Decomposition Methods for Linear Support Vector
Machines

Kai-Min Chung, Wei-Chun Kao, Chia-Liang Sun, and Chih-Jen Lin
Department of Computer Science and
Information Engineering
National Taiwan University
Taipei 106, Taiwan

cjlin@csie.ntu.edu.tw

Abstract We explain that decomposition methods, in particular, SMO-type al-
gorithms, are not suitable for linear SVMs if there are more data than attributes.
To remedy this difficulty, we consider a recent result by Keerthi and Lin (2003)
that for an SVM with data not linearly separable, after C' is large enough, the
dual solutions are at similar faces. Motivated by this property, we show that al-
pha seeding is extremely useful for solving a sequence of linear SVMs. It largely
reduces the number of decomposition iterations to the point that solving many
linear SVMs requires less time than the original decomposition method for one
single SVM. We also conduct comparisons with other methods which are efficient
for linear SVMs, and demonstrate the effectiveness of the proposed approach for

helping the model selection.

1 Introduction

Solving linear and non-linear support vector machines (SVM) have been consid-
ered two different tasks. For linear SVM without too many attributes in data
instances, people have been able to train millions of data (e.g. (Mangasarian and
Musicant 2000)); but for other types of problems, in particular, non-linear SVMs,
the requirement of huge memory as well as computational time has prohibited
us from solving very large problems. Currently, the decomposition method, a
specially designed optimization procedure, is one of the main tools for non-linear
SVMs. In this paper, we show that existing decomposition methods, in particular

SMO-type algorithms, are not suitable for linear SVMs. To remedy this difficulty,



motivating from Theorem 3 of (Keerthi and Lin 2003), we develop effective strate-
gies so that decomposition methods become efficient for solving linear SVMs.

First, we briefly describe linear and non-linear SVMs. Given training vectors
zr; € R"i=1,...,l, in two classes, and a vector y € R' such that y; € {1,—1},
the standard SVM formulation (Cortes and Vapnik 1995) is as follows:

l
1
{Unglﬁl §wTw +C ; &
subject to  yi(wl ¢(x;) +b) > 1— &, (1.1)

&>04i=1,...,1

If ¢(x) = x, usually we say (1.1) is the form of a linear SVM. On the other hand,
if  maps x to a higher dimensional space, (1.1) a non-linear SVM.
For a non-linear SVM, the number of variables depends on the size of w and

can be very large (even infinite), so people solve the following dual form:

1
min éaTQa —e’a (1.2)

subject to  y'a =0, (1.3)

0<a; <C,i=1,...,1,

where @ is an [ X [ positive semi-definite matrix with Q;; = yiy;(z:)T d(z;), e is
the vector of all ones, and K (z;,z;) = ¢(z;)T¢(z;) is the kernel function. (1.2) is
solvable because its number of variables is the size of the training set, independent
of the dimensionality of ¢(z).

The primal and dual relation shows

w= Z ;i p(:) (1.4)

SO
!
sgn(w’ ¢(z) +b) = Sgn(z oy K (zi,z) +b)
i=1
is the decision function.
Unfortunately, for large training set, () becomes such a huge dense matrix
that traditional optimization methods cannot be directly applied. Currently, some

specially designed approach such as decomposition methods (Osuna, Freund, and

2



Girosi 1997; Joachims 1998; Platt 1998) and finding the nearest points of two
convex hulls (Keerthi, Shevade, Bhattacharyya, and Murthy 2000) are major ways
of solving (1.2).

On the other hand, for linear SVMs, if n < [, w is not a huge vector variable
so (1.1) can be solved by many regular optimization methods. As at the optimal
solution & = max(0,1 — y;(wlz; + b)), in a sense we mainly have to find out w
and b. Therefore, if the number of attributes n is small, there are not many main
variables w and b in (1.1) no matter how large the training set is. Currently, on
a normal computer, people have been able to train a linear SVM with millions
of data (e.g. (Mangasarian and Musicant 2000)); but for a non-linear SVM with
much fewer data, we already need more computational time as well as computer
memory.

Therefore, it is natural to ask whether in an SVM software linear and non-
linear SVMs should be treated differently and solved by two methods. It is also
interesting to see how capable non-linear SVM methods (e.g. decomposition meth-
ods) are for linear SVMs. Here, by linear SVMs we mean those with n < [. If
n > 1, the dual form (1.2) has fewer variables than w of the primal, a situation
similar to nonlinear SVMs. As the rank of @ is less than or (usually) equal to
min(n,!), the linear SVMs we are interested in here are those with low-ranked Q.

Recently, in many situations, linear and non-linear SVMs are considered to-
gether. Some approaches (Lee and Mangasarian 2001; Fine and Scheinberg 2001)
approximate non-linear SVMs by different problems which are in the form of lin-
ear SVMs (Lin and Lin 2003; Lin 2002) with n < [. In addition, for non-linear
SVM model selection with Gaussian kernel, (Keerthi and Lin 2003) proposed an
efficient method which has to conduct linear SVMs model selection first (i.e. lin-
ear SVMs with different C). Therefore, it is important to discuss optimization
methods for linear and non-linear SVMs at the same time.

In this paper, we focus on decomposition methods. In Section 2, we show that
existing decomposition methods are inefficient for training linear SVMs. Section
3 presents our new strategy of training linear SVMs via decomposition methods,
which is hundred or thousand times faster. The proposed method is compared

with existing linear SVM methods in Section 4. We then, in Section 5, apply the



heart_scale
1e+06 T

100000

10000 ¢

Iterations

1000

100 ! ! ! ! !
-8 6 -4 -2 0 2 4 6 8

log(C)

Figure 1: Number of decomposition iterations for solving SVMs with linear (the
thick line) and RBF (the thin line) kernel.

new implementation to solve a sequence of linear SVMs required for the model
selection method in (Keerthi and Lin 2003). Final discussion and concluding

remarks are in Section 7.

2 Existing Decomposition Methods for Linear
SVMs with n <[

The decomposition method is an iterative procedure. In each iteration, the index
set of variables is separated to two sets B and N, where B is the working set. Then
in that iteration variables corresponding to N are fixed while a sub-problem on
variables corresponding to B is minimized. If ¢ is the size of the working set B, in
each iteration, only ¢ columns of the Hessian matrix () are required. They can be
calculated and stored in the computer memory when needed. Thus, unlike regular
optimization methods which usually require the access of the whole @), here, the
memory problem is solved. Clearly, decomposition methods are specially designed
for nonlinear SVMs. In this section, we discuss issues when they are applied to

solve linear SVMs.

2.1 Slow Convergence

Unlike popular optimization methods such as Newton or quasi-Newton which en-

joy fast convergence, decomposition methods converges slowly as in each iteration



only very few variables are updated. We will show that the situation is even worse
when solving linear SVMs.

It has been demonstrated (e.g. (Hsu and Lin 2002b)) by experiments that
if C' is large and the Hessian matrix ¢) is not well-conditioned, decomposition
methods converge very slowly. For linear SVMs, if n < [, then @) is a low-rank
matrix which is not well-conditioned. When C is large, we can see the number
of decomposition iterations dramatically increases. The situation is much worse
than that for non-linear SVMs. In Figure 2.1, we demonstrate a simple example
by using the problem heart from the statlog database (Michie, Spiegelhalter, and
Taylor 1994). Each attribute is scaled to [—1, 1]. We use LIBSVM (Chang and Lin
2001b) to solve linear and nonlinear (RBF kernel, e~lli=2:l*/(27%) with 1/(202) =
1/n) SVMs with C = 2782775 .. 2% and present the number of iterations.
Though two different problems are solved (in particular, their @;;’s are in different
ranges), Figure 2.1 clearly indicates the huge number of iterations for solving the
linear SVMs. In the following, we give some theoretical explanation about this
difficulty.

For problems which are not linearly separable, (Keerthi and Lin 2003) proved

the following result:

Theorem 1 There exists a finite value C* and (w*,b*) such that (w,b) = (w*, b*)
solves (1.1) after C > C*. In addition, 22:1 & is a constant after C > C*.

Therefore, after C > C*, a’Qa = ww becomes a constant. Since jw w +
C’Zizl & =¢ela— 1 a’Qa , after C > C*, —aTQa e« is a linear decreasing
function of C.

It has been shown in (Lin 2001) that, under some conditions, a commonly
used decomposition method is linearly convergent. That is, if o* is a dual optimal
solution and o is the solution at the kth iteration, then there isa 0 < A < 1 such

that after k is large enough

%(Ozk+1)TQOék+1 . eTak—i-l . (%(a*)TQa* o CTCL’*)
< A" Qa* — ¥ — (5(a)"Qa - ¢"a)) 2.1)

Therefore, using the zero vector as the initial point, the smaller the optimal value

is, more decomposition iterations are needed.

5



When C is large, 1a”Qa — eTa decreases linearly with C. Though linear
SVMs with n < [ do not satisfy the assumptions in (Lin 2001), if (2.1) still holds,
the linear decrement of objective value results in the difficulty that the number of
decomposition iterations may increase linearly.

Furthermore, (Lin 2001, Section 4) explains that the linear convergence rate,
the reciprocal of A in (2.1), is relatively smaller than that of non-linear SVMs
whose kernel matrices are well-conditioned. This indicates that decomposition

methods is inherently not suitable for linear SVMs due to its slow convergence.

2.2 Special Implementation for Linear SVMs

Though we have shown a disadvantage of using decomposition methods for linear
SVMs, for practical implementations, we can apply some special properties of
linear SVMs to speed up each iteration.

Most decomposition implementations maintain the gradient vector of the dual
objective function during iterations. It is used for selecting the working set or
checking the stopping condition. We usually calculate the gradient QQav — e by the
following way: Suppose of*! and oF are solutions of two consecutive decomposi-
tion iterations,

Qo™ —e = Qaf — e+ Q(aF — oF).

+1 only ¢ components are changed, Q(a*™! — o*) involves

Since from of to o*
with ¢ columns of the matrix (). For a non-linear SVM where @) is too large to be
stored in the computer memory, the calculation of lg kernel elements becomes the
main computational cost in each decomposition iteration. If each kernel evaluation
requires O(n) operations, O(Ing) is the complexity of each iteration.

However, for linear SVMs,
Qa*t! — a¥) = XT(X(a*! — o),

where X = [y171,...,% 1] is an n by [ matrix. Thus, X (af™! —a*) involves O(nq)
operations and X7 (X (a*™! — o*)) needs O(in). Therefore, O(Inq) operations are
largely reduced to O(In).

The first decomposition software which implements this for linear SVMs is

SVM"gt (Joachims 1998). Another implementation is BSVM (Hsu and Lin 2002b).

6



However, for SMO implementations where ¢ = 2, the main cost of each it-
eration is only reduced by half. From this aspect, SMO type implementations
are particular not suitable for linear SVMs. In other words, using a larger g, the
cost on updating the gradient is the same but the number of iterations is smaller.
Thus, we should increase ¢ until the cost of solving the sub-problem (usually

O(q®)) becomes a dominant part.

3 Alpha Seeding for Linear SVMs

Results in (Keerthi and Lin 2003) show the following properties of the dual linear
SVM:

There is C* such that for all C' > C*, there are optimal solutions at the same
face. In addition, for all C' > C*, the primal solution w is the same. The definition
that two points are on the same face is as follows:

Let a! be a feasible vector of (1.2) for C = C; and o? be a feasible vector of
(1.2) for C = C,. We say that o' and o? are on the same face if the following hold:
@) {il0<a; <Ci} ={i|0<af <Co}; (ii) {i | o = C1} = {i| of = Co}; and,
(iii) {7 | o} = 0} = {i | a? = 0}. Therefore, a face means a partition of {1,...,}
to three sets where corresponding components of « are free, upper-bounded, and
lower-bounded.

Based on these properties, we conjecture that for large C, optimal solutions are
at similar faces. Therefore, if o' is an optimal solution at C = Cj, then o'Cy/Cy
can be a very good initial point for solving (1.2) with C' = C5. This technique,
called alpha seeding, was originally proposed for SVM model selection (DeCoste
and Wagstaff 2000) where several (1.2) with different C' have to be solved.

Earlier work which focus on nonlinear SVMs mainly use alpha seeding as a

heuristic. Now for linear SVMs, o!C, /C1 is at the same face as al

so most likely
it is at a similar face of one optimal solution of C' = (5. This strongly supports
its use as the initial solution.

Next, we conduct some comparisons between the proposed and the original
implementations. Here, we consider two-class problems only. Some statistics of
the data sets used are in Table 3.2. The four small problems are from the statlog

collection (Michie, Spiegelhalter, and Taylor 1994). The problem adult is compiled

7



by Platt (1998) from the UCT “adult” data set (Blake and Merz 1998). Problem
web is also from Platt. Problem ijcnn is from the first problem of IJCNN challenge
2001 (Prokhorov 2001). Note that we use the winner’s transformation of the raw
data (Chang and Lin 2001a).

We train linear SVMs with C' = [278,2775 ... 28], That is, [278,28] is dis-
cretized to 33 points with equal ratio. Table 3.1 presents the total number of
iterations of training 33 linear SVMs using the alpha seeding approach. We
also individually solve them by LIBSVM and list the number of iterations (to-
tal, C = 25 and C = 28). The alpha seeding implementation, based on LIBSVM,
will be described in detail in Section 4. For the new approach, we also list the
approximate C* for which linear SVMs with C > C* have the same decision
function. In addition, the constant w”w after C > C* is also given. For some
problems (e.g. web and adult), wTw has not reached a constant until C is very
large so we indicate them as “unstable” in Table 3.1.

It can be clearly seen that the alpha seeding approach performs so well to
the point that its total number of iterations is much less than solving one single
linear SVM with the original decomposition implementation. Therefore, even if
we intend to solve one linear SVM with a particular C, using the proposed alpha
seeding method starting from a smaller C' may be more efficient.

Our experimental results indicate that the slow convergence of decomposition
methods causes a huge number of iterations for changing some initial zero com-
ponents to the upper bound C. On the other hand, the new approach starts from
a small C' where an optimal solution can be easily obtained. Then, as the next C'
is only slightly increased, the optimal solution face is not changed much. Hence,
using the previous solution multiplied by the increase of C as an initial point, the
saving on the number of iterations is dramatic. Furthermore, since we have solved
linear SVMs with different C', model selection by cross-validation is already done.
To be more precise, we can randomly separate data to different folds first. If one
fold is singled out as the validation set, we sequentially train the rest and predict
the validation set using different C'

To demonstrate that alpha seeding is much more effective for linear than non-

linear SVMs, Table 3.2 presents the number of iterations using the RBF kernel



K(z;,z;) = e l#=2l/(20%) with 1/20% = 1/n. Tt can be clearly seen that the
saving of iterations by using alpha seeding is marginal. In addition, comparing to
the “total iter.” column in Table 3.1, we confirm again the slow convergence for
linear SVMs if without alpha seeding.

To further justify the alpha seeding approach for linear SVMs, we prove the

following theorem:

Theorem 2 Assume that any two parallel hyperplanes in the feature space do not

contain more than n + 1 points of {x;} on them. We have

1. For any optimal solution of (1.2), it has no more than n+1 free components.

2. There is C* such that after C > C*, all optimal solutions of (1.2) share at

least the same | —n — 1 upper and lower-bounded o variables.

The proof is in Appendix A. This result indicates that if n < [, starting
from small C, most components of optimal solutions are at bounds. From any
C; to Cy, even if all free components are different, two solutions share at least
[ — 2(n + 1) bounded variables. If Cy is not far away from Cj, it is less likely
that an upper-bounded (lower-bounded) component at C; becomes lower-bounded
(upper-bounded) at C,. Thus, it is highly possible that the initial solution by
alpha seeding has correctly identify at least [ —2(n + 1) components of an optimal
solution.

Theorem 2 also helps to explain why web is the most difficult problem for
results in Table 3.1. Its large number of attributes might lead to more free variables
during iterations or at the final solution. Thus, alpha seeding is less effective.

Another result which supports the use of alpha seeding is the following theo-

rem:

Theorem 3 There are two vectors A, B, and a number C* such that for any

C > C*, AC + B is an optimal solution of (1.2).

The proof is in Appendix B. This theorem extends the result in (Keerthi and Lin
2003) which shows only that for any C' > C*, there are optimal solutions a which
form a linear function of C on the interval [C*, C]. Clearly 4; >0, fori=1,...,1,

so we can consider the following three situations of vectors A and B:

9



Table 3.1: Comparison of iterations (linear kernel); with and without alpha seed-
ing.

a-seeding without a-seeding
Problem #iter C* wlw | #total iter  #iter(C' = 27°)  #iter(C = 2°)
heart 27231 235 5.712 2449067 507122 737734
australian 79162 225 2.071 20353966 3981265 5469092
diabetes 33264 26:5 16.69 1217926 274155 279062
german 277932 210 3.783 42673649 6778373 14641135
web 24044242 unstable unstable > 108 74717242 > 108
adult 3212093 unstable unstable > 108 56214289 84111627
ijcnn 590645 26 108.6 41440735 8860930 13927522

Table 3.2: Comparison of iterations (RBF kernel); with and without alpha seeding.

Problem l n | a-seeding | without a-seeding
heart 270 | 13 43663 56792
australian 690 | 14 230983 323288
diabetes 768 8 101378 190047
german 1000 | 24 191509 260774
web 49749 | 300 633788 883319
adult 32561 | 123 2380265 4110663
ijcnn 49990 | 22 891563 1968396

2. AZ:O,BZZO,
3. 4;=0,B; > 0.

For the second case, a102 = A;Cy 4+ B; = 0. For the first case, A;C > B; after
C is large enough. Thus, alcz = A;Cy + B; %22 ~ A;Cy + B;. Using Theorem 2,
there are few (< n + 1) components satlsfymg the third case. This analysis also

shows the effectiveness of using alpha seeding.

4 Implementation

Though the concept is so simple, to have an efficient and elegent implementation,

there are many considerations. In this section, we will have detailed discussions.

10



4.1 Stopping Condition of Alpha Seeding

Remember that there is C* such that after C' > C*, the optimal w is the same.
Though C* is not known a priori, if a linear SVM with C' > C* is already solved,
it is possible to stop the alpha seeding procedure earlier. As w’w is an increasing
function of C' (e.g. using a similar proof as Lemma 4 of (Chang and Lin 2001c)), we
may think that checking whether w?w becomes a constant is an effective method.
Our experience indicates that in general it is. However, some concerns remain as

follows:

1. As wTw is not strictly increasing, it is possible that wTw is a constant on

an interval of C' and start to increase later.

Tw = aTQa is a constant after C' is large enough. As we solve the

2. Now w
dual problem whose optimal « contains large components, the numerical
error on calculating o’ Qo may not be negligible. Note that though o has
large values, o’ Qa can be quite small. For example, problem australian has
C* at around 4 but after C > C*, w'w = 2.071, a small number. We find
out that if only single precision is used for kernel evaluations, the obtained

wTw can be erroneous.

Therefore, as the proposed procedure is very efficient, simply specifying a range

of C' and directly solving them may be more reliable in practice.

4.2 Initial Gradient

Though the proposed approach largely reduces the number of iterations, if we
directly solve the sequence of linear SVMs using existing software, the computa-
tional time can be still huge. The main efforts will be on calculating the initial
gradient QQa — e. Existing implementations start from zero so the initial gradient
—e is easily obtained. Now the initial @ may have many nonzero elements. To
handle this bottleneck, roughly we can consider two types of implementations:

with or without gradient reuse:

1. If « is the final solution of the linear SVM with C' = C}, then the gradient
of using aCy/C} as initial solution for C = Cy is (Cy/C1)Qa — e. In other

11



words, the final gradient of solving the previous linear SVM can be easily
used for finding the initial gradient of the next linear SVM. We refer to it

the “gradient reuse” strategy.

2. As we are solving linear SVMs, Qa = X7 (X a) can be efficiently obtained
in O(In) time. This plays a small part of the whole decomposition method

provided n < [.

The difference of the two approaches on the training time is generally small.
However, the first approach requires an additional array to convey QQa from one
SVM to another.

4.3 With or Without Cache

For nonlinear SVMs, storing recently used @);; in cache can save many kernel
evaluations. As mentioned in Section 2, if ¢ components of a are updated and the
corresponding ¢ columns of () are available, the computational cost for updating
the gradient is reduced to O(lq) from O(lgn). As the change of C' does not affect
the kernel matrix, we can pass the cache of solving the previous SVM to the next
one. On the other hand, cache may not be needed as Section 2 has also said that
for linear SVMs, using Q(a*™' — o) = XT(X(a*™! — ak)), the cost is O(In).
In the following we discuss some possible advantages and disadvantages of using

cache:

1. If ¢ < n, and problems are small, the whole kernel is cached so the program

is n/q times faster.

2. As we expect that solutions are at similar faces, cache left from solving the

provious linear SVMs can be very useful for the next problem.

3. If one of the ¢ columns is not available in the cache, O(In) time is already
needed to construct this column. This can happen very often for large
problems. In the worst case, the cost can be O(lgn), ¢ times higher than
without using the cache. In other words, the cache is associated with the
matrix ¢) so we cannot take the advantage of linear SVMs. This clearly

shows for large linear problems, cache should not be used.

12



4. Retaining cache from solving one problem to another certainly complicates
the implementation. For example, shrinking may have cause cached columns
to have different length. Thus, we must be careful on passing the cache to

another problem.

4.4 Overall Considerations

Above discussions lead us to conclude that:

1. Implementation of decomposition methods for linear and nonlinear SVMs

are quite different. We should consider them separately in some sense.

2. The implementation of alpha seeding for linear and nonlinear SVMs are also
different. For nonlinear SVMs, gradient reuse for the initial calculation is a

must but linear SVMs do not necessarily have to do so.

Here, we implement the simplest way: without gradient reuse and without
cache. It may not be particularly efficient for small problems but is very compet-

itive with other options for large problems.

5 Comparison with Other Approaches

Table 5.1: Comparison of different approaches for linear SVMs (time in second;
q: size of the working set of decomposition methods).

Decomposition methods with alpha seeding | Methods for linear SVMs

g =2 (LIBSVM) g =30 (BSVM) ASVM LSVM

problem | total iter. time | total iter. time time time
australian 79162 2.87 145 0.85 3.79 0.83
heart 27231 0.39 65 0.14 0.40 0.39
diabetes 33264 1.48 118 0.3 0.73 0.86
german 277932 21.43 144 0.65 2.80 3.50
ijcnn 590645 | 1119.99 1409 46.71 | 215.37 633.66
adult 3212093 | 1123.18 129440 153.52 | 896.56 4605.17
web 24044242 | 4154.53 1559664 | 1140.09 | 4277.12 44468.48

It is interesting to compare the proposed approach with other methods. In

particular, there are approaches which are mainly suitable for linear SVMs. In

13



this section, we consider Active SVM (ASVM) (Mangasarian and Musicant 2000)
and Lagrangian SVM (LSVM) (Mangasarian and Musicant 2001).

LIBSVM, the software used in Section 3, implements an SMO-type decompo-
sition method where in each iteration two variables are updated. For problems
with more free variables at final solutions, many such updates (i.e. iterations)
are needed. We suspect that a decomposition method with a larger working set
can finish in even fewer iterations. Thus, here we implement the alpha seeding
apporach in another decomposition software BSVM (Hsu and Lin 2002b) which
allows an arbitrary size of the working set.

However, BSVM, ASVM, and LSVM all solve slightly different formulations
from (1.1). Thus, it is very difficult to conduct a fair comparison. Our goal
here is only to demonstrate that decomposition methods, which are originally
unsuitable for solving linear SVMs, can be competative with other linear-SVM
methods, using the proposed implementation. In the following we briefly describe
the three implementions.

BSVM modifies the objective function of (1.1) to be

!
1
min E(wT’wﬁ-bQ) +CZ&.

’I.U,b,
¢ i=1

Then, the dual problem does not have the linear constraint y“a = 0. Its working
set selection is slightly different from that of LIBSVM and SV M9 Details are
in (Hsu and Lin 2002b).

ASVM and LSVM both consider a square error term in the objective function:

!
: Lo 7 2 2
min §(w w+b)+C’E & (5.1)

7b7
wib i1

With b% included as well, the dual problem of (5.1) is

1 1
mgn éaT(Q +yy’ + %)a —efa (5.2)

subject to 0<a;, 1=1,...,L,

where I is the identity matrix. The solution of (5.2) has far more free components

than that of (1.2) as upper-bounded variables of (1.2) are likely to be free now.

14



The optimality condition of (5.2) is very simple: for any «; of a final solution,

either

a; >0 and (Qa);—1=0or
;=0 and (Qa); —1>0,

where Q = (Q +yy” + %) ASVM iteratively guesses more variables to be at zero:
if o* is the solution of the kth iteration, they define

B¥={i|af >0}

and solve

01?:51 = (Q];ineBkh—: (5.3)
where (-), = max(-,0). Other elements of o**! (i.e., of*?, i ¢ B*) are kept zero.
Thus, o**1 contains more zero variables than o. If o* is already at a correct face,
the solution of (5.3) is optimal. However, such guessing may be wrong sometimes.
Additional checks and corrections are required and the whole procedure is more
complicated. The matrix inversion in (5.3) is very difficult when B* is {1,...,1}
in the beginning. However, for linear SVMs with n < [, using Sherman-Morrison-
Woodbury (SMW) formula and @ = X X7, we only have to invert a smaller n by
n matrix.

LSVM is an iterative procedure where

ot = Q7 e+ ((Qa* —e) — pa®),), (5.4)
and Q = (Q +yyT + %) The parameter y is chosen to satisfy

1
o< u< —.
NG

Here, following (Mangasarian and Musicant 2001), we choose it as %. The same
paper also proves that (5.4) linearly converges to the solution of (5.2). Similar to
ASVM, the matrix inversion in (5.4) is difficult for non-linear SVMs but is easy
for linear SVMs with n < [.

We try to use similar stopping criteria for the four approaches. If f(«) is the

objective function, the stopping condition of LIBSVM is

max{—y;Vf(a); |yi=1,0s <Cory, =—1,a; >0} —
min{—y;Vf(a); |vi= -1, <Cory;=1,a; >0} <, (5.5)

15



where € = 0.001. This is from the Karush-Kuhn-Tucker (KKT) condition (i.e. the
optimality condition) of (1.2): « is optimal if and only if « is feasible and there

is a number b and two nonnegative vectors A and p such that

)\iaizo,ui(C—a)i:O,)\iZO,MiZO,izl,...,l,

where Vf(a) = Qa — e is the gradient of f(a), the objective function of (1.2).
This can be rewritten as

Vfi(a); +by; <0 ifa; >0,

Vfi(a);+by; >0 ifa; <C.
Using y; = +1 and reformulating (5.6) as upper and lower bounds of b and intro-

ducing a stopping tolerance 0.001, we have (5.5). For BSVM, without the linear

constraint yTa = 0, (5.5) can be simplified to

max V f(a); — min V f(a); <e. (5.6)

a; >0 a; <C

For ASVM, the a; < C constraints are removed so (5.6) is further reduced to

max V f(«a); — miin Vf(a); <e. (5.7)

a;>0
However, (5.7) is not suitable for LSVM as it does not keep «; > 0 throughout all
iterations. Thus, we modify (5.7) to be

Vf(a); —minV(a); <
o VI (@ TV 5 €

and
a; > —e/100, Vi,

where € = 0.001, as the stopping condition of LSVM. This has been used in
(Lin and Lin 2003) which implements LSVM for solving Reduced SVM (Lee and
Mangasarian 2001).

Table 5.1 presents a comparison of the four implementations. We use the same
benchmark problems as in Section 3. The computational experiments were done
on a Pentium III-1000 with 1024MB RAM using the gcc compiler.

16



For each problem, 33 linear SVMs with C' = 278,2775 ... 28 are solved. In
addition to the total computational time, we also list the number of iterations
of the two decomposition implementations. Clearly for problems with small n,
for each C, BSVM takes very few iterations. The computational time is also
less than that of LIBSVM. This is consistent with our earlier statement that for
linear SVMs, SMO-type decomposition methods are less favorable than general
decomposition methods with larger working sets.

Since alpha seeding is not applied to ASVM and LSVM, we admit that their
computational time can be improved. Results here also serves as the first com-
parison between ASVM and LSVM. Clearly ASVM is faster. Moreover, due to the
huge computational time, we set the maximal iterations of LSVM to be 1,000. For
problems adult and web, after C is large, the limit of iterations is reached before
stopping conditions are satisfied.

We set the size of the working set of BSVM to be 30. The code of BSVM follows
from the same structure of LIBSVM so the timing comparison really reflects their
algorithmic difference. For ASVM, we directly use the authors’ C++ implemen-
tation available at http://www.cs.wisc.edu/dmi/asvm. The authors of LSVM
provide only MATLAB programs so we implement it by modifying LIBSVM. We
must exercise the caution that quite a few implementation details affect the com-
putational time. For example, each iteration of ASVM and LSVM involves several
matrix-vector multiplications. Hence, it is possible to use finely-tuned dense lin-
ear algebra subroutines. For the LSVM implementation here, by using ATLAS
(Whaley, Petitet, and Dongarra 2000), for large problems, the time is reduced
by two third. Thus, it is possible to further reduce the time of ASVM in Table
5.1 though we find it too complicated to modify the authors’ program. Using
such tools also means X is considered a dense matrix. On the other hand, for
LIBSVM and BSVM where each iteration requires two matrix-vector multiplica-
tions X (X7 (a**! — a*)), currently X is considered a sparse matrix. This creates

some overheads when data are dense.

17



6 Experiments on Model Selection

If the RBF kernel

K(zi,3;) = e-lo-ss17/@0%

is used, (Keerthi and Lin 2003) proposes the following model selection procedure

for finding good C and o?:
Algorithm 1 Two-line model selection
1. Search for the best C' of linear SVMs and call it C.

2. Fiz C from step 1 and search for the best (C, 0?) satisfying logo? = log C —
log C' using the RBF kernel.

That is, we solve a sequence of linear SVMs first and then a sequence of nonlinear
SVMs with the RBF kernel. The advantage of this approach over an exhausted
search of the parameter space is that only parameters on two lines are considered.
If the same decomposition method is used for both linear and nonlinear SVMs
here, due to the huge number of iterations, solving the linear SVMs becomes the
bottleneck. Our goal in this section is to show that using the new approach for
linear SVMs, the computational time spent on the linear part becomes similar to
that on the nonlinear SVMs.

Earlier in (Keerthi and Lin 2003), due to the difficulty on solving linear SVMs,
only small two-class problems are tested. Here, we would like to evaluate this ap-
proach on large multi-class datasets. We consider problems: dna, satimage, letter,
and shuttle. They were originally from the statlog collection (Michie, Spiegelhal-
ter, and Taylor 1994) and were used in (Hsu and Lin 2002a). Except problem dna
which has binary attributes, we scale all training data to be in [—1, 1]. Then, test
data are adjusted using the same linear transformation.

We search for C' by five-fold cross-validation on linear SVMs using uniformly
spaced log, C' value in [—10,10] (with grid space 1). As LIBSVM considers v =

1/20? as the kernel parameter, the second step is to search for good (C,+) satis-
fying

—1 —log,y = log, C — log, C. (6.1)

18



We discretize [—10,4] as values of log,~y and calculate log, C' from (6.1). To
avoid that log, C locates in an abnormal region, we consider only points with
—2 < log, C' < 12 so the second step may solve less SVMs than the first step.
The implementation is modified from the python interface of LIBSVM (Chang and
Lin 2001b). The same computational environment as that for Section 5 is used.

Since this model selection method is based on the analysis of binary SVMs, a
multi-class problem has to be decomposed to several binary SVMs. We employ the
so called “one-against-one” approach: if there are k classes of data, we consider
all k(k — 1)/2 combinations of any two classes. For any two classes of data, the
model selection is conducted to have the best (C, o). With the k(k—1)/2 decision
functions, a voting strategy is used for the final prediction. Note that now each
decision function has its own (C,¢?). In Table 6.1, we compare this approach with
a complete grid search. For any two classes of data, five-fold cross-validation is
conducted on 225 points, a discretization of the (log, C,log, v) = [-2, 12| x [-10, 4]
space. This is different from the cross-validation procedure adopted by LIBSVM
where a list of (C,0?) is selected first and then for each (C,0?), one-against-one
method is used for estimating the cross-validation accuracy of the whole multi-
class data. Therefore, for the final optimal model, k(k — 1)/2 decision functions
share the same C and o?. Clearly, methods not based on the analysis of binary
SVMs can take both approaches. The complete grid search by cross-validation
is an example. Since the same number of nonlinear SVMs are trained, the time
for the two complete grid searches is exactly the same but the performance (test
accuracy) may be different. Since there is no comparison so far, we also present a
preliminary investigation here.

Table 6.1 presents experimental results. For each problem, we compare test ac-
curacy by two complete grid searches and the model selection method by Keerthi
and Lin. The two grid searches are represented as “1 (C,0?)” and “k(k —
1)/2 (C,a?),” respectively in Table 5.1 depending on how many (C, o?) used by
the decision functions. The performance of the three approaches are very similar.
However, the total model selection time of the method by Keerthi and Lin is much
shorter. We achieve this because of using the alpha seeding. Otherwise, time for

solving linear SVMs is a lot more so the proposed model selection does not possess

19



any advantage.

We then investigate the stability of the new model selection approach. Due
to timing restriction, we consider two smaller problems banana and adult_small
tested in (Keerthi and Lin 2003). Note that the adult_small is a subset of the
adult used in Section 3. It is a binary problem with 1,605 examples. Table 6.2
shows the means and standard deviations of parameters and accuracies using
10-time the “k(k — 1)/2 (C,0?)” grid search and the method by Keerthi and
Lin, respectively. For the two-line method, we list only C’s variances because
the variances of parameters C' and o2, which are computed from (6.1), are less
meaningful. Note that different parameters as well as accuracy by applying the
same method 10 times are due to the randomness of cross-validation.

From Table 6.2, we can see that although the performance (testing accuracy
and consumed time) of the model selection method proposed by (Keerthi and Lin
2003) is good, it might be less stable. That is, the variance of accuracies is signif-
icantly larger than that of the complete grid search method while the variances
of parameters are both large. We think that in the complete grid search method,
the cross-validation estimation bounds the overall error. Thus, the variances of
gained parameters do not affect the testing performance. However, in the two-line
search method (Algorithm 1), two-stage cross-validations are utilized. Thus, the

variance in the first stage may affect the best performance of the second stage.

Table 6.1: Comparison of different model selection methods (time in second).

Complete grid search Method by Keerthi and Lin
1 (C,0%) | k(k—1)/2 (C,0?) | Time Time Time Accuracy
Problem | Accuracy | Time Accuracy (linear) (non-linear)
dna 95.62 | 15238 95.11 | 1007 586 421 94.86
satimage 91.9 | 24505 92.2 | 3244 2378 866 91.55
letter 97.9 | 135881 97.72 | 15716 10028 5688 96.54
shuttle 99.92 | 243375 99.94 | 7887 5267 2620 99.81

7 Discussion and Conclusion

It is arguable that we may have used a too strict stopping condition in the decom-
position method when C is large. If Ce instead of € is used in (5.5), the number of

iterations (without alpha seeding) would be much smaller. Thus, directly solving

20



Table 6.2: Mean and Standard deviation of two model selection methods (each
method applied 10 times).

Complete grid search Method by Keerthi and Lin

log, C log, v Accuracy log, C Accuracy
Problem Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std.
banana 7| 4.45 -0.4 | 1.51 | 87.91 | 0.47 -1.9 | 2.18 | 76.36 | 12.21
adult_small 54 | 2.37 -7.6 | 1.71 | 83.82 | 0.27 0.3 | 4.08 | 83.20 | 1.28
dna 54 | 3.34 -5 0| 95.56 | 0.19 - -1 94.85 | 0.20
satimage 2.5 | 0.71 0.1 | 0.57 | 91.74 | 0.24 - -] 91.19 | 0.28

Table 7.1: Comparison of the running time for linear SVMs with stopping toler-
ance Ce (time in second).

Problem | with alpha seeding | without alpha seeding
australian 2.30 6.90
heart 0.36 1.16
diabetes 0.75 7.97
german 17.58 46.24
ijcnn 1052.07 25779.50
adult 923.76 40059.15
web 2311.79 7547.94

linear SVMs with large C' becomes possible. However, as shown in Table 7.1,
with alpha seeding the decomposition method still makes the computational time
several times faster than without alpha seeding, especially for large datasets.
The stopping condition has long been a controversial issue for SVM software
design. So far we have not found out a satisfactory way which is not too loose
or too strict for most problems. This is why in most software, € is left to be
adjusted by users. For example, although using Ce takes a significant advantage
on running time, especially for solving linear SVMs, it may lead us to a wrong
optimal solution when C' is too large. An extreme scenario is as follows: Let the

initial solution o = 0 and
Vila) =Qa—e=e.
The stopping condition (5.5) becomes

max{—ye; | yi =1, <Cory, =—1,a; >0} —

min{—y;e; | yi = -1, <Cory; =1,a; >0} <2.
If Ce > 2, the initial « already satisfies the stopping condition. Then, the opti-

21



mization procedure stops with w = 0, an obviously wrong solution. In addition,
in Section 5 we have shown that other methods work well under the same strict
condition. Since a large stopping tolerance may cause a fake convergence, decom-
position methods should also be efficient enough under the same strict setting.
In conclusion, we hope that based on this work, SVM software using decom-
position methods can be suitable for all types of problems, no matter n < [ or

n> 1.

Acknowledgments

This work was supported in part by the National Science Council of Taiwan via

the grant NSC 90-2213-E-002-111.

References

Blake, C. L. and C. J. Merz (1998). UCI repository of machine learn-
ing databases. Technical report, University of California, Depart-
ment of Information and Computer Science, Irvine, CA. Available at

http://www.ics.uci.edu/ "mlearn/MLRepository.html.

Chang, C.-C. and C.-J. Lin (2001a). IJCNN 2001 challenge: Generalization
ability and text decoding. In Proceedings of IJCNN.

Chang, C-C. and C.-J. Lin (2001b). LIBSVM: a l-
brary  for  support wvector machines. Software available at

http://www.csie.ntu.edu.tw/"cjlin/libsvm.

Chang, C.-C. and C.-J. Lin (2001c). Training v-support vector classifiers: The-
ory and algorithms. Neural Computation 18(9), 2119-2147.

Cortes, C. and V. Vapnik (1995). Support-vector network. Machine Learn-
ing 20, 273-297.

DeCoste, D. and K. Wagstaff (2000). Alpha seeding for support vector machines.
In Proceedings of International Conference on Knowledge Discovery and
Data Mining (KDD-2000).

22



Fine, S. and K. Scheinberg (2001). Efficient svm training using low-rank kernel

representations. Journal of Machine Learning Research 2, 243—-264.

Hsu, C.-W. and C.-J. Lin (2002a). A comparison of methods for multi-class
support vector machines. IEEE Transactions on Neural Networks 13(2),

415-425.

Hsu, C.-W. and C.-J. Lin (2002b). A simple decomposition method for support
vector machines. Machine Learning 46, 291-314.

Joachims, T. (1998). Making large-scale SVM learning practical. In
B. Schélkopf, C. J. C. Burges, and A. J. Smola (Eds.), Advances in Kernel
Methods - Support Vector Learning, Cambridge, MA. MIT Press.

Keerthi, S. S. and C.-J. Lin (2003). Asymptotic behaviors of support vector

machines with Gaussian kernel. Neural Computation. To appear.

Keerthi, S. S., S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy (2000).
A fast iterative nearest point algorithm for support vector machine classifier
design. IEEE Transactions on Neural Networks 11(1), 124-136.

Lee, Y.-J. and O. L. Mangasarian (2001). RSVM: Reduced support vector ma-
chines. In Proceedings of the First SIAM International Conference on Data
Mining.

Lin, C.-J. (2001). Linear convergence of a decomposition method for support
vector machines. Technical report, Department of Computer Science and

Information Engineering, National Taiwan University, Taipei, Taiwan.

Lin, K.-M. (2002). Reduction techniques for training support vector machines.
Master’s thesis, Department of Computer Science and Information Engi-

neering, National Taiwan University.

Lin, K.-M. and C.-J. Lin (2003). A study on reduced support vector machines.
IEEFE Transactions on Neural Networks. To appear.

Mangasarian, O. L. and D. R. Musicant (2000). Active set support vector ma-
chine classification. In Advances in Neural Information Processing Systems,

pp. 577-583.

23



Mangasarian, O. L. and D. R. Musicant (2001). Lagrangian support vector

machines. Journal of Machine Learning Research 1, 161-177.

Michie, D., D. J. Spiegelhalter, and C. C. Taylor (1994). Ma-
chine  Learning, Neural and  Statistical  Classification.  En-
glewood Cliffs, N.J.: Prentice Hall. Data available at

http://www.ncc.up.pt/liacc/ML/statlog/datasets.html.

Osuna, E., R. Freund, and F. Girosi (1997). Training support vector machines:
An application to face detection. In Proceedings of CVPR’97, New York,
NY, pp. 130-136. IEEE.

Platt, J. C. (1998). Fast training of support vector machines using sequential
minimal optimization. In B. Scholkopf, C. J. C. Burges, and A. J. Smola
(Eds.), Advances in Kernel Methods - Support Vector Learning, Cambridge,
MA. MIT Press.

Prokhorov, D. (2001). IJCNN 2001 neural network competition.
Slide presentation in IJCNN’01, Ford Research Laboratory.

http://www.geocities.com/ijcnn/nnc_ijcnnO1.pdf .

Whaley, R. C., A. Petitet, and J. J. Dongarra (2000). Automatically tuned lin-
ear algebra software and the ATLAS project. Technical report, Department

of Computer Sciences, University of Tennessee.

A Proof of Theorem 2

For the first result, if it were wrong, there was an optimal o with more than
n + 1 free components. From the optimality condition (5.6) and the primal-dual

relation (1.4), for those 0 < o; < C,
(Qa+by); = yi(wTa:,- +b) =1.

Thus, more than n + 1 x; are at two parallel hyperplanes. This contradicts the

assumption.

Next, we consider from Theorem 1 and define

A = {i | for all optimal solutions with C' > C*, o; is at the upper (lower) bound}.

24



The second result of this theorem will hold if we can prove |A| > 1 —n —1. If
its result is wrong, we can assume all those i ¢ A are from o',..., a° which are
optimal at C = Cy,...,Cs, C* < C; < --- < (g and s > n+ 1. Thus, for any
i ¢ A, it is impossible that

1 s _ 1 _
o =-=a;, =0ora; =Cj,..

o =Cs. (A.1)

(2

For any convex combination with weights 0 < A\; < 1 and Z;:I Aj=1,

0< > Nal <D NCj, Vig A (A.2)
j=1 j=1
Remember from Theorem 1, for all C' > C*, the optimal w is the same. If we
define .
a= Z )\jaj ,
j=1
then

l s l s
= _ Jom _
E YiQx; = E Aj E Yo T; = E Ajw = w.
i=1 j=1 =1 j=1

Therefore, we have constructed an @ which is optimal at C' = Z;:l A C; > CF
with more than n + 1 free components (from (A.1) and (A.2)). This contradicts

the first part of this theorem so the proof is complete.

B Proof of Theorem 3

First we note that for any given C, if A;C'+ B;,7 = 1,2,... are all optimal solutions
of (1.2), and there are vectors A and B such that
1—00

then AC + B is an optimal solution as well. This is from the continuity of (1.2)’s
objective function and the compactness of its feasible region.

From Theorem 3 of (Keerthi and Lin 2003), there is a C* such that for any
C > C*, there exists a linear function AC + B which is optimal for (1.2) when
C € [C*,C]. Thus, we can consider C! < C? < --- with lim; ,o, C* = 0o and
functions A;C + B; which are optimal solutions at C € [C*, C"].

25



Since

OSA,LCI-FBzSCl andOSAiCQ-i-BiSCQ,

are bounded for all ¢, there is an infinity set I such that

lim A,C'+ B, =a'and lim A;C%+ B; =’ (B.2)

1—00,4€] 1—00,i€]

If o' # o?, then two different points uniquely determine vectors A and B such
that
o' = AC' + B and o® = AC? + B. (B.3)

For any C' > C?, there is 0 < A < 1 such that C? = A\C' + (1 — \)C so
A;C? + B; = M(A;C' + B)) + (1 — \)(A;C + By). (B.4)
Taking the limit, (B.2), (B.3), and (B.4) imply

AC? + B=\NAC'+B) +(1-)) lim (A;C + By).
1€l,2—00

Thus,
lim (A;C+ B;) = AC + B, (B.5)

iel,i—roo
so (B.1) is valid. The situation for C* < C < C? is similar. Thus AC + B is
optimal for (1.2), for all C > C*. On the other hand, if a! = o2, since C? > C*,

lim A4;(C*—-C") =0

iel,i—o0

from (B.2) implies

lim A;,=0and lim B;=a'=a’
i€li—o0 i€l,i—o0

By defining A = 0 and B = o!, for any C > C*, (B.1) also holds so AC + B is
optimal for (1.2). Thus, the proof is complete. O

26



