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Figure 1: An example of visual storytelling for the song “Supermarket Flowers” by Ed Sheeran live at the BRIT Awards 2018.
The director sequentially uses the extreme long shot, medium close-up, extreme long shot, and medium shot to expand the
storytelling potential in the beginning of the song. The video demo can be found at https://sites.google.com/site/m2vsdil/.

ABSTRACT
Learning from music to visual storytelling of shots is an interest-
ing and emerging task. It produces a coherent visual story in the
form of a shot type sequence, which not only expands the story-
telling potential for a song but also facilitates automatic concert
video mashup process and storyboard generation. In this study, we
present a deep interactive learning (DIL) mechanism for building a
compact yet accurate sequence-to-sequence model to accomplish
the task. Different from the one-way transfer between a pre-trained
teacher network (or ensemble network) and a student network in
knowledge distillation (KD), the proposed method enables collabo-
rative learning between an ensemble teacher network and a student
network. Namely, the student network also teaches. Specifically, our
method first learns a teacher network that is composed of several
assistant networks to generate a shot type sequence and produce
the soft target (shot types) distribution accordingly through KD.
It then constructs the student network that learns from both the
ground truth label (hard target) and the soft target distribution to
alleviate the difficulty of optimization and improve generalization
capability. As the student network gradually advances, it turns to
feed back knowledge to the assistant networks, thereby improving
the teacher network in each iteration. Owing to such interactive de-
signs, the DIL mechanism bridges the gap between the teacher and
student networks and produces more superior capability for both
networks. Objective and subjective experimental results demon-
strate that both the teacher and student networks can generate
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more attractive shot sequences from music, thereby enhancing the
viewing and listening experience.
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1 INTRODUCTION
Recently, a challenging research topic has been proposed, namely
learning from music to visual storytelling of shots [26]. It aims to
interpret music with an appropriate and near-professional shot type
(defined in the language of film, see Table 1) sequence for visual
storytelling in concert videos. Figure 1 illustrates how visual story-
telling is achieved in making an official concert video. In particular,
it shows that the director sequentially uses the extreme long shot,
medium close-up, extreme long shot, and medium shot in the begin-
ning of the song to express the emotion and expand the storytelling
potential of the song. Therefore, understanding how to properly
employ shots is crucial in carrying out an automated concert video
mashup process and storyboard generation [1, 10, 15, 21, 25–27].

The task of music to visual storytelling of shots translation is
challenging due to the difficulty of modeling the large musical
variance in an ordered song structure and preserving the long-
term coherence among multiple shots. Existing recurrent neural
network (RNN)-based approaches only consider the adjacent mem-
ories in a sequence [13, 17], which may not be able to effectively
learn the long-term dependencies over large and varied temporal
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Table 1: The definition of six types of shots [1, 15].

Close-Up (CU) Medium Close-Up (MCU) Medium Shot (MS) Medium Long Shot (MLS) Long Shot (LS) Extreme Long Shot (XLS)
A Close-Up is used to A Medium Close-Up A Medium Shot A Medium Long Shot A Long Shot would An Extreme Long Shot covers a
show emotion on the contains a subject’s head contains a subject would contain a subject contain a subject’s large area or landscape. It would
subject’s face. That is, and shoulders completely. from the waist to from his/her knees to entire body from the be hard to see any reactions
the face occupies most the top of the head. the top of the head. top of the head to /emotion from people in the shot
of the screen (image). the bottom of the feet. since they are too far away.

Figure 2: Illustration of the proposed distillation-based
teacher-to-student learning framework.

intervals in a concert video. To address this difficulty, a probabilistic-
based ensemble model has recently been proposed, termed as multi-
resolution fused recurrent neural networks (MF-RNNs) with film-
language [26]. This model not only explores the varied tempo-
ral resolution RNNs, but also relates the statistical dependencies
among them, and further integrates a film-language model to im-
prove music-to-shot translation performance. However, despite the
effectiveness in translation, such an ensemble model has a high
computational complexity, which limits the applicability in prac-
tice. In addition, each temporal resolution RNN used in MF-RNNs
with film-language is learned directly from the ground truth (shot)
label (so-called hard target), which can only provide very limited
information.

To address the aforementioned issues, we propose a novel col-
laborative model distillation mechanism called deep interactive
learning (DIL) for building an effective lightweight RNN. Different
from the one-way transfer between a pre-trained teacher network
(or ensemble network) and a student network in knowledge distil-
lation (KD) [8], the proposed DIL mechanism enables collaborative
learning between an ensemble teacher network and a student net-
work. Namely, the student network also teaches. Thus, the DIL
mechanism can be regarded as a bi-directional KD approach, which
enables iterative interaction between the teacher and student net-
works durning KD. The proposed mechanism is developed based on
the observation of KD experiments in MF-RNNs with film-language.
That is, we use a lightweight RNN as a student network to mimic the
output behavior of MF-RNNs with film-language (teacher network),
see Figure 2. The architecture of MF-RNNs with film-language is
given in Figure 3. We empirically find that the performance of the
student network is better than the three temporal resolution RNNs
(called assistant networks) used in MF-RNNs with film-language.
This observation inspires us that the knowledge of the student

network can be fed back to each assistant network, thus upgrading
the teacher network.

In the proposed DIL mechanism, learning comes from two as-
pects: teacher-to-student and student-to-teacher. Regarding teacher-
to-student learning, as shown in Figure 2, the process starts with a
powerful pre-trained teacher network,MF-RNNswith film-language,
and then performs knowledge transfer to a student network (light-
weight RNN) through KD. The teacher network mainly consists
of three assistant networks that are initially trained by only us-
ing the ground truth labels (hard target). The student network is
trained by further considering the soft target distribution (distilled
from teacher network) that aligns probabilities of output classes to
the pre-trained teacher network, as shown in Figure 2. In student-
to-teacher learning, as shown in Figure 4, we turn to distill the
knowledge (soft target distribution) from the student network and
then transfer the knowledge to each of assistant networks (tem-
poral resolution RNNs), thereby upgrading the teacher network.
Learning in this way, i.e., finding and matching the other most likely
classes (shot types) for each training instance according to their
peers, can increase the posterior entropy of the learned network
[4, 18], which helps both teacher and student networks converge
to more robust minima and achieve better generalization to testing
data. Thus, repeating such a DIL mechanism gradually improves
the performance of both student and teacher networks.

We summarize our main contributions as follows:
• This study proposes a novel DIL mechanism, which provides
a simple yet effective way to improve the generalization
capability of a network through collaborative learning with
the other network.
• Extensive experimental results show that compared with the
MF-RNNs with film-language [26] and the conventional KD
technique [8], the proposed DIL mechanism outperforms the
competing methods, and achieves the state-of-the-art results
by using a much smaller network.

2 RELATEDWORK
Recently, learning compact yet accurate models has become active
and has been approached in a variety of ways including model com-
pression [5], pruning [9], binarisation [19] and model distillation
[8]. This work targets at collaborative model distillation. In the
following, we review the studies on KD and collaborative learning.

Distillation-based model compression is developed based on the
observation that small networks often have the same representa-
tion capabilities as large networks [2, 3]. However, compared to
large networks, small networks are less effective in training and
seeking the optimal parameters to achieve the desired function.
Such a problem results from the difficulty of optimization, rather
than the size of the network [2]. KD has recently been proposed to



Figure 3: Illustration of the adopted teacher network, MF-RNNs with the film-language framework, for music to visual story-
telling of shots translation [26]. Here STFT stands for short-time Fourier transform, and VQ stands for vector quantization.

make a small network easy to train. It typically starts with a pow-
erful (deep and/or wide) teacher (or ensemble) network, and then
trains a smaller (relatively shallow and/or narrow) student network
to mimic the behavior (e.g., output class probabilities (so-called
soft target) and/or feature representations) of the teacher network
[2, 8, 20]. It turns out that learning to mimic the behavior of a
teacher network is easier to optimize than learning directly from
ground truth labels. Some intuition about why it works is due to
the additional supervision and regularization of the higher entropy
soft targets [3, 8, 12]. Ba and Caruana [2] train a shallow student
network to mimic a deep teacher network by matching logits via
the L2 loss. Hinton et al. [8] generalize the KD technique by training
a student network to predict soft target distribution provided by a
teacher network. Sau and Balasubramanian [22] propose the logit
perturbation mechanism, which adds random perturbations to logit
outputs for simulating the process of learning from multiple teach-
ers. Unlike the past, Yuan et al. [30] first train the student network
in the normal way to obtain a pre-trained model, and then use it as
a teacher to train itself by transferring soft targets. Instead of using
soft targets, some studies use the hidden layer information of a
teacher network to train the student network. For example, Romero
et al. [20] propose to use intermediate representations learned by
a teacher model as hints to improve the training process and fi-
nal performance of the student. Yim et al. [28] define the distilled
knowledge to be transferred in terms of flow between layers, which
is calculated by computing the inner product between feature maps
from two layers. Liu et al. [14] further propose an end-to-end KD
framework that combines feature-level distillation and class-level
distillation for multi-label image classification. However, despite
the effectiveness of KD, such one-way knowledge transfer prevents
a teacher network from improving with the student network. As
English proverb mentions “He who teaches, learns.” Feedback from
students also helps a teacher upgrade the knowledge. Once the
teacher network upgrades, its knowledge in turn can further enrich

the student network. Thus, the student and teacher networks can
grow together in such interaction. In this work, we develop the DIL
mechanism that enables teacher and student networks to learn and
grow from each other.

Related studies on collaborative learning include dual learning
[6] and deep mutual learning [31]. Dual learning allows two cross-
lingual translation models teach each other interactively, but it is
applicable to special translation problems where an unconditional
within-language model is available for assessing the quality of
predictions, and ultimately provides the supervision for learning. In
dual learning, different models address diverse learning tasks. In our
DIL mechanism, the tasks are identical. In deep mutual learning, a
learning scenario begins with a pool of untrained student networks
that are simultaneously derived to solve the task together. Such
a learning scenario differs from ours in that our DIL mechanism
starts with a pre-trained ensemble teacher network and then learns
interactively with a student network to make both sides grow.

3 DEEP INTERACTIVE LEARNING
In this section, we elaborate the proposed deep interactive learning
(DIL) mechanism for translatingmusic to visual storytelling of shots.
We first revisit the adopted teacher network, MF-RNNs with film-
language [26]. Then, wewill introduce the two learning processes of
DIL in detail, including teacher-to-student and student-to-teacher
knowledge distillation.

3.1 Revisiting MF-RNNs with Film-Language
Given the music representation sequences of high, middle, and low
temporal resolutions X, Y, and Z, the goal is to decide the shot
sequence ŝ corresponding to the high temporal resolution, which
can be cast as follows:

ŝ = argmax
s∈𝑆

𝑃 (s |X,Y,Z) ∝ 𝑃 (X,Y,Z | s)𝑃 (s), (1)

where 𝑆 denotes the set of all possible high temporal resolution
shot sequences. 𝑃 (s) is the a priori probability of film-language,



Figure 4: Illustration of the proposed distillation-based student-to-teacher learning framework.

which is calculated through statistical shot transitions from official
concert videos in the training set. For estimating 𝑃 (s), a bigram
language model is used via

𝑃 (s) = 𝑃 (𝑠1)
∏𝑇

𝑡=2 𝑃 (𝑠
𝑡 | 𝑠𝑡−1), (2)

where 𝑇 is the number of frames in the high temporal resolution
sequence. In the following, we consider the estimation of the joint
probability 𝑃 (X,Y,Z | s) to infer the optimal shot sequence ŝ in (1).

In practice, estimating 𝑃 (X,Y,Z | s) is difficult or even infeasible.
To tackle the issue, Wei et al. [26] adopt the principle of maximum
entropy proposed by Pan et al. [16], and define the joint probability
as

𝑃 (X,Y,Z | s) 𝑑𝑒𝑓=
𝑇∏
𝑡=1

𝑃 (𝑋 𝑡 | 𝑠𝑡 )𝑃 (𝑌 ⌈
𝑡
2 ⌉ | 𝑠𝑡 )𝑃 (𝑍 ⌈

𝑡
4 ⌉ | 𝑠𝑡 )

× 𝑃 (𝑢𝑡 | 𝑣 ⌈
𝑡
2 ⌉ , 𝑠𝑡 )𝑃 (𝑣 ⌈

𝑡
2 ⌉ |𝑤 ⌈

𝑡
4 ⌉ , 𝑠𝑡 )

𝑃 (𝑢𝑡 | 𝑠𝑡 )𝑃 (𝑣 ⌈
𝑡
2 ⌉ | 𝑠𝑡 )

, (3)

where 𝑃 (𝑋 𝑡 | 𝑠𝑡 ), 𝑃 (𝑌 ⌈
𝑡
2 ⌉ | 𝑠𝑡 ), and 𝑃 (𝑍 ⌈

𝑡
4 ⌉ | 𝑠𝑡 ) are the likelihood

of music representations of high, middle, and low temporal resolu-
tions, respectively. Note that 𝑋 , 𝑌 , and 𝑍 are the representations
of 188 music tags encoded by a convolutional neural network, i.e.,
those corresponding to 1-sec, 2-sec, and 4-sec per music frame,
respectively [11, 26]. The symbol ⌈ ⌉ represents the ceiling function.
It is used to locate a frame of a middle or low temporal resolution
that corresponds to the high temporal resolution. Take 𝑡=1 as an
example. The first frame of the middle (⌈ 𝑡2 ⌉) and that of the low
(⌈ 𝑡4 ⌉) temporal resolutions are located to help translate the shot
type of the first frame of the high temporal resolution.

The remaining in the right hand side of (3) is the correlation
term of multiple temporal resolutions. Because 𝑋 , 𝑌 , and 𝑍 are
continuous, it is infeasible to collect sufficient training data and
use these data to figure out the statistical dependencies among the
three, under the joint condition 𝑠 . Therefore, 𝑘-means clustering is
adopted to construct a codebook with which vector quantization
is used to derive the corresponding codewords for 𝑋 , 𝑌 , and 𝑍 ,
which are denoted by 𝑢, 𝑣 , and𝑤 respectively in (3). 𝑃 (𝑢𝑡 | 𝑣 ⌈

𝑡
2 ⌉ , 𝑠𝑡 ),

𝑃 (𝑣 ⌈
𝑡
2 ⌉ |𝑤 ⌈

𝑡
4 ⌉ , 𝑠𝑡 ), 𝑃 (𝑢𝑡 | 𝑠𝑡 ), and 𝑃 (𝑣 ⌈

𝑡
2 ⌉ | 𝑠𝑡 ) in (3) are calculated

by statistical co-occurrence dependencies over all the training data:

𝑃 (𝑢𝑡 |𝑣 ⌈
𝑡
2 ⌉ , 𝑠𝑡 ) = Count(𝑢𝑡 , 𝑣 ⌈

𝑡
2 ⌉ , 𝑠𝑡 )

Count(𝑣 ⌈
𝑡
2 ⌉ , 𝑠𝑡 )

, (4)

𝑃 (𝑣 ⌈
𝑡
2 ⌉ |𝑤 ⌈

𝑡
4 ⌉ , 𝑠𝑡 ) = Count(𝑣 ⌈

𝑡
2 ⌉ ,𝑤 ⌈

𝑡
4 ⌉ , 𝑠𝑡 )

Count(𝑤 ⌈
𝑡
4 ⌉ , 𝑠𝑡 )

, (5)

𝑃 (𝑢𝑡 |𝑠𝑡 ) = Count(𝑢𝑡 , 𝑠𝑡 )
Count(𝑠𝑡 ) , (6)

and
𝑃 (𝑣 ⌈

𝑡
2 ⌉ |𝑠𝑡 ) = Count(𝑣 ⌈

𝑡
2 ⌉ , 𝑠𝑡 )

Count(𝑠𝑡 ) . (7)

The probabilities of co-occurrence dependencies can be regarded as
the a priori knowledge to help translate music in the test phase. We
use a dedicated RNN to separately model each of the three temporal
resolutions and estimate their likelihood during implementation.
Note that the output by an RNN is a posterior probability. Hence, we
approximate the first likelihood in (3) by 𝑃 (𝑠𝑡 |𝑋 𝑡 )/𝑃 (𝑠𝑡 ), the sec-
ond one by 𝑃 (𝑠𝑡 |𝑌 ⌈

𝑡
2 ⌉ )/𝑃 (𝑠𝑡 ), and the third one by 𝑃 (𝑠𝑡 | 𝑍 ⌈

𝑡
4 ⌉ )/𝑃 (𝑠𝑡 ).

Equations (2)-(7) specify how 𝑃 (s |X,Y,Z) in (1) is estimated by
MF-RNNs with film-language in the test phase, which is also il-
lustrated in Figure 3. It follows that the shot sequence s with the
maximal posterior probability is selected as the translation result ŝ.

3.2 Proposed DIL Mechanism
Although MF-RNNs with film-language can deal with large musical
variance in an ordered song structure and preserve long-term co-
herence among multiple shots by integrating multi-resolution fused
RNNs and the film-language model, deploying it in practical appli-
cations is not easy. We remark that MF-RNNs with film-language is
computationally heavy when performing music-to-shot translation,
since it requires reading music information for at least 4 seconds
(low temporal resolution) and integrating multiple deep-net models
for 1 second (high temporal resolution) translation. In addition, each
temporal resolution RNN used in MF-RNNs with film-language is
learned directly from ground truth (shot) label that can provide
very limited information. To make the network efficient and ef-
fective, we propose a DIL mechanism for building a lightweight
RNN (student network) through collaborative learning with MF-
RNNs with film-language (teacher network). The DIL mechanism



involves two learning processes, namely teacher-to-student, and
student-to-teacher.
teacher-to-studentThe teacher-to-student learning processmainly
involves two operations: pre-training an ensemble teacher network,
and distilling the knowledge in teacher network to the student net-
work, as shown in Figure 2. Motivated by the superior performance
of MF-RNNs with film-language [26], we construct the teacher net-
work based on the architecture of MF-RNNs with film-language.
Specifically, we use three dedicated RNNs, i.e., hRNN, mRNN, and
lRNN, each of which contains 3 hidden layers with 256, 128, and
64 LSTM units to model music representations of high, middle,
and low temporal resolutions, respectively. Each temporal resolu-
tion RNN (assistant network) is trained by using back-propagation
through time, namely the BPTT algorithm with the objective of
softmax cross entropy under the supervision of the ground truth
(shot type) label. Then, we statistically estimate the co-occurrence
dependencies and film-language to collaborate with the three tem-
poral resolution RNNs to form the MF-RNNs with film-language
for music-to-shot translation.

For knowledge distillation, we first build a lightweight RNN
as our student network. Similar to the architecture of the above-
mentioned temporal resolution RNNs, the student network is com-
posed of 3 hidden layers, each with 256, 128, and 64 LSTM units,
respectively. Thus, the model complexity of the student network is
reduced to less than one-third of the MF-RNNs with film-language.
For distillation, the student network takes the music representation
of the high temporal resolution as input and mimic the output be-
havior of the teacher network that reads music representations from
three temporal resolutions. Specifically, knowledge is transferred
from the teacher network to the student network by minimizing
the loss function which takes into consideration of the distribution
of class (shot type) probabilities predicted by the teacher network,
as shown in Figure 2. However, such a distribution typically peaks
very sharply at the correct class, while the probability in other
classes is close to zero. Therefore, it does not provide much infor-
mation beyond the ground truth label. To address this issue, we use
the softmax temperature [8] to control the variance of the probabil-
ities between different classes and generate soft target distribution
𝑝𝑡𝑒𝑎𝑐ℎ𝑒𝑟 with

𝑝𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑖 =
exp(𝑧𝑡𝑒𝑎𝑐ℎ𝑒𝑟

𝑖
/T)∑

𝑗 exp(𝑧𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑗
/T)

, (8)

where 𝑝𝑡𝑒𝑎𝑐ℎ𝑒𝑟
𝑖

represents the probability of the softmax temper-
ature of the 𝑖-th class in the teacher network. Since our teacher
network needs to integrate multiple probabilistic models such as
temporal resolution RNNs and film-language model to produce the
translation result, unlike [8], we apply the operation of softmax
temperature directly to the output probabilities of the teacher net-
work, instead of the logits of each integrated model. To this end,
𝑧𝑡𝑒𝑎𝑐ℎ𝑒𝑟
𝑖

is defined as 𝑧𝑡𝑒𝑎𝑐ℎ𝑒𝑟
𝑖

= 𝑙𝑜𝑔(𝑜𝑡𝑒𝑎𝑐ℎ𝑒𝑟
𝑖

) where 𝑜𝑡𝑒𝑎𝑐ℎ𝑒𝑟
𝑖

is
the output probability of the teacher network of the 𝑖-th class. T
represents the temperature parameter. As T grows, the probabil-
ity distribution generated by the softmax function becomes softer,
providing more information about classes that the teacher network
finds more relevant to the predicted class.

It has been proven that combining the loss of the soft target
distribution and ground truth label (so-called hard target) [8, 23] is

beneficial to student network learning. Thus, the total loss function
for student network learning is given by

L(X;𝜃 ) = 𝛼 ×H(𝑔ℎ, 𝜎 (𝑧𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ;T = 1))
+ (1 − 𝛼) × H (𝜎 (𝑧𝑡𝑒𝑎𝑐ℎ𝑒𝑟 ;T = 𝜏), 𝜎 (𝑧𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ,T = 𝜏)), (9)

where X is the input music representation sequence of high tempo-
ral resolution, 𝜃 is the parameter set of the student network, 𝛼 set
to 0.5 is a non-negative hyper-parameter,H is the cross-entropy
loss function, 𝑔ℎ is the ground truth label of high temporal resolu-
tion, 𝜎 is the softmax function parameterized by the temperature T,
𝑧𝑠𝑡𝑢𝑑𝑒𝑛𝑡 is the logits of the student network, and constant 𝜏 is set
to 20 in all experiments. The detailed learning procedure is given
in Figure 2. After learning, the student network can be directly
used to get the shot sequence from the input music representation
sequence of the high temporal resolution, regardless of the middle
and low temporal resolutions, hence greatly improving efficiency.
student-to-teacher For student-to-teacher learning, we aim to
upgrade the teacher’s knowledge by distilling the knowledge from
the student network to each of the assistant networks integrated
in the teacher network. Similar to teacher-to-student learning, we
use the softmax temperature to generate a soft target distribution
𝑝𝑠𝑡𝑢𝑑𝑒𝑛𝑡 from the logits of the student network according to

𝑝𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖 =
exp(𝑧𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝑖
/T)∑

𝑗 exp(𝑧𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑗
/T)

, (10)

where 𝑝𝑠𝑡𝑢𝑑𝑒𝑛𝑡
𝑖

represents the probability of the softmax temper-
ature of the 𝑖-th class in the student network. 𝑧𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝑖
is the logit

of the student network of the 𝑖-th class, and T is the temperature.
Since the soft target distribution generated by the student network
represents a translation result of the music representation of the
high temporal resolution, for two assistant networks i.e., the middle-
and low-resolution RNNs learning, as shown in Figure 4, we ag-
gregate the soft target distribution of frames of the high temporal
resolution in the student network through down-sampling. To this
end, the probability of the softmax temperature of the 𝑖-th class in
the𝑚-th middle temporal resolution frame is evaluated via

𝑝𝑚𝑖𝑑
𝑖 (𝑚) = 1

2

2𝑚∑
𝑡=2𝑚−1

𝑝𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖 (𝑡), (11)

where 𝑝𝑠𝑡𝑢𝑑𝑒𝑛𝑡
𝑖

(𝑡) represents the probability of the softmax tem-
perature of the 𝑖-th class in the 𝑡-th high temporal resolution frame
resulted from the student network. Similarly, for low temporal
resolution, the probability of the softmax temperature of the 𝑖-th
class in the 𝑙-th low temporal resolution frame can be represented as

𝑝𝑙𝑜𝑤𝑖 (𝑙) = 1
4

4𝑙∑
𝑡=4𝑙−3

𝑝𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖 (𝑡) . (12)

The regularization factors (i.e., 1/2 and 1/4) are set according to
a multiple of three temporal resolutions (i.e., 4-sec, 2-sec, and 1-sec
per frame). For middle and low temporal resolutions, the soft target
distributions 𝑝𝑚𝑖𝑑 and 𝑝𝑙𝑜𝑤 can be obtained by 𝑝𝑚𝑖𝑑

𝑖
and 𝑝𝑙𝑜𝑤

𝑖
over

all classes, respectively. For assistant network learning, the total
loss function of the high-/middle-/low-resolution RNN is defined
as
L(I;𝜋) = 𝛽 ×H(𝑔, 𝜎 (𝑧𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡 ;T = 1))
+ (1 − 𝛽) × H (𝜎 (𝑧𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ;T = 𝜏), 𝜎 (𝑧𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡 ,T = 𝜏)), (13)



Algorithm 1: Deep Interactive Learning (DIL)
Input :Music representation sequences X, Y, Z,

Ground truth labels 𝑔ℎ , 𝑔𝑚 , 𝑔𝑙 .
Initialize :𝑘 = 0, indexing the 𝑘-th DIL iteration,

assistant network parameters 𝜋ℎ
𝑘
, 𝜋𝑚

𝑘
, 𝜋𝑙

𝑘
,

student network parameters 𝜃𝑘 .
Output :Student network parameters 𝜃 .

1 Train three assistant networks 𝜋ℎ
𝑘
, 𝜋𝑚

𝑘
, 𝜋𝑙

𝑘
with X, Y, Z,

𝑔ℎ , 𝑔𝑚 , and 𝑔𝑙 .
2 Compute the teacher network by Eq (1).
3 Distill knowledge 𝑝𝑡𝑒𝑎𝑐ℎ𝑒𝑟 from the teacher network by Eq
(8).

4 Train the student network 𝜃𝑘 via X, 𝑔ℎ , and 𝑝𝑡𝑒𝑎𝑐ℎ𝑒𝑟 .
5 𝜃 ← 𝜃𝑘 .
6 repeat
7 𝑘 = 𝑘 + 1.
8 Distill knowledge 𝑝𝑠𝑡𝑢𝑑𝑒𝑛𝑡 from the student network by

Eq (10).
9 Compute 𝑝𝑚𝑖𝑑 and 𝑝𝑙𝑜𝑤 by Eq (11) and Eq (12).

10 Update 𝜋ℎ
𝑘
, 𝜋𝑚

𝑘
, 𝜋𝑙

𝑘
with X, Y, Z, 𝑔ℎ , 𝑔𝑚 , 𝑔𝑙 ,

𝑝𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , 𝑝𝑚𝑖𝑑 , and 𝑝𝑙𝑜𝑤 , respectively.
11 Re-compute the teacher network by Eq (1).
12 Distill knowledge 𝑝𝑡𝑒𝑎𝑐ℎ𝑒𝑟 from the teacher network by

Eq (8).
13 Update the student network 𝜃𝑘 via X, 𝑔ℎ , and 𝑝𝑡𝑒𝑎𝑐ℎ𝑒𝑟 .
14 if the validation error of 𝜃𝑘 is less than 𝜃 then
15 𝜃 ← 𝜃𝑘 .

until the validation error of 𝜃𝑘 is not less than 𝜃

where I is the input music representation sequence, which can be
replaced byX, Y or Z according to high, middle or low temporal res-
olution, respectively. 𝜋 is the assistant network parameters, which
can be replaced by 𝜋ℎ , 𝜋𝑚 or 𝜋𝑙 for high-, middle-, or low-resolution
RNN, respectively. 𝛽 is a non-negative hyper-parameter, and is set
to 0.5.H is the cross-entropy loss function. 𝑔 is the ground truth
label, and it can be replaced by 𝑔ℎ , 𝑔𝑚 or 𝑔𝑙 for high, middle or
low temporal resolution, respectively. 𝜎 is the softmax function
parameterized by the temperature T. 𝑧𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡 and 𝑧𝑠𝑡𝑢𝑑𝑒𝑛𝑡 are
the logits of the assistant and student networks, respectively, and
𝜏 is also set to 20 in all experiments. Note that for middle- and
low-resolution RNNs learning, the output (soft target distribution)
of the term 𝜎 (𝑧𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ;T = 𝜏) needs to be further aggregated using
formulas (11) and (12).

The detailed learning procedure is given in Figure 4. Under the
supervision of the soft target distribution of the student network
feedback, the generalization capability of each assistant network
can be further improved. Once the assistant networks are upgraded,
the performance of the teacher network will be enhanced accord-
ingly. When the teacher network is upgraded, its knowledge will
be transferred to the student network in the next iteration through
the teacher-to-student learning process. These two learning pro-
cesses are repeated until no further supportable evidence can be
detected. All in all, this collaborative mechanism allows DIL to

drive the two coupled teacher and student networks to learn and
grow from each other. Algorithm 1 summarizes the procedure of
the DIL mechanism.

4 EXPERIMENTAL RESULTS
To demonstrate the effectiveness of the proposed DIL mechanism,
we conduct experiments on a set of official concert videos down-
loaded from YouTube links provided by [26]. In total, 60 official
concert videos, each of which belongs to a complete song, are
collected from 51 live concerts. Among them, 45 official concert
videos are used for training, including 12,300 (high-resolution),
6,150 (middle-resolution), and 3,075 (low-resolution) labeled music
frames [26]. Note that eight shot types (labels) are considered in
this database, including CU, MCU, MS, MLS, LS, XLS (see Table 1),
and two additional variants, namely the audience shot (ADS) and
the musical instrument shot (MIS). The remaining 5 and 10 official
concert videos, corresponding to 1,331 and 2,485 (high-resolution)
music frames, are used for validation and testing.

4.1 Evaluation Protocols
In the experiments, we first report the performance of the de-
fault teacher network MF-RNNs (with film-language) [26] and
its three assistant networks, which are trained with high, mid-
dle, and low temporal resolutions as hRNN, mRNN, and lRNN,
respectively. Since our target is to obtain a high temporal resolu-
tion shot sequence, the translation results of mRNN and lRNN need
up-sampling to match the number of frames needed by the high
temporal resolution. To this end, we simply repeat the middle tem-
poral resolution (or low temporal resolution) translations locally
such that the final output has the same number of frames as the
high temporal resolution. We then compare the performance of the
MF-RNNs (with film-language) and a lightweight RNN trained by
the conventional KD technique [8]. Finally, for the above competing
methods, we show the performance of the proposed DIL mecha-
nism, which includes assistant networks hRNN-DIL, mRNN-DIL,
lRNN-DIL, teacher network MF-RNNs-DIL, and student network
lightweight RNN-DIL. For the training of the above RNNs, we apply
random initialization for the weights, a constant learning rate of
10−3, the dropout to avoid over-fitting, and the RMSprop solver
[7] for optimization. The meta-parameters of each method are set
based on the validation error.

In the experiments, four metrics are used for performance eval-
uation, including the accuracy of shot category (ASC), the trend
of shot change and the distance of shot type under the aligned
category, which are named TSC-AC and DST-AC, respectively, and
the duration of shot (DS) [24, 26]. Similar to the word accuracy
widely used in speech recognition [29], the ASC is defined as

𝐴𝑆𝐶 =
𝑁 − 𝐷 − 𝑆 − 𝐼

𝑁
× 100%, (14)

where𝑁 is the number of categorized shots in the ground truth shot
sequence. 𝐷 , 𝑆 , and 𝐼 denote the deletion errors, substitution errors,
and insertion errors of the shot category, respectively. According
to observations, the visual storytelling of shots in the concert video
relies mainly on shots defined by the language of film (see Table 1),
supplemented by a small amount of the concert-specific shots (ADS
and MIS). Therefore, in order to evaluate whether the concert-
specific shots are correctly arranged in the language-of-film-based



Figure 5: Illustration of the dynamic programming-derived
shot category-aligned path for a ground truth shot sequence
and a translated shot sequence.

shot sequence, for ASC measurement, the language-of-film-based
shots and the concert-specific shots are first categorized into Cat-
egory A and Category B, respectively. A dynamic programming
algorithm [29] is employed to find the optimal alignment of shot cat-
egories between the ground truth shot sequence and the translated
shot sequence, to obtain𝐷 , 𝑆 , and 𝐼 for ASCmeasurement, as shown
in Figure 5. We further concentrate on the TSC-AC measurement
in the aligned Category A and defined its metric as

TSC-AC =
𝐻

𝑀
× 100%, (15)

where𝑀 is the total number of shot changes in the aligned Cate-
gory A (i.e., language-of-film-based shots), and 𝐻 denotes the total
number of correct shot change trends. According to the language
of film, the types of shots are defined based on the viewing distance
(from close view to far view, see Table 1). Therefore, two trends of
shot changes are defined, including the increased viewing distance
“+” and the decreased viewing distance “-”. For example, as shown
in Figure 6, the shot type from MCU to LS is categorized into the
trend of increased viewing distance “+”, while from XLS to MS is
categorized into the trend of decreased viewing distance “-”. Thus,
the aligned trends between the ground truth shot sequence and the
translated shot sequence can be used to obtain 𝐻 for evaluation of
TSC-AC accuracy. To further validate the above-mentioned meth-
ods, the DST-AC metric is considered. We number the six types
of shots (defined by language of film) as one to six according to
the viewing distance. The numbered shots (see Figure 6) between
aligned shot change trends are estimated one-by-one by setting
DST-AC as the absolute error measurement. Finally, taking account
of that the number of translated shots are different in each method,
we report the unweighted average (better reflecting the imbalances
among number of translated shots) time length of all eight shot
types in the DS measurement. We report the average ASC, TSC-AC
and DST-AC, and DS in the test set. In addition to the four evalua-
tion metrics, we also show the number of parameters and model
size for each competitive method as a cost comparison.

4.2 Results and Comparisons
Table 2 shows the performance of the ten methods for all the men-
tioned metrics. For comparison of the three temporal resolution
RNNs, similar to the results in [26], the results first show that hRNN
is superior to mRNN and lRNN in all the four metrics. According to
observations, this could be due to that the use of an up-sampling
technique in mRNN and lRNN could lose accuracy locally in trans-
lating the high temporal resolution. However, although hRNN out-
performed mRNN and lRNN, the performance is still limited. One
explanation for this may be that hRNN only considers adjacent
memories, so it is difficult to handle the long-term dependencies
over large and varied temporal intervals in the concert video. To

Figure 6: Illustration of the trends of shot changes under
aligned CategoryA. Aligned black andwhite blocks indicate
correct and incorrect trends for shot changes, respectively.

tackle the issue, MF-RNNs (with film-language) is proposed to in-
troduce RNNs with various temporal resolutions to deal with such
problem [26]. By appropriately integrating multi-resolution fused
RNNs and film-language model, the results support that MF-RNNs
(with film-language) can capture longer temporal dependencies
and preserve long-term coherence among multiple shots (refer to
ASC and TSC-AC metrics). That is, compared with hRNN, mRNN
and lRNN, MF-RNNs (with film-language) can achieve more precise
translation results. However, as mentioned earlier, for 1 second
(high temporal resolution) music-to-shot translation, MF-RNNs
(with film-language) requires reading music information for at least
4 seconds (low temporal resolution) and integrating multiple deep-
net models. Such an ensemble framework makes MF-RNNs (with
film-language) too heavy to deploy in practical applications. In
addition, each temporal resolution RNN used in MF-RNNs (with
film-language) is learned directly from ground truth (shot) label,
which can only provide very limited information.

To make the network efficient and easy to deploy, KD [8] is ap-
plied to build a lightweight RNN (student network) that takes the
music representation of high temporal resolution as input to mimic
the output behavior of the teacher network MF-RNNs (with film-
language). As can be seen from Table 2, the lightweight RNN-KD
is comparable to MF-RNNs (with film-language), and sometimes
even better (see ASC metric). A reasonable explanation is that the
lightweight RNN-KD further considers the soft target distribution
(distilled from teacher network) as supervision during the learning
phase, which makes it easier to optimize and has better general-
ization capability for test data [3, 8, 12]. Moreover, a lightweight
network structure with fewer parameters (see section 3.2 and Ta-
ble 2) can also alleviate the phenomenon of overfitting. In addition,
the results also show that the lightweight RNN-KD is superior to
hRNN under the same network structure settings (see section 3.2
and Table 2). Such results confirm that by mimicking the output
behavior (soft target distribution) of MF-RNNs (with film-language),
lightweight RNN-KD can more effectively learn the long-term de-
pendencies over large and varied temporal intervals and preserve
the long-term coherence among multiple shots. However, despite



Table 2: Average ASC, TSC-AC and DST-AC as well as DS, number of parameters and model size.
aaaaaaMetric

Method hRNN [26]
(Assistant
Network)

mRNN [26]
(Assistant
Network)

lRNN [26]
(Assistant
Network)

MF-RNNs [26]
(Teacher
Network)

Lightweight
RNN-KD [8]
(Student
Network)

hRNN-DIL
(Assistant
Network)

mRNN-DIL
(Assistant
Network)

lRNN-DIL
(Assistant
Network)

MF-RNNs-DIL
(Teacher
Network)

Lightweight
RNN-DIL
(Student
Network)

Ground
Truth

Avg. ASC (%) 64.21 62.15 51.58 67.61 70.11 65.44 64.31 55.87 72.63 71.63 -
Avg. TSC-AC (%) 65.93 58.00 53.37 70.90 69.64 73.39 64.16 58.87 74.75 74.88 -
Avg. DST-AC 2.01 2.09 2.17 1.50 1.72 1.90 1.90 2.07 1.49 1.69 -
DS (seconds) 3.12 4.40 5.97 3.32 3.22 3.15 4.19 5.57 3.02 3.49 3.50
#Parameters 1.75M 1.75M 1.75M ∼5.25M 1.75M 1.75M 1.75M 1.75M ∼5.25M 1.75M -
Model Size (MB) 6.69 6.69 6.69 20.10 6.69 6.69 6.69 6.69 20.10 6.69 -

Figure 7: Results of the subjective MOS evaluation

the effectiveness of KD, such one-way knowledge transfer in KD
limits the opportunity for the teacher network to grow with the
student network, and thus indirectly harms the student network.

Based on the above analysis, we develop the DIL mechanism
that enables teacher and student networks to learn and grow from
each other. The results in Table 2 first show that under the DIL
mechanism, the performance of the three assistant networks hRNN-
DIL, mRNN-DIL, and lRNN-DIL is better than the original three,
i.e., hRMM, mRNN, and lRNN. Such results indicate that by using
student feedback (soft target distribution) as supervision, the gen-
eralization capability of each assistant network can be improved.
Once the assistant networks are upgraded, the performance of the
teacher network (MF-RNNs-DIL) will be enhanced accordingly.
Table 2 confirms the claim that MF-RNNs-DIL is superior to the
original teacher network MF-RNNs (with film-language) in almost
all metrics. Regarding the lightweight RNN comparison, it is evident
from Table 2 that the proposed lightweight RNN-DIL outperforms
lightweight RNN-KD in all metrics. It is even better than the origi-
nal MF-RNNs (with film-language). The reason for this result is that
under the DIL mechanism, the teacher network (MF-RNNs-DIL) can
be upgraded based on the feedback from the student network (light-
weight RNN-DIL), so it provides an opportunity for the student
network to learn from a more powerful teacher network. Overall,
the results indicate that under the DIL mechanism, the performance
of both the lightweight RNN and the MF-RNNs (with film-language)
can be further improved. Moreover, for music-to-shot translation,
the lightweight-RNN-DIL only needs to read the music representa-
tion for one second (high temporal resolution), which is efficient.

Subjective evaluation in terms of 5-point mean opinion score
(MOS) is conducted on three concert video sets1. For a concert video
set, each concert video is generated from multiple audience record-
ings that under the guidance of official shot type sequence and the
shot type sequences translated fromMF-RNNs (with film-language),
lightweight RNN-KD, MF-RNNs-DIL, and lightweight RNN-DIL,
respectively. For evaluation, we perform a blind test on each con-
cert video set, which provides subjects with five concert videos in
1The MOS results and three concert video sets are available at
https://sites.google.com/site/m2vsdil/mos.

a random order. After viewing each concert video, the subject is
asked to rate a MOS for three indicators: (1) Does the frequency of
shot switching match the music? (2) Does the timing of cut point
match the music? (3) Overall, does the visual storytelling of shots
match the music? In total, each concert video is evaluated by 29 sub-
jects (recruited from the authors’ laboratory and social media, aged
between 20 and 66, with education from high school to PhD). The
average MOS scores for the three indicators over all concert videos
and subjects are shown in Figure 7. The results on the first and
second indicators clearly show that the lightweight RNN-DIL can
indeed generate more suitable shot sequence, which has the proper
shot switching frequency and cut point timing for a music. Such
results are reflected in objective evaluation (see Table 2), that is,
the DS of the lightweight RNN-DIL is closest to the official (ground
truth) concert video, so superior results can be obtained on both
indicators. On the other hand, although MF-RNNs-DIL has better
performance on ASC and DST-AC, due to the inaccuracy of DS, it
limits the subjective experience in terms of these two indicators.
However, the results show that the MF-RNNs-DIL is superior to
original MF-RNNs (with film-language) and lightweight RNN-KD.
Such results reveal that when evaluating the first and second in-
dicators, the performance of ASC, TSC-AC, and DST-AC will also
affect the subject’s perception. Finally, the average MOS score in the
third indicator confirms that MF-RNNs-DIL and lightweight RNN-
DIL perform well, and can generate appealing music-compliant
professional-like concert videos with better viewing and listening
experiences. We noticed that the average MOS scores of lightweight
RNN-DIL and MF-RNNs-DIL are also quite close to the official con-
cert video, which is really encouraging. The video demo can be
found at https://sites.google.com/site/m2vsdil/demo.

5 CONCLUSIONS
This study introduces a novel deep interactive learning (DIL) mech-
anism that enables the interactive transfer of knowledge between
an ensemble teacher network and a student network to build a com-
pact yet accurate sequence-to-sequence model for music to visual
storytelling of shots translation. Experiments on both objective and
subjective evaluations demonstrate that the DIL mechanism out-
performs the competing methods, and achieves the state-of-the-art
results by using a much smaller network. Leveraging with these
promising outcomes, our future work along this line would focus
on addressing the challenging issues of learning from music to
generate visual effects, which is essential to increase the quality of
audiovisual experience.
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