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Abstract

This paper addresses a new task called referring 3D instance
segmentation, which aims to segment out the target instance
in a 3D scene given a query sentence. Previous work on scene
understanding has explored visual grounding with natural lan-
guage guidance, yet the emphasis is mostly constrained on
images and videos. We propose a Text-guided Graph Neural
Network (TGNN) for referring 3D instance segmentation on
point clouds. Given a query sentence and the point cloud of
a 3D scene, our method learns to extract per-point features
and predicts an offset to shift each point toward its object
center. Based on the point features and the offsets, we cluster
the points to produce fused features and coordinates for the
candidate objects. The resulting clusters are modeled as nodes
in a Graph Neural Network to learn the representations that en-
compass the relation structure for each candidate object. The
GNN layers leverage each object’s features and its relations
with neighbors to generate an attention heatmap for the input
sentence expression. Finally, the attention heatmap is used
to “guide” the aggregation of information from neighborhood
nodes. Our method achieves state-of-the-art performance on
referring 3D instance segmentation and 3D localization on
ScanRefer, Nr3D, and Sr3D benchmarks, respectively.

Introduction
Referring image segmentation aims to make pixel-level pre-
dictions of the target object in an image described by a natural
language expression. With the development of convolutional
neural networks and the assist from several useful language
models, referring segmentation in 2D images has been widely
studied in the past few years. Yet, the joint modeling of lan-
guage and 3D vision is still a new topic waiting to be ex-
plored. In this work, we design a text-guided graph-based
approach for referring 3D instance segmentation—a new task
that, to our best knowledge, has not been well investigated
before. Given a referring expression, the task is to predict
the 3D mask of the target instance in a point cloud. Figure 1
illustrates an example of our referring task.

Unlike 2D images, where pixels are arranged in an orga-
nized configuration, 3D data mostly come in the form of
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point clouds, which tend to be unordered and are more chal-
lenging to learn. Recent techniques transform point clouds
into volumetric cells (voxels) and perform sparse convolution
on occupied cells (Graham, Engelcke, and van der Maaten
2018). Such an approach demonstrates outstanding perfor-
mance on the indoor-scene 3D semantic segmentation task
and is commonly employed as the backbone model.

We adopt the above technique as the backbone for feature
extraction in the proposed two-phase approach. Specifically,
in the first phase of our method, the backbone model ex-
tracts point features and semantic classes. In parallel, an in-
stance centroid estimation branch predicts the offsets to shift
points toward their associated instance center. With these
predictions, a fast mask prediction algorithm is proposed
to generate high-quality 3D instance masks. In the second
phase, we propose the Text-guided Graph Neural Network
that takes the instance features, centers, and text features as
input for instance referring. We use ScanRefer (Chen, Chang,
and Nießner 2020), Nr3D, and Sr3D (Achlioptas et al. 2020)
datasets to formulate the task of referring 3D instance seg-
mentation for evaluating our method. Note that no prior art is
available to solve the proposed new task. Hence, for compari-
son we also apply our method to the problem of referring 3D
object localization and identification, which dose not require
precise mask predictions and has been addressed in a few
recent works. The experimental results show that our method
establishes a strong baseline for the task of referring 3D in-
stance segmentation for future approaches and, with a simple
modification, can also achieve state-of-the-art performance
on referring 3D object localization and identification.

Related Work
Referring Localization and Segmentation in 2D
Referring image localization aims to estimate a bounding box
on the specific object described by the referring expression
(Hu et al. 2016; Nagaraja, Morariu, and Davis 2016; Yu et al.
2016; Hu et al. 2017; Yu et al. 2017, 2018; Deng et al. 2018;
Zhuang et al. 2018; Liu et al. 2019b; Wang et al. 2019a;
Yang, Li, and Yu 2019a,b; Liu et al. 2019a; Sadhu, Chen, and
Nevatia 2019; Yang, Li, and Yu 2020). In contrast, referring
image segmentation predicts a segmentation mask on the
referred object to obtain more precise results (Hu, Rohrbach,
and Darrell 2016; Liu et al. 2017; Li et al. 2018; Margffoy-
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Figure 1: The conventional task of 3D instance segmentation is to extract the 3D masks of all instances in a 3D scene. As a more
challenging task to be addressed in this paper, referring 3D instance segmentation aims to single out the referred 3D instance
based on the visual and textual cues derived from the input 3D point cloud and the query sentence.

Tuay et al. 2018; Ye et al. 2019; Chen et al. 2019; Hu et al.
2020; Huang et al. 2020; Hui et al. 2020).

Many of these works investigate the relationship between
objects. One approach involves modular decomposition (Hu
et al. 2017; Yu et al. 2018), which learns the alignment be-
tween pairwise region relationship and the parsed language
expression (of object relationship). Recently, Graph Neural
Networks (GNNs) have been widely used for modeling ob-
ject relationships or reasoning sentence context for referring
expression grounding. A common approach is to construct
a graph over the objects or regions extracted from the back-
bone model (Wang et al. 2019a; Yang, Li, and Yu 2019a,b;
Huang et al. 2020; Yang, Li, and Yu 2020), or construct a
graph that represents the linguistic structure (Hui et al. 2020).
Although GNNs are powerful in dealing with 2D vision and
language reasoning, we argue that the spatial structures are
more complicated in 3D settings, and it is rather challenging
to tackle 3D tasks using general GNNs. Hence, we propose
an enhanced GNN approach that adapts the linguistic repre-
sentation with each instance node and emphasizes the spatial
relationships between instances to perform reasoning for the
referring 3D instance segmentation task.

3D Instance Localization and Segmentation
The development for 3D deep learning has progressed im-
pressively over the past few years. Pioneering works like
PointNet (Qi et al. 2016, 2017) have been proposed to di-
rectly utilize the raw point cloud as input for semantic seg-
mentation, and extensively used as a backbone feature ex-
tractor for point-based methods (Wang et al. 2018; Yang
et al. 2019; Yi et al. 2019; Pham et al. 2019). On the other
hand, voxel-based methods operate on the volumetric grid
parsed from the input 3D scene. SparseConvNet (SCN) (Gra-
ham, Engelcke, and van der Maaten 2018; Choy, Gwak, and
Savarese 2019) leverages the sparsity of 3D data and applies
efficient sparse convolution operation on occupied voxels.
They demonstrate outstanding performance on 3D semantic
segmentation. MTML (Lahoud et al. 2019) employs met-
ric learning to learn voxel features for clustering voxels of

the same instance, while MASC (Liu and Furukawa 2019)
simultaneously predicts the voxel affinity for instance la-
bel prediction. Additionally, 3DSIS (Hou, Dai, and Nießner
2019) combines multiview 2D features with 3D features for
instance segmentation.

Instance center prediction has proved useful for point cloud
clustering. VoteNet (Qi et al. 2019) learns an offset for each
point that shifts each point toward their corresponding in-
stance center. OccuSeg (Han et al. 2020), PointGroup (Jiang
et al. 2020) and 3D-MPA (Engelmann et al. 2020) all adopt
SCN as the backbone and include center offset prediction in
their framework to ameliorate the 3D instance segmentation
results and obtain impressive performances on popular 3D in-
stance segmentation benchmarks such as ScanNet (Dai et al.
2017) and S3DIS (Armeni et al. 2016).

Following these leading techniques, we also employ SCN
as our backbone model. However, beyond this analogy, we
introduce a fast instance mask prediction method that shows
promising results for 3D instance segmentation.

3D Vision and Language

Compared to the counterpart of referring expression compre-
hension in images, joint inference of language and 3D vision
is a relatively new research field. Existing works focus on gen-
erating fine-grained 3D objects (Chen et al. 2018) or distin-
guishing fine-grained differences between objects (Achliop-
tas et al. 2019) given the language descriptions. These tasks
are confined to individual objects, while we focus on tasks
of singling out items in natural 3D scenes. ScanRefer (Chen,
Chang, and Nießner 2020) introduces a task of localizing
objects within a 3D scene given the referring expressions.
ReferIt3D (Achlioptas et al. 2020) proposes similar datasets,
Sr3D, and Nr3D. Different from ScanRefer, the proposed
task in ReferIt3D assumes that a well-segmented premise in
which localization is not required.

Our work focuses on the referring 3D instance segmenta-
tion task extended from ScanRefer. We also test on Sr3D and
Nr3D to show the effectiveness of our graph-based approach.
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Figure 2: Illustration of the overall architecture. The architecture contains two main parts: (1) instance segmentation and (2)
instance referring. First, given the input 3D scene, the backbone network predicts three attributes for each point: the semantic
class, the offset between each point and its corresponding instance center, and the feature embedding. Based on these predictions,
the points are then clustered to obtain the segmentation results. Next, the instance features and centers are fed into the Text-Guided
Graph Neural Network (TGNN) along with the text features aggregated by the GRU. The TGNN aggregates the multi-modality
features and finally predicts the results.

Method
Given a set of 3D point clouds about a scene and a language
expression S, the referring task aims at segmenting the target
instance identified by S. The proposed method proceeds in
two phases. First, it is designed to perform 3D instance seg-
mentation, where from the learned point features the point
clouds are classified into individual instances and thus the
predicted instance centers. Second, the instance-level features
can be obtained by aggregating point features that belong
to the same instance, which are then fed into a Text-guided
Graph Neural Network (TGNN) to yield the final prediction
of the referred 3D instance. Figure 2 illustrates that the vari-
ous modules of the two phases can be effectively linked to
form an end-to-end trainable neural network for achieving
the referring 3D instance segmentation of point clouds.

Phase 1: 3D Instance Segmentation
To perform instance segmentation, it is feasible to apply any
current leading techniques such as OccuSeg (Han et al. 2020).
However, these techniques often require additional sophis-
ticated modules to enhance their performance. We instead
intend to make our segmentation model lightweight while
maintaining competitive segmentation performance to accom-
modate for the text-guided GNN. Thus, our segmentation
model contains only a single 3D Sparse U-Net (Graham, En-
gelcke, and van der Maaten 2018) for point feature extraction.
The model is learned to encode three different representations
to facilitate the following three tasks: (1) The semantic class
each point belongs to. (2) The point features for grouping
points within the same instance. (3) The coordinate offset
between each point and its corresponding instance center.

Semantic Segmentation. The semantic representations are
learned through a simple cross entropy loss denoted as Lss.
Each predicted semantic class is obtained by choosing the
one with the maximum score.

Feature Embedding. The purpose of learning a proper
feature embedding is to ensure that the resulting model can
adequately group points of the same instance while differenti-
ating those from different instances. The supervised learning

is carried out via a discriminative loss function (De Braban-
dere, Neven, and Van Gool 2017), which has been recently
proved effective for 3D instance segmentation (Lahoud et al.
2019; Han et al. 2020). Specifically, the feature embedding
loss consists of three terms:

Lfe = Lvar + Ldist + α · Lreg , (1)

where α is a weighting parameter and following (Lahoud
et al. 2019), we have

Lvar =
1

C

C∑
c=1

1

Nc

Nc∑
i=1

[‖µc − fi‖ − εvar]2+ , (2)

Ldist =
1

C(C − 1)

C∑
c=1

C∑
c 6=c′=1

[δdist − ‖µc − µc′‖]2+ , (3)

Lreg =
1

C

C∑
c=1

‖µc‖ . (4)

Note that the notations above assume there are C ground-
truth instances/clusters and Nc is the total number of points
in the cth instance, whose average feature is calculated by
µc = 1

Nc

∑Nc

i=1 fi. The distance parameter εvar in (2) is
the expected maximum radius of a cluster, while δdist in
(3) is the minimum distance between two cluster centers.
[x]+ = max(0, x) is just like a linear rectifier.

Offset Prediction. Denote the center of ground-truth clus-
ter c ∈ {1, . . . , C} as oc ∈ R3. The assignment i 7→ c(i)
specifies that point xi ∈ R3 is associated with the ground-
truth cluster with center oc(i). Similar to VoteNet (Qi et al.
2019), we predict for each point xi its geometry offset ∆xi,
to the ground-truth center oc(i) by optimizing

Lcen =
1

N

N∑
i=1

smooth`1(∆xi − (oc(i) − xi)) , (5)

where N =
∑C
c=1Nc is the total number of points in the

point clouds. To ensure the predicted offset points toward the
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correct direction, we add the following directional loss:

Ldir =
1

N

N∑
i=1

1−
(

∆xi
‖∆xi‖

·
oc(i) − xi
‖oc(i) − xi‖

)
. (6)

We have so far described how our method yields the se-
mantic class labels, the learned point features, and the point-
wise offsets. These modules indeed function as essential
pre-processing and are mostly benefited or motivated from
existing techniques as specified in the relevant work. In the
remaining of this section, we detail the central part of our
approach to referring 3D instance segmentation.

3D Mask Prediction. Phase 1 concludes with the task to
obtain the mask prediction for 3D instance segmentation. We
focus on the point features, {f1, f2, . . . , fN} and the offset
predictions, {∆x1,∆x2, . . . ,∆xN}. After shifting points to
each predicted center, namely, {xi + ∆xi}Ni=1, points within
the same instance are expected to be closely clustered both
in the geometry space as well as the feature space. Under
this premise, our approach first estimates the instance centers
and then iteratively refine them by sampling points, favoring
those that have shorter distances to their respective cluster
center in both the geometry and feature space.

Due to the concern of computation efficiency in training
the model, we need to develop an effective sampling scheme
to well approximate the essential cluster distribution of the
given point clouds. Observe that those points with a small
offset magnitude ‖∆x‖ are deemed to be closer to its instance
center and assume higher confidence to be clustered. Thus,
to begin with, we sample M points (M � N ) according to
the following Gaussian distribution:

x ∼ p(‖∆x‖) ∝ exp

(
‖∆x‖2

−2σ2

)
(7)

such that points with small ‖∆x‖ have a higher probability
to be selected. We arrange the set of sampled points in order
of ascending ‖∆x‖ and denote it as Q̃ = {(x̃i, f̃i)}Mi=1. Let
x̃i∗ ∈ Q̃ be the one with the smallest index and initially
i∗ = 1. We then cluster all other sampled points in Q̃ that
are close to x̃i∗ in both the geometry and feature space, and
use average pooling to obtain the center X̃ and the feature
F̃ of the resulting cluster proposal. All these sampled points
relevant to forming the proposal are then removed from Q̃.
The process is repeated until Q̃ is empty, and the resulting
set of cluster proposals is denoted as P = {(X̃c, F̃c)}. In
Algorithm 1, we list the steps of sequential re-sampling and
the use of non-maximum suppression to refine P into M =
{m1,m2, . . . ,mC}, the set of C instance masks.

Phase 2: Referring Segmentation via TGNN
To achieve referring instance segmentation, we first need a
proper feature representation for the language input S, say, of
length T . We use the pre-trained GloVE model (Pennington,
Socher, and Manning 2014) to encode each word into a 300-d
vector. These GloVE features are sequentially fed into a GRU
network to aggregate the context of the sentence and output
the textual embeddings E = {e1, e2, . . . , eT }.

Algorithm 1 Sequential Re-sampling for Instance Masks

Input: Point clouds: P = {(xi, fi)}Ni=1 ∈ RN×(3+d) ; Clus-
ter proposals: P = {(X̃c, F̃c)} ; δ1, δ2, σ1, σ2
Output: Masks M = {m1,m2, . . . mC}.

1: for c = 1 to |P| do
2: Initialize ε =∞
3: while ε > 10−2 do
4: Sample P′c w.r.t. bilateral Gaussian distribution:

5: (x, f) ∈ P ∼ 1
Z exp

(
‖X̃c−x‖2
−2σ2

1
+ ||F̃c−f ||2

−2σ2
2

)
6: (X̃ ′c, F̃

′
c) = 1

|P′c|
∑

(x,f)∈P′c
(x, f)

7: ε = ‖X̃ ′c − X̃c‖
8: (X̃c, F̃c)← (X̃ ′c, F̃

′
c)

9: end while
10: end for
11: for c = 1 to |P| do
12: mc = [mc1,mc2, . . . ,mcN ], where
13: mci = 1[ ‖xi − X̃c‖ ≤ δ1 ∧ ‖fi − F̃c‖ ≤ δ2 ]
14: Add mc to M
15: end for
16: Apply NMS to M to remove overlapped masks.

Considering now the predicted C instance features
{µ1,µ2, . . . ,µC} and the just-described textual embeddings,
a simple scheme to pinpoint the referring target is to find
the instance feature which matches the most to the textual
embeddings. However, such a naı̈ve approach ignores that
spatial relationships between a candidate and its surround-
ing instances indeed play important roles in identifying the
target instance such as in the case of referring the chair next
to the table, the bed under the window, etc. To resolve this
difficulty, we establish a Text-guided Graph Neural Network
(TGNN) model to effectively correlate instance features with
textual embeddings, while taking account of the spatial con-
text among the object instances. An overview of our TGNN
is shown in Figure 3. We next describe the key components
leading to the proposed TGNN formulation.

Instance Graph. With the obtained C instances, we con-
struct a directed instance graph G = {V, E} representing the
overall scene structure, where the vertices represent the in-
stances, and the directed edges are defined by each instance’s
K-nearest (based on Euclidean distance) neighbors. Note that
a directed edge (u, v) ∈ E from node u to node v indicates
that u is one of the K nearest neighbors of v, but the opposite
may not hold, i.e., (v, u) could be absent in E .

Relative Coordinates Encoding. The center of the cth in-
stance is oc as in (6). Analogously, its K-nearest neighbor-
hood, including the centers of the K nearby instances can be
denoted as Nc = {o1

c ,o
2
c , . . . ,o

K
c }. In the proposed TGNN

learning, we explore not only the coordinates relative to the
whole scene, but also the relative positions between an un-
derlying instance and its surrounding K neighboring objects.
Taking the consideration into account, we use an MLP layer
to encode the relative instance coordinates of the kth neigh-
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Figure 3: Illustration of the Text-Guided Graph Neural Network. Given the instance graph and textual features, our TGNN
not only learns to match the instance features with textual embedding but also encodes the spatial context among the object
instances. For each instance, we weight the text features based on the attention score related to the instances. On the other hand,
we aggregate the spatial relation between the centering instance and the neighboring instances. The multi-modal features are then
combined to form the refined instance features.

bor of instance c by

rkc = MLP(oc;o
k
c ; (oc − okc ); ‖oc − okc‖) , (8)

where the notation “;” denotes the concatenation operation,
and ‖ · ‖ is the Euclidean distance.

Instance-Dependent Language Attention. Besides pro-
viding the relative geometry information, the K-nearest in-
stance neighborhood can also be used to evaluate the lan-
guage attention. To this end, let the corresponding (local)
instance features of Nc be {µ1

c ,µ
2
c , . . . ,µ

K
c }. Then, the kth

instance ofNc influences the feature representation of et ∈ E
by exerting the following attention weight:

akc,t =
exp(φ(µkc )>ψ(et))∑

et∈E
exp(φ(µkc )>ψ(et))

, (9)

where φ and ψ are MLPs. Each attention weight akc,t can
be considered the relevance score between the tth textual
embedding et and the kth neighbor of the cth instance in the
scene. We then obtain the instance-dependent local sentence
embedding Sc = {s1c , s2c , . . . , sKc } with respect to the cth
instance and its neighborhood Nc where

skc =
T∑
t=1

akc,tψ(et), for 1 ≤ k ≤ K. (10)

Multi-modality Aggregation. From (8) and (10), we can
refine each instance feature µc into µ̂c by incorporating
the respective relative coordinates encodings as well as the
instance-dependent local sentence embeddings. We have

µ̂c = φ(µc) +
K∑
k=1

φ(µkc )� skc � rkc , (11)

where � is the element-wise multiplication. In our formu-
lation, the feature aggregation of cluster/instance c in (11)
is implemented via a graph neural network where the multi-
modality fusion is realized by the summation of the accumu-
lated messages from the K neighboring instances. Despite

that the message fusion involves features accounting for dis-
criminative embedding, sentence embedding, and relative
coordinate geometry, we choose to characterize the GNN as
text-guided to manifest the pivotal role of the language cue
in solving referring 3D instance segmentation.

Score Prediction. The final refined features are then
passed into an MLP followed by the softmax function to
obtain the final score for each instance:

yc = MLP(µ̂c) (12)

ŷc =
exp(yc)∑C
c=1 exp(yc)

. (13)

The referring loss is the cross entropy loss denoted as Lref .

Experiments

Training Details

We pre-train a sparse 3D UNet feature extractor for 3D in-
stance segmentation. The pre-trained weights are loaded and
kept fixed during the training of TGNN for referring 3D in-
stance segmentation. Each training iteration involves a batch
of scenes where all the referring sentences for those scenes
are fed into the network to compute the loss. For the experi-
ments using GRU as the language extractor, we use a batch
size of 8 and an initial learning rate of 0.001 with decay
of 0.1 every 100 epochs. The maximum timestep and sen-
tence length for GRU are set to 80. For the experiments with
BERT (Vaswani et al. 2017; Devlin et al. 2018), the weights
of the BERT model and TGNN are updated separately. The
initial learning rate is 0.0002 for BERT with decay of 0.5
every 10 epochs, while the initial learning rate is 0.001 for
TGNN with decay of 0.5 every 50 epochs. The batch size
is 16, and the maximum sentence length is 80 as in GRU.
The number of nearest-neighbors is 16 unless specified. The
number of layers in the GNN is set to 3.
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Dataset
We evaluate our method using recent 3D referring datasets in-
cluding ScanRefer (Chen, Chang, and Nießner 2020) and
Nr3D/Sr3D of ReferIt3D (Achlioptas et al. 2020). The
datasets are based on ScanNetv2 (Dai et al. 2017), which
contains 1,513 richly-annotated 3D reconstructions of indoor
scenes. These datasets all follow the official ScanNet splits.

ScanRefer. ScanRefer contains 51,583 natural language
expressions of 11,046 objects from 800 ScanNet scenes. The
dataset is originally introduced for the task of referring object
localization. We extend the task to referring 3D instance
segmentation by taking the instance masks from ScanNet.

Sr3D and Nr3D. Sr3D (Spatial Reference in 3D) contains
83.5K synthetic expressions generated by a simple compo-
sition template. Nr3D (Natural Reference in 3D) has 41.5K
human expressions collected as ReferItGame (Kazemzadeh
et al. 2014). Both datasets’ goal is to ground a natural lan-
guage expression to an object in the 3D scene.

Results and Ablation Study
To our knowledge this is the first work to solve the task
of referring 3D instance segmentation. Without available
prior work for comparison, we evaluate our method against
a carefully designed baseline and conduct ablation study to
demonstrate the effectiveness of our method.

The ablation results are shown in Table 1. We use mean
IOU and Acc@kIOU as the evaluation metrics. For the base-
line “concat” model, we concatenate the instance features
with the output of the last layer of the language extractor
to obtain a fused vector for each object. The fused vector is
passed through an MLP to obtain the predictions. Our full
TGNN model achieves an increase of +4 mIOU with GRU
and +5.3 mIOU with BERT over the baseline model.

We also evaluate the effects of different modules. In table 1,
R denotes the relation coordinate encoding and A denotes
the Instance-Dependent Language Attention in each graph
layer. For the ablation without relation, we simply remove the
relation encoding branch in the GNN layers. For the ablation
without language attention, the output of the language extrac-
tor goes through an MLP and tiles up to match the shape of
relation and instance features for graph feature aggregation.
The ablation analysis shows that the relation encoding affects
the most and gives an increase of +1.4 mIOU.

For the ablation with different language extractors, the lan-
guage attention module yields a minor gain of +0.5 mIOU
when using GRU as the language extractor. In contrast, the
gain from adopting an language attention module is larger
(+1.0 mIOU) when using BERT for language feature extrac-
tion owing to the more powerful language representations
learned by BERT. We visualize several qualitative results in
Figures 4 and 5.

Referring 3D Localization and Identification
Comparison with ScanRefer Network. Although our
task of interest is referring 3D instance segmentation, our
method can also predict 3D bounding boxes as by-products
for comparing with the ScanRefer network (Chen, Chang,

Method mIOU (%) Acc@0.25 Acc@0.5
Concat 22.6± 0.3 30.4± 0.5 24.8± 0.4

GRU w/o R/A 24.0± 0.2 32.1± 0.2 26.7± 0.3
GRU w/o A 25.6± 0.2 34.2± 0.3 28.6± 0.4
GRU w/o R 24.8± 0.4 33.4± 0.4 27.5± 0.6

GRU 26.1± 0.2 35.0± 0.4 29.0± 0.3
BERT w/o A 26.8± 0.3 35.9± 0.3 30.1± 0.4

BERT 27.8± 0.2 37.5± 0.4 31.4± 0.3

Table 1: Ablations and comparison with baseline on the Scan-
Refer validation set. (R: Relation; A: Attention).

Figure 4: Examples of our predictions on the ScanRefer vali-
dation set. The blue, red, and green masks indicate the ground
truth, the prediction of the baseline “concat” model, and our
TGNN, respectively. In these examples, TGNN predicts cor-
rect results by successfully modeling the relationship around
the referred instances while the baseline “concat” model fails
due to its lack of spatial context.

and Nießner 2020) on the task of referring localization. To
obtain a 3D bounding box for a referred instance, we sim-
ply take the minimum and maximum of the XYZ values
of points in the segmentation mask. Table 2 shows the re-
sults. The “unique” and “multiple” subsets indicate whether
or not multiple instances of the same object class appear in
the scene for the referred object. Our model with a BERT
language extractor achieves better performance compared to
ScanRefer on Acc@0.5. The performance on Acc@0.25 is
slightly worse but on-par with ScanRefer, probably due to
the over-simplified strategy we use for deriving bounding
boxes from masks and the differences in the evaluation crite-
ria of localization and segmentation. If a segmentation mask
misses a few points at the boundary, it only results in a small
change in segmentation IOU; however, the bounding box size
might vary a lot because of those missing boundary points.
Since this work focuses on referring 3D instance segmen-
tation, we do not seek to minimize the bounding-box loss
like the ScanRefer network. Also, the ScanRefer network
uses XYZ, RGB, multiview, and normal features while we
only use XYZ and RGB. Nevertheless, the better accuracy of
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Unique Multiple Overall
Method Acc@0.25 (%) Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer 63.04 39.95 28.91 18.17 35.53 22.39
Validation OursGRU 64.50 53.01 27.01 21.88 34.29 27.92

OursBERT 68.61 56.80 29.84 23.18 37.37 29.70
ScanRefer 68.59 43.53 34.88 20.97 42.44 26.03

Test OursGRU 62.40 53.30 28.20 21.30 35.90 28.50
OursBERT 68.30 58.90 33.10 25.30 41.00 32.80

Table 2: ScanRefer object localization results evaluated by accuracy at IOU 0.25 and IOU 0.5

Method Overall Easy Hard View-dep. View-indep.

Nr3D ReferIt3D 35.6%± 0.7% 43.6%± 0.8% 27.9%± 0.7% 32.5%± 0.7% 37.1%± 0.8%
Ours 37.3%± 0.3% 44.2%± 0.4% 30.6%± 0.2% 35.8%± 0.2% 38.0%± 0.3%

Sr3D ReferIt3D 40.8%± 0.2% 44.7%± 0.1% 31.5%± 0.4% 39.2%± 1.0% 40.8%± 0.1%
Ours 45.0%± 0.2% 48.5%± 0.2% 36.9%± 0.5% 45.8%± 1.1% 45.0%± 0.2%

Table 3: Comparison with ReferIt3D on the accuracy of referring object identification

Figure 5: Reasonable failure cases of our predictions on the
ScanRefer validation set. The blue masks indicate the ground
truths while the green masks refer to our predicted instances.
The predictions are incorrect but reasonable since the refer-
ring descriptions are ambiguous to pinpoint a unique target
among multiple objects that conform with the expression.

our method at higher IOU shows that our method can more
precisely localize the referred target.

Comparison with ReferIt3D. ReferIt3DNet (Achlioptas
et al. 2020) assumes that object masks for each scene are al-
ready given in the input, and the task is just to select which ob-
ject is the referred object. PointNet++ (Qi et al. 2016) is used

to extract the feature vector for each candidate. Object vectors
are then fed as nodes into a dynamic graph-convolutional net-
work (DGCNN) (Wang et al. 2019b). To compare with their
method, we replace their DGCNN with our proposed TGNN.
We set the number of nearest-neighbors K = 7 to match
their settings. The results are shown in Table 3. For results
not presented in the original ReferIt3D paper, we re-run their
code and report the results. Our model shows improvements
over ReferIt3DNet, especially when the description context
is more difficult. In the “hard” context cases (more than two
instances of the same object class in the scene), we achieve
improvements of +2.7% on Nr3D and +5.4% on Sr3D. For
the view-dependent context (the referring expression depend-
ing on camera view), we see gains of +3.3% and +6.6% for
Nr3D and Sr3D. The results suggest that our graph formula-
tion of TGNN is more effective than DGCNN in modeling
the context information.

Conclusions
The core of our method is the Text-guided Graph Neural
Network (TGNN)—a graph-based approach for referring in-
stance segmentation in 3D scenes. Given the segmented 3D
instances in the first phase of our method, TGNN not only
learns to aggregate textual features based on the neighboring
local structure of each instance but also captures the spatial in-
teractions centering on each object. Our method shows signif-
icant improvements over the baselines on ScanRefer, NR3D,
and SR3D datasets, justifying its effectiveness in modeling
instance relationships for referring 3D instance segmentation.
Besides, since TGNN operates under the premise that all
instances are well segmented, our Sequential Re-sampling
Mask Prediction algorithm plays an indispensable role in the
entire framework to produce fast and promising instance seg-
mentation results. Referring 3D instance segmentation is a
relatively new task to be explored. Further improvements can
certainly be achieved with the advances in computer vision
and natural language processing, whereas the crux will still
be on the novel integration of techniques from both fields.
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