing parameter ηε(L) is the
smallest s > 0 such that ρ1/s(L∗ \ {0}) ≤ ε.

Definition II.3 (Smoothing Parameter Problem). For
γ = γ(n) ≥ 1 and positive εY = εY (n), εN = εN (n) with
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εY ≤ εN , an instance of γ-GapSPPεY ,εN is a basis B of
an n-dimensional lattice L = L(B). It is a YES instance if
ηεY (L) ≤ 1, and is a NO instance if ηεN (L) > γ. When
εY = εN = ε, we write γ-GapSPPε.

Notice that YES and NO instances are disjoint, since for a

YES instance we have ρ(L∗ \ {0}) ≤ εY , whereas for a NO

instance we have ρ(L∗ \{0}) ≥ ρ1/γ(L∗ \{0}) > εN ≥ εY .

For the design and analysis of our interactive protocols,

it is often convenient to use separate εY , εN parameters.

The following lemma and its corollary then let us draw

conclusions about GapSPP for a single ε parameter, for an

(often slightly) larger approximation factor.

Lemma II.4. Let L ⊆ R
n be an n dimensional lat-

tice. If ρs(L \ {0}) ≤ ε < 1, then letting t =√
1 + log(r)/ log(ε−1) for any r ≥ 1, we have

ρs/t(L \ {0}) ≤ 1
rρs(L \ {0}) ≤ ε/r.

Proof: By scaling L, it suffices to prove the claim for
s = 1. Since t ≥ 1, we have

ρ1/t(L \ {0}) =
∑

y∈L\{0}
e−π‖ty‖2 =

∑
y∈L\{0}

(e−π‖y‖2 )t
2

≤
( ∑

y∈L\{0}
e−π‖y‖2

)t2

= ρ(L \ {0})t2 ≤ ρ(L \ {0}) · εt2−1.

To finish the proof, note that εt
2−1 = 1/r, as needed.

Corollary II.5. For any εN < 1, there is a trivial reduction
from γ′-GapSPPεY to γ-GapSPPεY ,εN , where γ′ = γ ·√

log(ε−1
Y )/ log(ε−1

N ).

The proof follows by a routine calculation, letting ε = εN
and r = εN/εY in the above lemma. As a few notable

examples, if εY and εN are both fixed constants, then the

loss γ′/γ in approximation factor from the reduction is a

constant strictly greater than 1. But if εY is constant and

εN = (1 + o(1)) · εY , or if εY = o(1) and εN ≤ C · εY for

a constant C ≥ 1, then the loss in approximation factor is

only 1 + o(1).

III. AM PROTOCOL FOR GapSPP

Here we give an Arthur-Merlin protocol for 2-

GapSPPεY ,εN , defined formally in Protocol 1. It is simply

a Gaussian variant of the classic Goldreich-Goldwasser

protocol [19], which was originally developed to prove that

approximating the Closest and Shortest Vector Problems to

within a c
√
n/ log n factor is in coAM. In our protocol,

instead of choosing an error vector x from the ball of

radius c
√
n/ log n, the verifier chooses x from a continuous

Gaussian distribution of parameter 1. It then reduces x
modulo the lattice (actually, the dual lattice L∗ in our setting)

and challenges the prover to find the original vector x.

For intuition on why this protocol is complete and sound,

first observe that the optimal prover strategy is maximum

likelihood decoding of the verifier’s challenge x̄ = x mod
L∗, i.e., to return a most-likely element in the coset x′ ∈
L∗ + x̄. Because the Gaussian function is decreasing in

‖x′‖, the prover should therefore return the shortest element

x′ ∈ L∗+ x̄, i.e., the unique x′ ∈ V(L∗)∩(L∗+ x̄). (We can

ignore the measure-zero event that x̄ is equidistant from two

or more points in L∗). The verifier can therefore be made to

accept with probability γ(V(L∗)), and no more. Note that

unlike the original Goldreich-Goldwasser protocol, ours does

not have perfect completeness, and in fact this is essential for

establishing such a small approximation factor for GapSPP.

For completeness, consider a YES instance where

ηεY (L) ≤ 1/2, i.e., ρ2(L∗ \ {0}) ≤ εY . (For convenience,

here we scale the 2-GapSPP problem so that NO instances

have ηεN (L) > 1.) Intuitively, because the measure on

L∗ \ {0} is small, these lattice points are all far from the

origin and so V(L∗) captures most of the Gaussian measure

γ; Lemma III.4 makes this formal. Finally, for soundness

we consider the case where the discrete measure on nonzero

lattice points is relatively large, i.e., ρ1(L∗ \ {0}) > εN .

Conversely to the above, this intuitively means that the

continuous Gaussian measure γ(V(L∗)) cannot be too large,

and Lemma III.4 again makes this precise.

Algorithm 1 Gaussian Goldreich-Goldwasser (GGG) Proto-

col

Input: Basis B ⊂ R
n of a lattice L = L(B).

1: Verifier chooses Gaussian x ← D1 and sends x̄ =
x mod L∗ to prover.

2: Prover returns an x′ ∈ R
n.

3: Verifier accepts if x′ = x.

Theorem III.1. For 0 < ε ≤ δ < 1
2 , Protocol 1 on lattice

L = L(B) satisfies:
1) Completeness: If ηε(L) ≤ 1

2 , then there exists a prover
that makes the verifier accept with probability at least
1− ε.

2) Soundness: If η δ
1−δ

(L) ≥ 1, then the verifier rejects
with probability at least δ.

In particular, 2-GapSPPε,δ/(1−δ) ∈ AM when δ − ε ≥
1/ poly(n). Moreover, when ε = negl(n) the proto-
col is honest-verifier statistical zero knowledge, i.e., 2-
GapSPPε,δ/(1−δ) ∈ HVSZK = SZK.

By applying Corollary II.5, we obtain the following upper

bounds on the complexity of γ-GapSPPε for different ranges

of ε.

Corollary III.2. For the following ε(n) < 1, we have γ-
GapSPPε ∈ AM for the following γ(n): itemsep=0pt
• If ε(n) ≤ negl(n), then γ = O(

√
log(ε−1)/ log n).

• If 1/ poly(n) ≤ ε(n) ≤ o(1), then γ = (2 + o(1)).
• If ε(n) ≥ Ω(1), then γ = O(1).
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The next two lemmas provide the crux of the proof of

Theorem III.1.

Lemma III.3. Let S ⊆ R
n be symmetric (i.e., S = −S)

measurable set. Then for any y ∈ R
n,

γs(S + y) ≥ γs(S) · ρs(y).
Proof: By scaling S and y, it suffices to prove the claim

for s = 1. For any t ∈ R, note that cosh(t) = 1
2 (e

t+e−t) ≥
1. We have

γ(S + y) =

∫
S
e−π‖y−x‖2 dx =

∫
S

1

2
(e−π‖y−x‖2 + e−π‖y+x‖2 ) dx

= e−π‖y‖2
∫
S
e−π‖x‖2 · 1

2

(
e2π〈x,y〉 + e−2π〈x,y〉

)
dx

≥ ρ(y)

∫
S
ρ(x) dx = ρ(y) · γ(S).

The following crucial lemma establishes a tight relationship

between discrete Gaussian sums on L and the Gaussian mass

of the Voronoi cell.

Lemma III.4 (Voronoi Cell Characterization). Let L ⊆
R

n be a lattice with Voronoi cell V = V(L), and let s > 0.
Then

ρs(L \ {0})
ρs(L) ≤ 1− γs(V) ≤ ρ2s(L \ {0}).

In particular, letting sε = ηε(L∗) for some ε ∈ (0, 1), we
have that γ(2sεV) ≥ 1− ε and γ(sεV) ≤ 1

1+ε .

Proof: By scaling L, it suffices to prove the claim for

s = 1. We first show the upper bound. Let X ∈ R
n be

distributed as D1, and note that 1− γ(V) = Pr[X /∈ V]. By

the union bound and Lemma II.1,

Pr[X /∈ V] = Pr[
⋃

y∈L\{0}
{〈X,y〉 > 1

2 〈y,y〉}]

≤
∑

y∈L\{0}
Pr[〈X,y〉 > 1

2 〈y,y〉]

≤
∑

y∈L\{0}
e−π‖y/2‖2 = ρ2(L \ {0}).

We now prove the lower bound. Since V tiles space with

respect to L, by applying Lemma III.3 with S = V , we have

1−γ(V) = γ(Rn\V) =
∑

y∈L\{0}
γ(V+y) ≥ γ(V)·ρ(L\{0}),

Rearranging terms and using ρ({0}) = 1, we have 1 −
γ(V) ≥ 1− 1/ρ(L) = ρ(L \ {0})/ρ(L), as desired. Finally,

the “in particular” claim follows from γ(rV) = γ1/r(V) and

an easy calculation.

Proof of Theorem III.1: As already argued above, the

optimal prover strategy given x̄ ∈ R
n is maximum likelihood

decoding, and the optimal prover can make the verifier accept

with probability γ(V(L∗)). Completeness and soundness now

follow immediately from Lemma III.4, as already outlined

in the overview.

For honest-verifier statistical zero-knowledge when ε =
negl(n), the simulator just chooses x← D1 as the verifier’s

randomness, and outputs x as the message from the prover.

Because the prover also returns x with probability at least

1− ε in the real protocol, the simulated transcript is within

negligible statistical distance of the real transcript.

IV. SZK PROTOCOL FOR GAPSPP

This section is devoted to showing that (2 + o(1))-
GapSPP1/ poly(n) is in SZK.

Theorem IV.1. For every ε : N→ [0, 1] such that 1
poly(n) ≤

ε(n) ≤ 1
36 , we have 2 · (1 + δ)-GapSPPε,12ε ∈ SZK, where

δ =
√

3
2n ln 4

ε .

As before, the following corollary gives the implied

upper bound on the complexity of γ-GapSPPε (by applying

Corollary II.5).

Corollary IV.2. For every ε : N → (0, 1), if 1/ poly(n) ≤
ε(n) ≤ o(1), then (2 + o(1))-GapSPPε ∈ SZK. If ε(n) ≤
negl(n), then O

(√
log(1/ε)
logn

)
-GapSPPε ∈ SZK. Finally, if

Ω(1) ≤ ε(n) ≤ 1/3, then O(1)-GapSPPε ∈ SZK.

Our construction follows a classic approach of constructing

an instance-dependent (ID) commitment scheme for GapSPP,

which is known to be sufficient for obtaining a SZK
protocol [24]. With an additional observation, we show that

a significantly weaker notion of ID commitment schemes

is sufficient to obtain SZK protocols; roughly speaking, we

only need an ID bit-commitment scheme that is sufficiently

binding for an honest sender, and hiding (from a dishonest

receiver). Specifically, it is sufficient to construct a “non-

trivial” ID commitment scheme defined as follows.

Definition IV.3. Let Π be a promise problem. A (non-
interactive) instance-dependent bit-commitment scheme Com
for Π is a PPT algorithm that on input an instance
x ∈ {0, 1}n and a bit b ∈ {0, 1}, outputs a commitment
Comx(b) ∈ {0, 1}∗. Let p = p(n), q = q(n) ∈ (0, 1). We
define (weak) binding and hiding properties of Com as
follows.
• Statistical honest-sender q-binding for YES instances:

For every x ∈ ΠY and b ∈ {0, 1},
Pr[Comx(b) ∈ supp(Comx(b̄))] ≤ q(|x|).

(Note that when Comx(b) /∈ supp(Comx(b̄)), the com-
mitment Comx(b) cannot be opened to b̄. Thus, the
above condition implies that the binding property can
be broken with probability at most q.)

• Statistical p-hiding for NO instances: For every x ∈ ΠN ,

Δ(Comx(0),Comx(1)) ≤ p(|x|).
(The above condition implies that given Comx(b) for
a random b, one can only predict b correctly with
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probability at most (1 + p)/2, which means that the
hiding property can be broken with advantage at most
p.)

Com is non-trivial if Com is statistical p-hiding and statistical
honest-sender q-binding with p+ q ≤ 1− 1/ poly(n).4 Com
is secure if Com is statistical p-hiding and statistical honest-
sender q-binding with negligible p and q.

In the next subsection, we focus on constructing

a non-trivial ID commitment schemes for (2 + o(1))-
GapSPP1/ poly(n). We present more detailed background for

ID commitment schemes and discuss why it is sufficient to

construct SZK protocols in Section IV-B.

A. A Non-Trivial ID Commitment Scheme for GapSPP

In this section, we construct a non-trivial ID bit-

commitment scheme SPCom for (2+o(1))-GapSPP1/ poly(n).

Our construction can be viewed as a generalization of an

instance-dependent commitment scheme implicit in [27] for

O(
√

n/ log n)-GapSVP.5 To explain the intuition behind our

construction, it is instructive to first consider the construction

of ID commitment scheme for GapSVP (for simplicity, below

we describe commitment to a random b): To commit, a sender

first selects a “random” lattice point v ∈ L (see Figure IV-A

for the precise distribution) and adds a random noise vector

e drawn from a ball of certain radius (say, r = 1/2) to v; let

w = v + e. Intuitively, the vector w is binding to v if the

noise is sufficiently short. To actually commit to a bit, the

sender also samples a random hash function h, and commits

to the hashed bit b = h(v). Namely, (w, h) is a commitment

ComL(b) to b = h(v).
Intuitively, if the length of the shortest vector λ1(L) ≥ 1,

then all balls centered at lattice points v ∈ L of radius

r = 1/2 are disjoint, and thus ComL(b) = (w, h) is perfect

binding. On the other hand, if the shortest vector is too

short, say, λ1(L) ≤ O(
√
(log n)/n), then w may fall in the

intersection region of two (or more) balls with non-negligible

probability, using the symmetry of the lattice and the fact that

the balls centered around the origin and a shortest non-zero

vector have non-negligible overlap. When w lies in the balls

centered at v1 and v2 and h(v1) �= h(v2), the commitment

ComL(b) = (w, h) does not reveal the committed value b,
which intuitively achieves hiding. Indeed, the above argument

can be formalized readily, yielding an ID bit-commitment

scheme for O(
√

n/ log n)-GapSVP with perfect biding and

weak hiding properties.

4This is in contrast to the fact that one can construct a (trivial) p-hiding
and q-binding commitment scheme for every p + q ≥ 1. For example,
defining Comx(b) = b gives p = 1 and q = 0, and defining Comx(b) = 0
gives p = 0 and q = 1. More generally, defining Comx(b) to be b with
probability α and 00 with probability 1− α gives p = α and q = 1− α.

5While [27] constructed their protocol by combining the reduction
from GapSVP to GapCVP with Goldreich-Levin hardcore predicate,
their construction can be interpreted as implicitly constructing an ID bit-
commitment scheme for GapSVP by first constructing one with perfect
binding but weak hiding, and then amplifying the hiding property.

Note that in the above commitment scheme, the quality of

the hiding property depends on how much the ball v+ rBn
2

overlaps with the balls around surrounding lattice points.

However, in the above analysis, we only exploit the overlap

contributed by a nearest lattice point to v, ignoring the

overlap contributed by all other balls. In general, such an

approach can only give a very coarse approximation of the

overlap, which one can see from the example of extremal

lattices where there are exponentially many lattice points of

length roughly equal to that of the shortest vector. As a result,

using this approach one can only obtain a non-trivial ID bit-

commitment scheme for γ-GapSVP with γ ≥ Ω(
√
n/ log n).

Our key observation is that, when we switch from GapSVP
to GapSPP, the above construction gives a non-trivial ID bit-

commitment scheme for γ-GapSPP1/ poly(n) with γ = 2 +
o(1). This stems from our new ball overlap characterization of

the smoothing parameter, which gives us much finer control

on the amount overlap we obtain in the above protocol. We

formalize this characterization as follows:

Lemma IV.4 (Ball Overlap Characterization). Let L be
an n dimensional lattice. For r > 0, define

Overlap(L, r) def
=

voln

(⋃
y∈L\{0} (rB

n
2 ∩ (rBn

2 + y))
)

voln(rBn
2 )

,

which denotes the fraction of overlap of a ball of radius r
centered at a point in L with balls of equal radius centered
at all other lattice points. Then for ε ∈ (2o(−n), 1/3), setting
rε =

√
n
2π/(2ηε(L∗)), the following holds: itemsep=0pt

1) For 0 ≤ r ≤ rε, we have Overlap(L, r) ≤ 2ε.
2) For any r ≥ 2(1 + δ) · rε where δ =

√
3
2n ln 4

ε , we
have Overlap(L, r) ≥ ε/2.

The above lemma says that up to a factor of 2+ o(1), the

smoothing parameter ηε(L∗) characterizes the required radius

for balls on L to have roughly ε fraction of overlap. As we

shall see shortly, the amount of overlap tightly characterizes

the binding and hiding property of the commitment scheme

described above. As such, by choosing εY and εN with a

small constant factor gap, the above construction yields a

non-trivial ID bit-commitment scheme for γ-GapSPPεY ,εN
with γ = 2 + o(1).

We proceed to formally define our ID bit-commitment

scheme SPCom for GapSPP in Fig 1, and establish its

binding and hiding properties. The binding and hiding prop-

erties are characterized by Lemma IV.5 and IV.6, respectively.

We defer the proofs to the full version of this paper. The

properties of SPCom are summarized in Lemma IV.7. We

also defer the proofs of all geometric lemmas (in particular,

the Ball Overlap Characterization, i.e. Lemma IV.4) to the

full version of this paper.

We remark that since we are approximating ηε(L), the

following protocol operates directly on L∗. For simplicity
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of notation, for a basis B of L, we write B∗ = (B−1)t to

denote the corresponding dual basis of L∗.

Let H = {h : {0, 1}n → {0, 1}} be a pairwise-

independent hash family.

On input a lattice basis B and a bit b ∈ {0, 1},
• Sample uniformly random z← {0, 1}n and h← H

jointly subject to h(z) = b. (This can be done

by rejection sampling, or equivalently by sampling

uniform z← {0, 1}n first, and then sampling h←
H conditioned on h(z) = b.)

• Sample e← rBn
2 with r = 1

2

√
n
2π .

• Let v = B∗z and w = (v + e mod 2B∗).
• Output SPComB(b) = (w, h).

Figure 1. SPCom: a non-trivial ID commitment scheme for GapSPP.

The following two technical lemmas establish the (weak)

binding and hiding properties of SPCom.

Lemma IV.5. For every b ∈ {0, 1},
Pr[SPComB(b) ∈ supp(SPComB(b̄))] ≤ Overlap(L∗, r).

Lemma IV.6.

Δ(SPComB(0), SPComB(1)) ≤ 1− (Overlap(L∗, r)/2).
Finally, we prove the ID binding and hiding properties of

SPCom by Lemma IV.4, IV.5, and IV.6.

Lemma IV.7. For every ε : N → [0, 1] such that
1/ poly(n) ≤ ε(n) ≤ 1/36, SPCom is a non-trivial
ID commitment scheme for 2 · (1 + δ)-GapSPPε,12ε with

δ =
√

3
2n ln 4

ε . Specifically, SPCom is (2ε)-binding for the
YES-instances and (1− 3ε)-hiding for the NO-instances of
2 · (1 + δ)-GapSPPε,12ε, respectively.

Proof: For YES-instances where ηε(L) ≤ 1, by Part 1.

of Lemma IV.4 and noting that r ≥ rε,

Overlap(L, r) ≤ 2ε.

Thus, by Lemma IV.5, SPCom is (2ε)-binding for the

YES-instances. On the other hand, for NO-instances where

ηε(L) ≥ 2 · (1 + δ), by Part 2. of Lemma IV.4 and noting

that r ≥ 2 · (1 + δ) · rε,

Overlap(L, r) ≥ 12ε/2 = 6ε.

Thus, by Lemma IV.6, Com is (1− 3ε)-hiding for the NO-

instances.

Theorem IV.1 then follows by combining Lemma IV.7

and Theorem IV.8 stated in the next section. We remark that

our SZK protocol for (2 + o(1))-GapSPP1/ poly(n) does not

have efficient prover strategy, since we do not know if the

problem is in NP or coNP.

B. Background and From ID Commitment Schemes to SZK
Protocols

An ID commitment scheme Com for a promise problem

Π is a commitment scheme that can depend on the instance

x and such that only one of the hiding and binding properties

are required to hold, depending on whether x is an YES

or NO instance. Since only one of the hiding and binding

properties needs to hold at a time, it is possible to achieve

both the statistical hiding and statistical binding properties,

and thus useful for constructing SZK protocols.

Typically, one requires the hiding property to hold for

the YES instances and the binding property to hold for the

NO instances, and such an ID commitment scheme readily

gives a SZK protocol with soundness error 1/2. On the other

hand, an ID commitment scheme with reverse guarantees,

i.e., binding for YES instances and hiding for NO instances,

also readily gives a honest verifier SZK protocol, where

the verifier commits to a random bit b and the prover’s

task is to guess the bit b correctly. Furthermore, since the

verifier (who is the sender of the ID commitment scheme) is

honest, the binding property only needs to hold with respect

to the honest sender (referred to as “honest-sender biding

property”). Since HVSZK = SZK [20], an ID commitment

scheme that is honest-sender binding for YES instances

and hiding for NO instance is also sufficient for showing

that the promise problem is in SZK. Note that since only

honest-sender binding property is required, we can without

loss of generality assume that a commitment scheme is

non-interactive (by letting the sender emulate the receiver

and send the emulated view to the receiver). Thus, such a

commitment scheme is simply an algorithm.

We observe that, the existing security amplification tech-

niques for regular commitment schemes can be applied to

the instance-dependent setting. As a consequence, any ID

commitment scheme with “non-trivial” honest-sender binding

and hiding properties is sufficient to obtain SZK protocols.

More precisely, as formally defined in Definition IV.3,

we consider ID commitment schemes Com with weak p-

hiding and q-binding properties, where the hiding and

binding properties can be broken with “advantage” at most

p and q, respectively, and we say Com is “non-trivial” if

p + q ≤ 1 − 1/ poly(n). Known security amplification

results for commitment schemes (for the case of statistical

security) [15] state that any non-trivial commitment scheme

can be amplified to one with full-fledge security (i.e., both

p and q are negligible). The same conclusion holds for ID

commitment schemes, and thus to construct a SZK protocol

for a language L, it suffice to construct a non-trivial honest-

sender binding ID commitment scheme for L.

Theorem IV.8. Let Π be a promise problem. Suppose there
exists a non-trivial ID commitment scheme for Π, then Π ∈
SZK.
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Proof: (sketch) The theorem can be proved by applying

known technique/results for regular commitment schemes to

the instance-dependent setting. Briefly, security amplification

of commitment schemes can be done using the following

two operations [15].

• Repetition. Given Com and k ∈ N, define Com′x(b) =
(Comx(b; r1), . . . ,Comx(b; rk)), i.e., concatenation of

k commitments of Com using independent randomness.

This amplifies the binding property but degrades the

hiding property. Specifically, if Com is p-hiding and

q-binding, then Com′ is (1− (1− p)k)-hiding and qk-

binding.

• Sharing. Given Com and k ∈ N, define Com′x(b) =
(Comx(b1; r1), . . . ,Comx(bk; rk)), where b1, . . . , bk
are chosen randomly subject to b1 ⊕ · · · ⊕ bk = b, and

r1, . . . , rk are independent randomness. This amplifies

the hiding property but degrades the binding property.

Specifically, if Com is p-hiding and q-binding, then

Com′ is pk-hiding and 1− (1− q)k-binding.

It can be shown (as in [15]) that as long as p + q ≤
1 − 1/ poly(n), one can amplify a p-hiding and q-binding

commitment scheme Com to a secure Com′ by alternately

applying repetition and sharing operations with carefully

chosen parameters k’s, and the resulting Com′ calls Com in

a black-box way poly(n) times.

Once we have a secure non-interactive instance-dependent

bit-commitment scheme for Π, we can readily construct a

two-message honest-verifier SZK protocol for L as follows:

On input x ∈ {0, 1}n,

• V samples random b ← {0, 1}, computes and sends

Comx(b) to P .

• P sends b′ to V as his guess of b.
• V accepts iff b′ = b.

It is not hard to see that the binding and hiding properties

translate to the completeness and 1/2-soundness for the

protocol, and a simulator can generate the view by emulating

V and outputting (Comx(b), b). Since HVSZK = SZK, we

have Π ∈ SZK.

Remark IV.9. Interestingly, as a by-product, an SZK-

complete problem called “Image Intersection Density” (IID)

(defined by [7] and proved to be SZK-complete by [11])

can naturally be interpreted as a weak ID bit-commitment

scheme as defined in Definition IV.3, which allows us to

(immediately) obtain an optimal “polarization” result to the

problem.

Specifically, the input to the IID problem is two distribu-

tions (X,Y ) specified by circuits, where the YES instance

satisfying Δ(X,Y ) ≤ a and the NO instance satisfying

Pr[X /∈ supp(Y )] ≥ b and Pr[Y /∈ supp(X)] ≥ b, where

a, b ∈ (0, 1) are parameters of the problem. By defining

X and Y as commitment to 0 and 1 respectively, the

condition to YES instance corresponds to statistical a-hiding

and the condition to NO instance corresponds to statistical

honest-sender (1− b)-binding.6 Interpreting the IID problem

as a weak ID bit-commitment scheme makes it natural

to apply the security amplification result of commitment

schemes [15], which gives an optimal polarization result of

the problem, stating that the IID problem with parameters

a(n) − b(n) ≥ 1/ poly(n) is complete for SZK. This

improves the previous known result in [11], which holds

for constants a > b. In fact, the security amplification

and polarization techniques exploit identical operations. The

stronger result from the security amplification literature is

obtained by applying the repetition and sharing operations

more carefully.

V. APPLICATIONS TO WORST-CASE TO AVERAGE-CASE

REDUCTIONS

Our study of GapSPP has natural applications to the

context of worst-case to average case reductions. In particular,

we show that we can relate the hardness of average-case

hard learning with error (LWE) problems and worst-case hard

GapSPP problems with a tighter connection factor. Our result

directly implies the worst-case to average-case result from

GapSVP to LWE obtained by Regev [34] and Peikert [30].

First we review the LWE problem.

Definition V.1 (Learning with Error Problem [34]).
Let q = q(n) ∈ N, α = α(n) ∈ (0, 1). Let Φα be the
distribution on [0, 1) obtained by drawing a sample from
the Gaussian distribution with standard deviation α and
reducing it modulo 1. Define As,Φα to be the distribution on
Z
n
q × [0, 1) obtained by choosing a vector a ∈ Z

n
q uniformly

at random, choosing an error term e← Φα, and outputting
(a, 〈a, s〉/q + e) where the addition is performed in modulo
1.

The goal of the learning with errors problem LWEq,α in n
dimensions is, given access to any desired poly(n) numbers
of samples from As,Φα for a random s← Z

n
q , to find s (with

overwhelming probability).

Following [34], [30], we use the bounded decoding BDD
problem as an intermediate step in our reduction. Here we

instead parameterize the α-BDD problem with α relative to

the smoothing parameter (as opposed to the shortest vector

used in literature); this is essential for us to obtain tighter

reduction for GapSPP.

Definition V.2 (Bounded Distance Decoding Problem (α-BDDε)).
Given a lattice basis B and a vector t such that
dist(t,L(B)) < α/ηε(L(B)∗), find the lattice vector
v ∈ L(B) such that dist(t,v) ≤ α/ηε(L(B)∗).

We recall the following Lemma from Regev [34] and

Peikert [30] that reduce solving worst-case BDD problem

6The binding and hiding properties hold for reverse instances, but one can
instead consider the complement of the IID problem to obtain a consistent
definition since SZK is close under complement.
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to solving LWE through quantum and classic reductions,

respectively.

Lemma V.3 ([34], [30]). Let q(n) ∈ N, α(n) ∈ (0, 1), ε(n)
be a negligible function such that α ·q > 2

√
n. There exists a

PPT quantum reduction from solving α/2-BDDε in the worst
case (with overwhelming probability) to solving LWEq,α

using poly(n) samples.
If in addition q ≥ 2n/2, then there exists a classical

reduction from solving α/2-BDDε in the worst case (with
overwhelming probability) to solving LWEq,α using poly(n)
samples.

We note that the reason ε = negl(n) in the above Lemma

is to guarantee that the LWE samples generated during the

reduction are within neglible statistical distance from “true”

LWE samples.

We now establish a new result that relates BDD and

GapSPP. Our new observation is that the prover in the GGG

protocol (Algorithm 1) can be implemented by a BDD oracle.

Thus, if one has a BDD solver, one can solve the GapSPP
problem. We note that we only need the BDD oracle to

work for YES instances, and hence we require εY = negl(n)
while leaving εN = 1

poly(n) . More precisely, we have the

following lemma.

Lemma V.4. Let α(n) ∈ (0, 1), εY (n) ∈ negl(n) and εN ∈
1/ poly(n). There exists a PPT Turing reduction from solving√
n/α- GapSPPεY ,εN to solving α-BDDεY .

Proof: For convenience, we scale the
√
n/α-GapSPP

problem so that YES instances have ηεY (L) ≤ α/
√
n, and

NO instances have ηεN (L) > 1. Let B be an input of

the problem
√
n/α-GapSPP. We run the GGG protocol

as Algorithm 1 on input B, where the prover’s strategy

is implemented using the α-BDDεY solver. Then we output

the verifier’s decision.

Now we describe the analysis. For NO instances, by an

identical analysis to Theorem III.1, the above algorithm

rejects with probability at least εN/(1 + εN ) > 1/ poly(n).
For YES instances, we observe that the optimal prover’s

strategy can be emulated if ‖x‖ is less than the BDD decoding

distance α/ηεY (L) ≥
√
n. By the Gaussian tail bound as

Lemma II.1, we have Pr[‖x‖ ≥ √n] < e−Ω(n). Recall that

by Lemma III.4, in GGG protocol the verifier rejects the

optimal prover with probability 1 − γ1(V(L∗)) ≤ ρ2(L∗ \
0) ≤ εY . Thus, by a union bound the algorithm rejects with

probability at most εY + e−Ω(n) ≤ negl(n).

Putting together the above lemmas, we obtain a tighter

worse-case to average-case reduction from GapSPP to LWE.

Theorem V.5. Let q(n) ∈ N, α(n) ∈ (0, 1), εY (n) ∈
negl(n) and εN ∈ 1/ poly(n) such that α · q > 2

√
n.

There exists a PPT quantum reduction from solving 2
√
n/α-

GapSPPεY ,εN in the worst case (with overwhelming proba-

bility) to solving LWEq,α using poly(n) samples.
If in addition q ≥ 2n/2, then there exists a classical

reduction from solving 2
√
n/α- GapSPPεY ,εN in the worst

case (with overwhelming probability) to solving LWEq,α

using poly(n) samples.

Remark V.6. By using the following relation of shortest vec-

tors and smoothing parameters by Micciancio and Regev [26]:√
log(1/ε)√
πλ1(L∗) ≤ ηε(L) ≤

√
n

λ1(L∗) for ε ∈ [2−n, 1],

the above theorem implies that there exists a corresponding

PPT quantum/classical reduction from (c · n
α
√
logn

)-GapSVP
to LWEq,α for any constant c > 0.

VI. CO-AM PROTOCOL FOR GapSPP

In this section, we describe an co-AM protocol for

GapSPP. Formally, we establish the following:

Theorem VI.1. For any α ≥ 1/ poly(n) and εY , εN such
that εN ≥ (1 + 1/ poly(n)) · εY , we have (1 + α)-
GapSPPεY ,εN ∈ coAM.

By applying Corollary II.5, we obtain the following upper

bound on the complexity of γ-GapSPPε.

Corollary VI.2. For every ε : N→ (0, 1) such that ε(n) <
1− 1/ poly(n), we have (1 + o(1))-GapSPPε ∈ coAM.

Our main tool is the classic set size lower bound protocol

by Goldwasser and Sipser [21]. We use this protocol to show

that the smoothing parameter should be at least as large as

some quantity. To show that η(L) is large, equivalently we

are showing that the discrete Gaussian weights are large for

the points in L∗ inside the
√
n ball7. (The Gaussian weights

outside the ball becomes exponentially small.)

The set size lower bound protocol gives a very accurate

approximation of lattice points inside the
√
n ball, but its set

size is not sufficient to approximate the Gaussian weights.

The two points inside the ball could have lengths that differ

a lot, and thus their Gaussian weights differ even more. Our

new observation is that we can partition the
√
n ball into

different shells (con-centered at 0), and then use the set

size protocol to approximate the number of lattice points

lying in each shell. Since every point in the same shell has

roughly the same length and thus Gaussian weight, we can

approximate the total Gaussian weights in a shell according

to the size. Thus, summing up the Gaussian weight of each

shell, we are able to approximate the Gaussian weights inside

the
√
n ball. Thus, we are able to show that the Gaussian

weights inside the ball are large, and thus η is large.

First we describe the set size lower bound protocol:

Definition VI.3 (Set size lower bound protocol [21]).
Let V be a probabilistic polynomial time verifier, and P be

7Actually the radius needs to depend on the parameter εY . Here for
simplicity we think εY as a constant.
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a (computationally unbounded) prover. Let S ⊆ {0, 1}n be
a set whose membership can be efficiently certified. The two
parties hold common inputs 1n and K ∈ N.

We say 〈P,V〉 is a (1− γ)-approximation protocol of the
set size |S| if the following conditions hold:
• (Completeness) If |S| ≥ K, then V will always accept.
• (Soundness) If |S| < (1 − γ) · K, then V will accept

with probability at most negl(n) for some negligible
function negl(·).

Now we recall the classic construction of the set size lower

bound protocol:

Theorem VI.4 ([21]). For any set S ∈ {0, 1}n whose mem-
bership can be efficiently certified, and any γ = 1/ poly(n),
there exists a public-coin, 2-round (1 − γ)-approximation
protocol of the set size |S|.

Moreover, for any k = poly(n), we can run the protocol k-
times in parallel for k set-number pairs {(Si,Ki)}i∈[k], and
the resulting protocol has perfect completeness and negligible
soundness error. Here soundness error means the probability
that there exists some i∗ ∈ [k] such that |Si| ≤ (1− γ) ·Ki

but V accepts.

Proof of Theorem VI.1: To show the theorem, we first

describe a coAM protocol 〈P,V〉 in the following. Note that

the verifier in a coAM protocol must accept the NO instances

and reject the YES instances of (1 + α)-GapSPPεY ,εN . For

convenience, the YES or NO instances here are with respect

to the GapSPP problem, so the completeness means the

verifier accepts any NO instance, and the soundness means

he rejects any YES instance.

Let B be an n-dimensional basis of a lattice L as input to

the prover and verifier, satisfying either ηεN (L) ≥ (1 + α)
(NO instance) or ηεY (L) ≤ 1 (YES instance), where α ≥
1/ poly(n), εN ≥ (1+ 1/ poly(n)) · εY . The prover and the

verifier agree on the following parameters:
Parameters.: Let R = n · (1 + log(1/εY )), 1 −

β = 2εY
εY +εN

, and let T = � log
√
R

log(1+α)�. We know for

α ≥ 1/ poly(n) being noticeable, we have T bounded

by some polynomial, i.e. T ≤ poly(n). Then we de-

fine spaces S0
def
= {v ∈ L∗ : 0 < ‖v‖ ≤ 1}, and Si

def
={

v ∈ L∗ : (1 + α)i−1 < ‖v‖ ≤ (1 + α)i
}

, for i ∈ [T ]. Pic-

torially, these Si’s form a partition of space inside the region

of
√
RBn

2 . Each Si is a shell that contains lattice points from

length (1 + α)i−1 to (1 + α)i.
Then 〈P,V〉 does the following:

• P sends K0,K1,K2, . . .KT ∈ N as claims of the sizes

of S0, S1, S2, . . . , ST .

• Then for each pair (Si,Ki), P and V run the (1 −
β)-approximation protocol as its subroutine. These T
approximation protocols are run in parallel. Note that

2εY
εY +εN

≤ 1−1/ poly(n) since εN ≥ (1+1/ poly(n)) ·
εY . Thus, 1− β ≤ 1− 1/ poly(n), which is within the

range of parameters of the set size lower bound.

• In the end, V accepts if and only if all the approxi-

mation subprotocols are accepted, and
∑

0≤i≤T Ki ·
e−π(1+α)2i ≥ (εY + εN )/2.

It is easy to see that the verifier can be implemented

in probabilistic polynomial time. The analysis of complete-

ness and soundness follow by directly examing the above

algorithm. We present it in the full version of this paper.

VII. DETERMINISTIC ALGORITHM FOR SMOOTHING

PARAMETER

In this section we show that (1 + o(1))-GapSPP can be

solved deterministically in time 2O(n). In particular we are

able to show the following theorem.

To show the theorem, use are going to establish the

following lemma.

Theorem VII.1. For any εY , εN : N → [0, 1] such
that εN (n) − εY (n) ≥ 1/2−2n, 1-GapSPPεY ,εN ∈
DTIME (2O(n)).

Together with Corollary II.5, we are able to obtain the

following corollary.

Corollary VII.2. For any ε : N → [0, 1] and ε(n) ≥ 2−n,
the problem (1 + o(1))-GapSPPε ∈ DTIME (2O(n)).

We will crucially use the following lattice point enumer-

ation algorithm. The algorithm is a slight tweak of closest

vector problem algorithm of Micciancio and Voulgaris [28],

which was first used in [14] to solve the shortest vector

problem in general norms.

Proposition VII.3 ([28], [14], Algorithm Ball-Enum).
There is an algorithm Ball-Enum that given a radius r > 0,
a basis B of an n-dimensional lattice L, and t ∈ R

n, lazily
enumerates the set L ∩ (rBn

2 + t) in deterministic time
2O(n) · (|L ∩ (t+ rBn

2 )|+ 1) using at most 2O(n) space.

Using the above theorem, it is easy to prove Theorem

VII.1. We defer the proof in the full version of this paper.
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