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Abstract

Local learning for classification is useful in dealing

with various vision problems. One key factor for such ap-

proaches to be effective is to find good neighbors for the

learning procedure. In this work, we describe a novel

method to rank neighbors by learning a local distance func-

tion, and meanwhile to derive the local distance function by

focusing on the high-ranked neighbors. The two aspects

of considerations can be elegantly coupled through a well-

defined objective function, motivated by a supervised rank-

ing method called P-Norm Push. While the local distance

functions are learned independently, they can be reshaped

altogether so that their values can be directly compared. We

apply the proposed method to the Caltech-101 dataset, and

demonstrate the use of proper neighbors can improve the

performance of classification techniques based on nearest-

neighbor selection.

1. Introduction

Supervised learning for classification is an area that in-

corporates rigorous analysis, practical techniques, and rich

applications. When dealing with computer vision tasks, its

effectiveness over other approaches is particularly manifest,

owing to the inherently complicated nature of the problem

itself as well as the data. In this work, our goal is to pro-

pose a new technique based on ranking that improves local

learning. To demonstrate the advantage of our method, we

apply it to object categorization, and carry out insightful

comparisons to other related ones.

In the literature of learning for classification, techniques

based on local learning now attract much attention, mostly

because a single global model may not fit nowadays data

complexity. Among the numerous localized approaches,

the nearest-neighbor (NN) technique may be one of the

simplest in concept and in practice. While the nearest-

neighbor framework is originally proposed as a tool for pat-
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Figure 1. The dashed ellipse in (a) and the ellipse in (b) show

level contours of two local distance functions learned at the black

square. In (a) the distance function tries to fit more data but it

causes a nearest-neighbor search scheme easier to encounter sam-

ples that are in a different class.

tern recognition since its introduction in the 1950’s [16],

many researchers also adopt it as a classification method

and achieve satisfactory results. In particular, there are ap-

proaches that directly form a k-nearest-neighbor classifier,

and focus on organizing training data to improve accuracy

and efficiency [19, 25]. The emphasis could also be on

learning local distance functions to best separate training

samples according to their class label and, for example, use

nearest-neighbor classifier as a post-procedure [7]. On the

other hand, one could try to find certain nearest neighbors

first, and then learn a metric or a local classifier [26].

While the concept of nearest neighbor or k nearest neigh-

bors has been broadly employed, we notice that the term

“neighbor” itself is often defined only with a simple dis-

tance function such as the L2 distance (Euclidean distance),

or with a learned distance function that is optimized over

either the whole data or those within a manually specified

region. Therefore, the selected “neighbors” may include

some undesired samples, as is illustrated in Figure 1. Our

approach toward addressing this problem is closely related

to the “P-Norm Push” ranking formulation by Rudin [15].

Specifically, for each labeled sample, the proposed tech-

nique learns a local distance function and ranks its neigh-

bors at the same time. As a result, we avoid manually pre-

defining the neighbors of a training sample in learning the

respective local distance function, which will turn out to be
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Figure 2. Some examples of intraclass variations: Consider the Wild Cat class in Caltech-101. (a) A typical instance of a wild cat for

reference. (b) A wild cat in a different pose. (c) A wild cat under a different lighting condition. (d) A drawing of wild cat with some

unnatural features. (e) A wild cat example in which over 60% of the image belongs to the background.

more precisely explaining the relationship between the sam-

ple and its high-ranked neighbors (whose ranks are given by

the distance function itself). These distance functions are

learned independently to fit local properties of each sam-

ple, and are subsequently reshaped altogether to avoid data

overfitting and achieve a unified effect. Classifying a test-

ing sample can then be conveniently done through these dis-

tance functions to find neighbors in training data which are

very likely in the same class with this testing sample.

Throughout this work we focus on the classification

problem of visual object categories, and show that the pro-

posed method can compete with other related techniques as

well as the ability to improve them. The paper is organized

as follows. In Section 2 we discuss related work, and then

explain the P-Norm Push formulation in Section 3. The de-

tails of our approach are presented in Section 4, while some

experiments and discussions are included in Section 5.

2. Related work

Despite a long history of research on visual object clas-

sification and its related problems, some noteworthy rapid

progress has been made in recent years, especially on those

applications involving numerous object classes. For exam-

ple, the first reported recognition rate in 2004 on the popular

102-class image dataset Caltech-101 is 17% [6]. In 2006 a

number of methods, e.g., [7, 26], have boosted the accuracy

rate to near 60%. More recently, the march of recognition

rate on this dataset is now around 87% [23].

Among the many efforts on solving this particular appli-

cation, one important issue is often discussed: the intraclass

variations due to the sparsely distributed objects for describ-

ing a general concept. In Figure 2, we show some exam-

ples of intraclass variations, which are caused by differ-

ent poses, lighting conditions, representations (painting or

photographing), and backgrounds. These variations make

the visual object classification a very challenging problem,

since it is hard to find an overall applicable criterion to sep-

arate objects from different classes. Previous approaches

to addressing intraclass variations generally proceed on two

fronts: one is to develop a good image representation so

that it becomes easier to distinguish different classes by

simple calculations on the representation, and the other is

to learn some sophisticated classifiers by machine learning

techniques. Although the emphasis could be on one or the

other, current methods mostly have their formulations es-

tablished by investigating both the two aspects. After all,

a more meaningful image representation can often improve

the efficiency of a fine classifier, and vice versa.

Representing an image for object categorization appears

frequently in the form of a set of patches. (We also adopt the

representation.) While such a representation is already flex-

ible, adding various types of image feature to record differ-

ent properties of a patch have been further proposed to han-

dle issues caused by, say, the changes in an object’s shape

and pose. The SIFT framework by Lowe [12] is one of

the most successful and widely used appearance feature de-

scriptor. In its original version, Lowe first uses a difference-

of-Gaussian (DoG) function to find scale-space extrema in

an image, and then calculates a 3-D histogram over gradient

locations and orientations within each patch covering an ex-

tremum. Subsequently, Csurka et al. [5] describe a bag-of-

keypoints model, based on the SIFT descriptor, to quantize

the collected features into a finite dictionary, and represent

each image as a histogram over this dictionary. They then

apply the SVM classification method [22] to the new repre-

sentation to achieve better scores than those from applying

SVM to the original image data. While the SIFT feature

seems to be effective in object recognition, related studies

on feature comparisons [14, 20] have pointed out that SIFT

is more conducive in the context of matching than in classi-

fication. On the other hand, the shape descriptor geometric

blur (GB) by Berg and Malik [2] has also attracted much

attention lately. Like the SIFT feature, geometric blur cap-

tures the gradient information in a patch. The main differ-

ences to SIFT are that in geometric blur the gradient infor-

mation is blurred according to the distance to the patch cen-

ter, and the information is sampled sparsely. In this work,

the geometric blur is adopted as the main feature on patches,

and the details will be explained later.

Besides finding a robust feature, there are efforts to cor-

relate the relationships between features to generate a more

appropriate image representation, such as the pyramid rep-



resentation [9] and the clique representation [10]. By fea-

ture reweighting, Marszaek and Schmid [13] directly em-

bed the spatial relationship between features into training

and testing. In [21] Sudderth et al. model the spatial rela-

tionship with the transformed Dirichlet processes. Alterna-

tively, Wang et al. [24] explore the occurrence of feature

pairs with the dependent Hierarchical Dirichlet process.

From the perspective of learning, localized and adaptive

methods stress more on variances between individuals. For

example, the exemplar method [4] can be considered as to

generate multiple classifiers for dealing with different sub-

sets in each class. A local distance function learning for

classification can be seen in [7]. The work by Lin et al. [11]

suggests a method for generating spatially adaptive clas-

sifiers which combine features of different types accord-

ing to local properties. One notable fact is that the above-

mentioned three techniques all need to find some “nearest

neighbors”: in [4] the testing process is to find the most

similar exemplar for a test image; in [7] the authors utilize a

k-NN classifier with the learned distance functions in test-

ing; in [11] the testing process is to first find the nearest

neighbor in training data for the test image and then apply

the corresponding classifier. Furthermore, although in [26]

the emphasis is on the speed-up effect by incorporating k-

NN into an SVM, the use of k-NN also improves the accu-

racy in some situations. These observations all indicate the

critical role of the “nearest neighbors” in localized methods

on object categorization.

3. Neighbor ranking in classification

As stated in Section 1, we are to learn, say, for sample

I , a distance function to rank its neighbors for improving

object classification. Since a closer sample generally im-

plies a higher probability to be included in a k-NN scheme,

one would expect the distance function to be learned is af-

fected more by those samples near I , specified by the dis-

tance function itself. That is, if we put the samples into an

ordered neighbor list according to the measurements by the

distance function in an increasing manner, the top portion of

the list should be more influential in learning. To this end,

we consider P-Norm Push in that the technique inherently

tends to pay more attention to the top portion of a ranked

list.

3.1. PNorm Push

The P-Norm Push framework by Rudin [15] is designed

for the supervised ranking problem. The method is based

on a key observation that in many ranking applications only

the top portion of the list is used. For instance, when us-

ing a search engine to query information from the Internet,

most users only look at the information given in the first

few pages. Thus, in [15], the author proposes that a specific

price is assigned for each misrank, and the penalties given to

the misranks near the top are significantly higher than those

given to the misranks towards the bottom. Specifically, con-

sider a set of training samples labeled as +1 or −1. Let the

set of positive samples be {xm}m∈M and the set of nega-

tive samples be {xn}n∈N . The aim now is to find a ranking

function f : x ∈ X → R from the domain of x, denoted

as X , to the set of real numbers. The main difference be-

tween ranking and other regression problems is that for an

arbitrary sample x, the exact value of f(x) is not important,

but the order relation between f(xm) and f(xn) is, where

xm and xn are a positive-negative sample pair.

To achieve this purpose in P-Norm Push, a Height(·)
function is introduced to each negative sample xn, and is

defined as the number of positive samples that are ranked

beneath it. That is,

Height(xn) =
∑

m∈M

1[f(xm)≤f(xn)] . (1)

The idea of P-Norm Push is to push a negative sample with

large height down from the top. Hence a monotonically

and rapidly increasing function from R
+ to R

+, g(r) =
rp, p ≫ 1, is adopted to give a proper price g(Height(xn))
on a negative sample xn, where p is adjustable for different

needs. With (1), we obtain the primal objective functional

of P-Norm Push:

R(f) =
∑

n∈N

g(Height(xn)) (2)

=
∑

n∈N

(
∑

m∈M

1[f(xm)≤f(xn)]

)p

. (3)

More details and discussions about Height(·) and the price

function g can be found in [15].

3.2. Local learning with ranking

To explain how we use P-Norm Push to improve local

learning for object categorization, we first need to introduce

some notations for the ease of our discussions. We shall

denote the ℓth training sample by Iℓ and the whole training

set as {Iℓ}ℓ∈L. The expression C(ℓ) is used to represent the

function which extracts the index set such that if m ∈ C(ℓ)
then Im has the same class label of Iℓ. (We are now dealing

with a multiclass classification problem.) The notation Dℓ

denotes the specific distance function learned for Iℓ, and

the distance from Iℓ to some Im is represented as Dℓ(Im).
Note that in this setting Dℓ(Im) is not necessarily equal to

Dm(Iℓ), the distance from Im to Iℓ.

Consider now a given sample Iℓ. In our formulation,

whenever the term “nearest neighbors” is mentioned, it

means that only a few samples that are in some sense close

to Iℓ are considered. In a classification task, these few



neighbors are often assumed to have higher probabilities to

be in the same class with Iℓ. Furthermore, in local learning

for classification, if the meanings of the terms “neighbor,”

“near,” and “far” with respect to Iℓ all come from a learned

distance function Dℓ, we in fact need not to worry about the

exact distances from Iℓ to others, but we do care about the

relative magnitude between distances Dℓ(Im) and Dℓ(In)
where m ∈ C(ℓ) and n /∈ C(ℓ). One can easily check

that this is indeed very similar to the ranking problem if

we also list the samples according to the distances Dℓ(Iℓ′),
ℓ′ ∈ L \ {ℓ}. The only difference is that in a ranking prob-

lem the samples listed in the top portion are with higher val-

ues, but here the samples in the top portion of a neighbor list

are with smaller values. In view of that only a few nearest

neighbors are used, we therefore need to make sure that the

top portion of the neighbor list is correctly constructed. And

this aspect of consideration is identical to the main property

in the P-Norm Push framework.

Similar to the formulation of a distance function de-

scribed by Frome et al. [7], we define the distance function

Dℓ for Iℓ to be a weighted sum of several elementary dis-

tance functions dℓis:

Dℓ(Im) =

Eℓ∑

i=1

wℓidℓi(Im), (4)

where Eℓ is the number of elementary distance functions

introduced on Iℓ, and is indeed the number of features de-

tected in Iℓ. For notation simplicity, we further let wℓ be the

weight vector [wℓ1 wℓ2 · · · wℓEℓ
]T and d

m
ℓ denote the vec-

tor [dℓ1(Im) dℓ2(Im) · · · dℓEℓ
(Im)]T . Thus equation (4)

can be rewritten in an inner product form:

Dℓ(Im) = wℓ · d
m
ℓ . (5)

Henceforward what we have to learn is a distance function

parameterized by wℓ to sort samples other than Iℓ. We now

introduce a cost on each sample not in the same class with

Iℓ (cf. the Height function defined for negative samples in

[15]), and the definition is given by

Cost(In:n/∈C(ℓ)) =
∑

m∈C(ℓ)

1[wℓ·dm

ℓ
≥wℓ·dn

ℓ
] . (6)

That is, the cost of a particular sample In:n/∈C(ℓ) is the num-

ber of samples that are in the same class with Iℓ and lo-

cated further than In according to Dℓ. A sample In:n/∈C(ℓ)

with a large cost is expected to be pushed far away from Iℓ.

Here the price function g(r) = rp in P-Norm Push is again

adopted and the objective function to be minimized is

F (wℓ) =
∑

n/∈C(ℓ)



∑

m∈C(ℓ)

1[wℓ·dm

ℓ
≥wℓ·dn

ℓ
]




p

. (7)
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Figure 3. We compute the HSV histograms in 22 overlapping re-

gions in different scales. Each histogram is then normalized by the

total number of pixels in the region.

While in [15] Rudin points out that the indicator function

in (7) can be replaced by any non-negative, monotonically

increasing function which is an upper bound of the indicator

function for easier optimization, in our case we still use the

original objective in that we can quickly neglect useless dℓis

in the optimization algorithm. The details will be explained

in Section 5.1.2.

3.3. Distance function

The Dℓ in (4) is in a general form. If all samples in

an application are of the same size and an elementary dis-

tance function dℓi(Im) just returns the squared difference

between the two respective ith pixels of Iℓ and Im, then

Dℓ is simply a squared Mahalanobis distance with a diago-

nal covariance matrix. However, we choose to represent an

image as a bag-of-features, and set an elementary distance

dℓi(Im) to be the smallest distance between the ith feature

of Iℓ and any detected feature of the same type in Im.

In our experiments we adopt two kinds of features, as

they are often used in related work, e.g., [7, 8, 26]. They

are the geometric blur and HSV color histogram. We fur-

ther apply two different settings to each kind, and obtain

four types of features. As in [8], the two types of geometric

blur features, termed as GB1 and GB2, are extracted under

different scales with radii of 42 and 70 pixels, respectively.

The HSV histograms are also extracted under two schemes:

one is to compute the histograms on some 84 × 84-pixel

patches (sampled as in GB1 and GB2), the other is to com-

pute the histograms in 22 regions extracted with a pyramid

scheme similar to that in [9] (see Figure 3). The two types

of HSV histogram are named as HSV1 and HSV2, respec-

tively. We compute an HSV histogram in the same way as

in [7] and extract the geometric blur features by modifying

the original version1 in [2]. Notice that for GB1, GB2, and

HSV1, the feature-to-set distance is calculated between fea-

tures of the same type; for HSV2, the feature-to-set distance

is from distances between features at the same position.

3.4. Preliminary results

So far we have explained how to learn a distance function

that is suitable for ranking neighbors. To justify the formu-

lation, we carry out an experiment for k-nearest-neighbor

1 http://www.cs.berkeley.edu/∼aberg/demos/gb demo.tar.gz
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results from our learned distances; the red curve (with circle mark-

ers) shows the results from a maximum margin method; the green

curve (with dot markers) shows the results from a combination of

the L
2 distances defined on geometric blur and color histograms.

selection, and compare our proposed distance function with

the raw distance and the distance learned by a maximum

margin method. The raw distance is from setting the weight

wℓi for a particular sample Iℓ to 1 if the ith feature is of type

GB1 or GB2, and to 1
18 if the ith feature is of type HSV1

or HSV2. With the maximum margin method, we learn a

distance function for a particular Iℓ via the following con-

strained optimization:

min
wℓ,ξ

1

2
‖wℓ‖

2 + λ
∑

m,n

ξmn , (8)

s.t. ∀ ℓ, m, n, m ∈ C(ℓ), n /∈ C(ℓ) ,

wℓi ≥ 0, ξmn ≥ 0 ,

wℓ · d
n
ℓ − wℓ · d

m
ℓ ≥ 1 − ξmn .

This optimization is similar to those introduced in [18] and

[7]. We follow the technique described in [8] to optimize

(8). The experiment is done with the Caltech-101 dataset

by randomly selecting 15 images from each class and learn-

ing a distance function on each image. The k nearest neigh-

bors of each image are identified according to its respec-

tive distance function. For each sample Iℓ, we calculate the

probability the k nearest neighbors fall in C(ℓ) (with dif-

ferent values of k). The comparisons between these three

distance functions are shown in Figure 4. We can see that

our method performs particularly well when k is small, and

therefore fulfil the requirement of being capable of selecting

a few good neighbors. We note that the performance of the

maximum margin method may be slightly underestimated

since we have not tuned the parameters λ in (8) exhaustively

for each image. The other good property of our method is

that the learned distance functions are usually sparse. Al-

though in our setting an image Iℓ may be represented with

up to 1222 features, the number of active features (i.e., with

wℓi > 0) by our algorithm are usually less than 100. Some

examples of active features are illustrated in Figure 5, where

the images have been transformed to gray level for display.

(a) Accordion (b) Face easy (c) Anchor

Figure 5. Visualizations of active features picked by our algo-

rithm. The color information of images is taken off for focusing

on feature markers. Each marker represents a location of a patch

whose feature is active. The different shapes mean different fea-

ture types; circle, diamond, and triangle represent GB1, GB2, and

HSV1, respectively. The HSV2 feature is omitted here. In our

experiments, a harder (with lower recognition rate) image like (c)

often requires more active features, while an easier one needs only

several important features, e.g., the shoulder curve in Faces easy

class and the boundary edge in the Accordion class.

To further investigate the effectiveness of our neighbor

ranking method, we also develop a simple voting scheme

for classification. Specifically, for each learned local dis-

tance function Dℓ, ℓ ∈ L, we define a threshold

θℓ =
1

2
(Dℓ(Im) + Dℓ(In)), (9)

where, according to the neighbor list of Iℓ, In is the first

sample not in the same class with Iℓ and Im is the one

ranked right above In. In testing with a new image I , each

distance function with its associated threshold behaves as a

classifier. That is, if Dℓ(I) ≤ θℓ, then Dℓ supports that I is

in the same class with Iℓ. The final class label of I is voted

by all classifiers. Images without class label assigned are

classified as background. We test this primitive method on

the Caltech-101 dataset by following the setting in Berg et

al. [1]. Namely, for each class we randomly pick 15 images

for training and another 15 for testing, and then switching

their roles in the second round. The results are presented in

the first column of Table 1. Even with such a rough rule,

the outcomes are already comparable with some of the re-

cent novel techniques, e.g., [7, 9, 11, 24].

4. Reshape distance functions for nearest

neighbor classification

The distance functions in Section 3 are learned in an

independent manner, and are hardly compared with each

other. Although a learned distance function alone performs

well in selecting the neighbors, it is not feasible to decide if

training sample Iℓ or Iℓ′ should be placed in a higher posi-

tion on the neighbor list of a new test sample I by compar-

ing the values of Dℓ(I) and Dℓ′(I). In fact, these distance

functions act more like rankers, and it is not necessary to

keep the exact values with them. Considering that given a



strictly increasing function q, transforming a distance func-

tion form Dℓ(·) to D̃ℓ(·) = q(Dℓ(·)) would not affect the

objective function (7). We can utilize such a function to re-

shape these learned local distance functions altogether so

that direct comparisons among them can be achieved.

The reshape process is carried out as competitions over

training samples between any two distance functions of dif-

ferent classes. Given a reference sample Iℓ, we prefer that

if Im is in the same class with Iℓ and In is not, then the

reshaped distance D̃m(Iℓ) should be smaller than D̃n(Iℓ).

That is, the competition between D̃m and D̃n for Iℓ depends

on the class labels of Iℓ, Im and In. Furthermore, suppose

we make a sorted list of reshaped distances (in increasing

order) {D̃ℓ′(Iℓ)}ℓ′ 6=ℓ from the training data and the learned

distance functions in Section 3. It is reasonable to pay more

attention to the samples in the top portion, since in testing

a given I , we usually consider those training samples with

smaller distances to I (under the assumption that I is re-

lated to some training image(s) Iℓ). Hence for each fixed

reference sample Iℓ, we can define a cost to each reshaped

D̃n(Iℓ), n /∈ C(ℓ) by

Cost(D̃n(Iℓ)) =
∑

m∈C(ℓ)

1[D̃m(Iℓ)≥D̃n(Iℓ)]
. (10)

Although any strictly increasing function could be our re-

shape function, in this work we restrict it to be a scaling

function, q(r) = ar, where a ∈ R+. Now the reshaped

function D̃ℓ can be parameterized by a single scaler aℓ as

D̃ℓ = aℓDℓ and the overall objective function to be mini-

mized is

F̃ (a) =
∑

ℓ∈L

∑

n/∈C(ℓ)



∑

m∈C(ℓ)

1[amDm(Iℓ)≥anDn(Iℓ)]




p′

,

(11)

where a = [a1, a2, ..., a|L|]
T , and p′ ≫ 1 acts as the price

function parameter like the p in (7).

5. Experiments

In this section we discuss some implementation details

and the results derived by the proposed neighbor ranking

method. We again consider the Caltech-101 dataset, col-

lected by Fei-Fei et al. [6]. In all our experiments, from each

class, we randomly pick 15 images for training and another

15 images for testing. We then exchange their roles and cal-

culate the average recognition rate. Images with larger sizes

are scaled down to around 60000 pixels while preserving

the aspect ratios. For each image, we extract the four types

of features as described in Section 3.3, and sample at most

400 features respectively for each type of GB1, GB2, and

HSV1. Hence an image is represented as a bag with at most

1200 + 22 features. Since the Caltech-101 dataset contains
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Figure 6. Confusion table by 3-NN+neighbor ranking+reshaping.

101 object classes and a background class, we thus obtain

1530 distance functions in the training procedure.

After the reshaping, we use a modified 3-NN classifier

to assign class labels on test data. Specifically, given a test

image I , the classifier first arranges the order of the train-

ing images according to their reshaped distances to I . If

a prediction on the class label of I cannot be determined

by the top three, then the succeeding samples will be con-

sidered one at a time until a decision can be made. We

have tested this method in several settings with different

features. The resulting confusion table is plotted in Fig-

ure 6, and the outcomes are listed in the second column of

Table 1. Despite the use of a simple classifier and basi-

cally two kinds of features, the accuracy rate by our method

achieves 69.83±0.41%, which is better than those reported

in all previous work on the same setting. However, it is still

behind the 87% accuracy rate by Varma and Ray [23], in

which they exploit several other robust features.

We also apply the neighbor ranking to the SVM-KNN

framework [26]. Given a test image I , the reshaped dis-

tances from each training sample to it are calculated first,

and then the k nearest neighbors are determined to train a

multiclass SVM classifier for I . (We use libSVM [3] for the

implementation here.) The overall recognition rate in this

case can be improved to 71.8 ± 0.32%. Table 1 shows the

related results.

5.1. Details and discussions

5.1.1 Price function

The parameters p in (7) and p′ in (11) are the price func-

tion parameters in the P-Norm Push, and some discussions



Voting k-NN3 (k = 3) SVM-KNN50 (k = 50) SVM-KNN7 (k = 7)

GB1+GB2 59.75±1.55 67.87±0.42 (67.97±0.41) 70.05±0.31 68.94±0.72

GB1+GB2+HSV1 60.88±1.13 69.64±0.60 (68.43±0.33) 70.26±0.46 70.39±0.85

GB1+GB2+HSV1+HSV2 62.19±0.23 69.83±0.41 (69.15±0.25) 71.80±0.32 71.76±0.93

Table 1. Accuracy rates on Caltech-101 dataset with different features and methods. Voting: The rough method stated in Section 3.4.

k-NN3: The 3-NN classifier by a reshaped distance. SVM-KNN50: SVM-KNN in which the k = 50 nearest neighbors are selected by a

reshaped distance. SVM-KNN7: The same with SVM-KNN50, but now k = 7 and the kernel used in the SVM is now derived from our

reshaped distance. The scores in the brackets are resulted from the speed-up algorithm stated in Section 5.1.3. Notice that in SVM-KNN50

we focus on the boosting ability of the neighbor selection scheme so that in SVM the kernel is generated by all four types of features.

for different choices can be seen in [15]. While the val-

ues can be adjusted according to different needs, here we

show a way to adjust p for depressing the highest cost with

a higher priority. Suppose the training data includes Nc

samples from each class, and totally has N samples. For

convenience, let No = N − Nc. Thus the possible maxi-

mum value of the objective function (7) is No × Np
c . Let J

(J ′) be the price jump of a strategy involving (not involving)

lowering the highest cost h. Thus J ≥ hp − (h − 1)p and

J ′ ≤ No(h − 1)p. To make sure the algorithm will choose

to depress the highest cost, we can choose the value p such

that hp − (h − 1)p > No(h − 1)p. It follows that

p >
ln(No + 1)

ln( h
h−1 )

≥
ln(No + 1)

ln( Nc

Nc−1 )
(12)

where h ∈ {2, ..., Nc}. The lower bound constraint for p is

derived for the aforementioned scheme. In practice, since

most applications consider only a few nearest samples, a

smaller p value can be analogously selected, while achiev-

ing satisfactory results.

5.1.2 Optimizing wi and a

To optimize the objective function (7) according to wℓ, we

choose to find the best wℓi in a sequential manner. The pro-

cess is repeated until convergence. If the value of wℓi re-

mains zero in three consecutive iterations, it will be marked

as inactive. This way we can detect redundant or unneces-

sary features especially in the early stages. Since scaling

wℓ by a positive number would not affect the objective, wℓ

is normalized by the sum of its components after each iter-

ation for computational stability.

Optimizing (11) with respect to a can be done in a sim-

ilar fashion. The only exception is that the component aℓ

of a would never be set to zero. This property can be guar-

anteed since (11) is also a piecewise constant function. For

computational efficiency, we do not optimize (11) over all

triples (ℓ, m, n). We only consider those satisfying the fol-

lowing conditions: Im ∈ C(ℓ), In /∈ C(ℓ), and Iℓ is one

of the k nearest neighbors of both Im and In (computed re-

spectively by Dm and Dn). This way works because that

the top portion of each neighbor list is more meaningful af-

ter the optimization on wℓi in the previous step.

5.1.3 Speeding up

We also implement a speed-up version to eliminate even

more useless features earlier. This is done by pre-selecting

initial features. Why this is possible is that in optimizing (7)

we find that only a relatively small number of features are

active in the final stage. To pre-select features we first sort

all features of an image Iℓ according to the ranking ability

of each feature i:
∑

n/∈C(ℓ)

(∑
m∈C(ℓ) 1[dℓi(Im)≥dℓi(In)]

)p

and sample relatively densely in the top portion while

sparsely in the lower portion. To only select features with

high ranking ability is not practical since less powerful fea-

tures may complement robust features. We have tested our

method with the sampling ratios 1
3 , 1

5 , and 1
8 , on the top,

middle, and bottom portions respectively to get competing

results in about 1
5 training time.

5.1.4 Distances and SVM

Defining the kernel in SVM with a distance function can be

done in a straightforward way via the kernel trick formula

[17, 25]: K(x, y) = 〈x, y〉 = 1
2 (〈x, x〉 + 〈y, y〉 − 〈x −

y, x− y〉) = 1
2 (D2(x, 0)+D2(y, 0)−D2(x, y)). However

in our work the distance function is asymmetric so that we

first need to resolve this issue. We present two approaches

based on the use of different distances in testing. The first

one (denoted as SVM-KNN50, see Table 1) is to select the

k nearest neighbors with the learned distance functions but

uses the raw distance (described in Section 3.4) in SVM. To

make sure the kernel is positive-definite we follow [26] to

let D(Iℓ, Im) be defined as 1
2 (Dℓ(Im) + Dm(Iℓ)), where

Dℓ and Dm are the raw distances. The other (denoted as

SVM-KNN7) is to use the learned distance functions both

in selecting the k nearest neighbors and in SVM. For this

scheme we need a further definition on the distance from a

test image It to a training image Iℓ:

D̃t(Iℓ) :=

∑
m∈B(It)

(D̃m(It) × D̃m(Iℓ))
∑

m∈B(It)
D̃m(It)

, (13)



where B(It) includes the 3 nearest neighbors of It in the

training data.

We obtain similar outcomes with these two settings in

very different k values. With the first setting we get the best

result when k is around 50 and the score does not change

much as k varies in 30 ∼ 60, while with the second we set

k = 7 to achieve the best score. The later result seems that

the classification is dominated by the neighbor selection.

This is probably due to the crudely produced kernel from

the more asymmetric distance functions.

6. Conclusion

We have presented a novel approach to improving lo-

cal learning by incorporating supervised neighbor ranking

in distance function learning. The effectiveness of the pro-

posed technique is demonstrated by dealing with a challeng-

ing multiclass classification problem, visual object catego-

rization. We show that together with a simple k-nearest-

neighbor classifier, our method can yield satisfactory re-

sults, as well as has the ability to improve some existing

localized learning methods, e.g., SVM-KNN [26]. The clas-

sification rates by the simple settings described in our exper-

iments can compete with those in most related work, except

that by Varma and Ray [23], in which several robust features

and a more sophisticated learning scheme are used. As our

framework has the flexibility in easily adopting more fea-

tures in the distance function, we would explore the effects

of adopting those features used in [23] for our future work.
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