
Copyright c© The 8th European Conference on Computer Vision (ECCV-2004)

Fast Object Detection with Occlusions

Yen-Yu Lin1, Tyng-Luh Liu1, and Chiou-Shann Fuh2

1 Inst. of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan,
liutyng@iis.sinica.edu.tw

2 Dept. of CSIE, National Taiwan University, Taipei 106, Taiwan

Abstract. We describe a new framework, based on boosting algorithms
and cascade structures, to efficiently detect objects/faces with occlusions.
While our approach is motivated by the work of Viola and Jones, several
techniques have been developed for establishing a more general system,
including (i) a robust boosting scheme, to select useful weak learners and
to avoid overfitting; (ii) reinforcement training, to reduce false-positive
rates via a more effective training procedure for boosted cascades; and
(iii) cascading with evidence, to extend the system to handle occlusions,
without compromising in detection speed. Experimental results on de-
tecting faces under various situations are provided to demonstrate the
performances of the proposed method.

1 Introduction

While object detection has long been an important and active area in vision
research, most of its applications now demand not only accuracy but also (real-
time) efficiency. Often, to address these two concerns satisfactorily, a typical
detection system considers only a certain regular class of target objects even
though the restriction may limit its practical use. In [17], Viola and Jones propose
an effective scheme using AdaBoost to detect faces through a boosted cascade.
Their framework has prompted considerable interest in further investigating the
use of boosting algorithms and cascade structures for fast object detection, e.g.,
[1],[5],[6],[7]. Our detection method also relies on the two elements, but different
from the foregoing works, we aim to develop a more general detection system by
focusing on the issues of overfitting and occlusion.

Previous Work. The literature on object detection is quite extensive. We discuss
only some of the recent works, especially those based on learning. Also, unless
further specified, we focus hereafter on the subject of face detection.

Methods based on dimension reduction are often used in detecting faces.
Moghaddam and Pentland [9] propose an approach for face detection by cal-
culating several eigenfaces from training data. Each detected pattern is then
projected into a feature space, formed by the eigenfaces. A testing pattern is
classified as face or non-face, depending on its DIFS (Distance-In-Feature-Space)
and DFFS (Distance-From-Feature-Space). In [18], Yang et al. develop a face de-
tection system using FLD (Fisher Linear Discriminant), and consider the face
classification in a feature space, spanned by the so-called fisherfaces.

2 Y.-Y. Lin, T.-L. Liu and C.-S. Fuh

Sung and Poggio [16] establish a neural network approach that uses a set
of face and non-face prototypes to build the hidden layer. The final output is
decided by measuring the distances from the detected pattern to each of these
prototypes. In [10], Osuna et al. describe an SVM-based method for face detec-
tion. They train a hyperplane in some high-dimension feature space for separat-
ing faces and non-faces. Each testing pattern is mapped to the feature space for
face classification. Romdhani et al. [12] present another SVM-based face detec-
tion system by introducing the concept of reduced set vectors. Using a sequential
evaluation strategy, they report that their face detector is about 15 times faster
than the one of Osuna et al. [10]. The SNoW (Sparse Network of Winnows)
face detection system by Roth et al. [13] is a sparse network of linear functions
that utilizes winnows update rules. They show SNoW is computationally more
efficient, and yields better results than those derived by [10].

The excellent work of Viola and Jones [17] has redefined what can be achieved
by an efficient implementation of a face detection system. They formulate the
detection task as a series of non-face rejection problems. In addition, they cal-
culate an integral image to speed up rectangle feature computation, and apply
AdaBoost to construct stage-wise face classifiers. Since then, a number of systems
have been proposed to extend the idea of detecting faces through a boosted cas-
cade. For example, Li et al. [7] develop a system to detect side-view faces by using
a coarse-to-fine, simple-to-complex architecture. They divide side-view faces into
nine classes, and report that the resulting detector requires about three times
computation time than Viola and Jones’s to detect the nine kinds of side-view
faces. Yet another work by Lienhart and Maydt [5] focuses on extending the
set of rectangle features. They rotate extended rectangle features by ±45◦ to
obtain rotated rectangle features, and also calculate rotated integral images. In
this way, the system can efficiently compute rotated rectangle features by array
references. More recently, Liu and Shum [6] introduce a Kullback-Leibler boost-
ing to derive weak learners by maximizing projected KL distances. In [1], face
patterns in video streams are detected by a boosted cascade, and then classified
into different classes of facial expressions. A novel combination of AdaBoost and
SVMs (AdaSVMs) is employed so that features selected by AdaBoost are used
to form the mapping to a reduced representation for training SVMs.

Our Approach. We generalize the work of Viola and Jones [17] to efficiently
detect objects with occlusions. We also deal with the problem of overfitting in
training boosted cascades, and thus derive a more robust system. Specifically,
the proposed approach leverages its detection performances with three key com-
ponents. First, we establish a new boosting algorithm that at each iteration, the
selection of a weak learner and its coefficient can be determined simultaneously.
Each classifier is then formed by a linear combination of the chosen weak learn-
ers using a soft-boosting scheme. Second, we propose a reinforcement training
procedure to dynamically add difficult and representative training data in each
stage. This makes the resulting classifier more general and discriminant. Third,
we design a cascading-with-evidence scheme to handle occlusions. The resulting
system can detect complete frontal faces and occluded faces at the same time.

Fast Object Detection with Occlusions 3

2 Classification Using Boosting

Originated from Kearns and Valiant’s question [4] to improve the performance
of a weak learning scheme, boosting has now become one of the most important
recent developments in classification methodology. It elegantly leads to a gen-
eral approach to improve the accuracy of any given learning algorithm. In 1989,
Schapire [15] introduces the first polynomial-time boosting procedure. However,
it is the AdaBoost [3], proposed by Freund and Schapire, that stimulates the
widespread research interest in boosting. A carefully implemented boosting al-
gorithm often gives a compatible performance, with more efficiency, to those
yielded by current best classification methods, e.g., SVMs, HMMs.

In this section, we discuss first the ideas of boosting, and then focus on an
exponential-loss upper bound on training error. Motivated by [6], we also con-
sider the selection of weak learners by analyzing the weighted projected data.
Moreover, we show that an easier-to-implement boosting algorithm can be de-
rived by directly analyzing the error bound, and by addressing overfitting.

2.1 The Ideas behind Boosting

The basic concepts of boosting can be best understood by illustrating with the
AdaBoost. Consider now a training set, D = {(x1, y1), (x2, y2), . . . , (x�, y�)},
where the first component x of each sample is the feature value(s), and y is its
label. For a two-class classification problem like face detection, y = 1 (face) or
−1 (non-face), i.e., D = D+∪D−. To elevate the classification performance, Ad-
aBoost uses data re-weighting wt on D, at iteration t, to iteratively select a weak
learner ht and decide its coefficient αt in the linear combination of weak learners.
It is known that such an iterative process is indeed an attempt to minimize an
upper bound of the training error [14]. More precisely, say after T iterations, the
training error of a strong classifier H(x) = sign(f(x)) = sign(

∑T
t=1 αtht(x))

can be bounded as follows.

1
�

�∑
i=1

1
2
|yi −H(xi)| ≤ 1

�

�∑
i=1

exp(−yif(xi)) =
T∏

t=1

Zt , (1)

where Zt =
∑�

i=1 wt(i) exp (−αtyiht(xi)). At each iteration t, AdaBoost tries to
minimize the error bound by reducing Zt as much as possible via steepest descent.
When weak learners hts are restricted to be binary, it leads to the choice of αt

in [17]. Nevertheless, the relation in (1) still holds for weak learners assuming
real values—a crucial property for selecting good weak learners.

2.2 Boosting without Overfitting

The foregoing discussion simply points out the two main elements of a boosting
algorithm: weak-learner selection and data re-weighting. For AdaBoost, the new
data weight wt+1(i) can be explicitly computed from wt(i) and αt. Furthermore,

4 Y.-Y. Lin, T.-L. Liu and C.-S. Fuh

recent studies suggest that AdaBoost may overfit when the training data contain
highly noisy patterns [2], [11]. For face detection via learning, the problem of
overfitting is especially delicate and must be handled appropriately in that there
are quite a number of non-face patterns resembling faces.

Effective Weak Learner Selection. When efficiency is emphasized, it is preferable
to have a classifier of fewer weak learners to achieve the required training accu-
racy. Meanwhile, the mechanism to select weak learners should take account of
its implication on data re-weighting. For instance, the fast detection system of
Viola and Jones [17] considers binary weak learners from thresholding on rectan-
gle features. Though their scheme may choose weak learners that are too crude
for effectively discriminating the face and non-face distributions, it does have
the advantage of using a straightforward updating scheme on data weights wt,
through the analytic form of αt. On the other hand, the KL boosting of Liu and
Shum [6] computes weak learners by maximizing the relative entropy between
two 1-D projected distributions of face and non-face samples. At each iteration
t, all the coefficients α1, . . . , αt for combining the chosen weak learners are re-
evaluated and optimized in parallel. As a result, the data weights are updated
according to heuristic formulas (defined in (8) and (9) of [6]). Motivated by
these observations, we describe a method to select useful real-valued weak learn-
ers of positive unit coefficients, and to conveniently perform data re-weighting
iteratively by following the AdaBoost manner.

Assume that we have a set of 1-D mappings {φi}n
i=1 that each φ projects the

training data D into real-valued scalars. In our approach, the mapping φ will
be defined uniquely by a rectangle feature. Thus, we could further assume each
φ has a compact support. This implies that it is possible to compute histogram
distributions for the projected data with a pre-defined partition of m equal-size
bins over a finite range of the real line, denoted as {bk}m

k=1. Now, focus on how
to derive good weak learners with the projected data. Similar to the AdaBoost
algorithm used in [17], we try to find, at each iteration t, a weak learner ht by
minimizing Zt. The differences are: 1) ht need not be binary, and 2) like [6],
each ht is defined by considering the two-class weighted histograms of projected
training data. As our discussion below applies to all iterations, we shall drop the
subscript t to simplify the notations.

For each projection φ, we define ik(φ) = {i |xi ∈ D,φ(xi) ∈ bk}, the in-
dexes of training data being projected by φ into bin bk. Analogously, i+k (φ) and
i−k (φ) are defined, respectively, for xi ∈ D+ and D−. With these notations, we
are ready to evaluate the values of weighted positive histogram and negative
histogram of bk by

p+
k (φ) =

∑

i+k (φ)

w(i) and p−k (φ) =
∑

i−k (φ)

w(i). (2)

Notice that the two weighted histograms p+ and p− are not normalized into
distributions. Nevertheless, defining them in this way will be more convenient
for our analysis, and also without any bearings on the classification outcomes.

Fast Object Detection with Occlusions 5

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Features Used

E
rr

or
 R

at
e

BH + AdaBoost vs. KL + AdaBoost

Training Error of BH
Testing Error of BH
Training Error of KL
Testing Error of KL

Using MIT−CBCL face and non−face data sets

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Features Used

E
rr

or
 R

at
e

BH + AdaBoost: Overfitting

Training Error + Clean Data
Testing Error + Clean Data
Training Error + Noisy Data
Testing Error + Noisy Data

Using MIT−CBCL data sets and noisy non−faces

Fig. 1. (a) Using BH or KL weak learners gives a comparable boosting performance.
(b) Overfitting is perceived by increasing gaps between training and testing errors.

To establish rules for selecting good weak learners, we consider a projection
mapping φ and an arbitrary x ∈ D such that φ(x) ∈ bk. Let hφ be the weak
learner arising from φ. Then, it is reasonable to establish the definition of hφ by
assuming hφ(x) depends on some quantity related to bin bk. In particular, we
write hφ(x) = sk, where sk is a real scalar. Applying this relation to the definition
of Z, we have Z =

∑m
k=1

∑
ik(φ) w(i) exp(−αyisk). Following the strategy of

AdaBoost [14], the best choices of sk, for k = 1, . . . ,m, can be obtained by
minimizing Z with respect to each sk:

dZ

dsk
= 0 ⇒ s∗k =

1
α

ln
√
p+

k (φ)/p−k (φ) and Z∗ = 2
m∑

k=1

√
p+

k (φ)p−k (φ). (3)

The equations in (3) suggest that we can re-scale hφ by multiplying with
α such that the selection of weak learner and its coefficient can be decided
simultaneously. In addition, the strength of a weak learner with respect to the
weighted training data can now be measured explicitly with the Bhattacharyya
coefficient. We summarize these observations into the following two criteria:

1. Each mapping φ implicitly defines a weak learner hφ of coefficient 1 by

hφ(x) = ln
√
p+

k (φ)/p−k (φ) , for all x ∈ D and φ(x) ∈ bk.

2. At each iteration, the best weak learner h∗φ is the one that yields the min-
imal Bhattacharyya coefficient. This result somewhat supports the use of
Kullback-Leibler distance in [6]. However, besides a much easier computa-
tion, using the Bhattacharyya coefficient has the advantage to skip the esti-
mation of coefficient α, and most of all, it guarantees to optimally minimize
Z. In Figure 1a, comparisons between using AdaBoost with the two criteria
for selecting weak learners indicate a comparable classification performance.

6 Y.-Y. Lin, T.-L. Liu and C.-S. Fuh

Algorithm 1: Soft-Boosting with Bhattacharyya weak learners.
Input : A weak learning algorithm BH-WeakLearn derived from (3), the

number of iterations T , and � labeled training data D.

Output : A strong classifier H .

Initialize the weight vector w1(i) = 1/�, for i = 1, . . . , �.
for t← 1, 2, . . . , T do

1. Call BH-WeakLearn, using distribution wt on D, to derive ht : X → R.
2. wt+1(i) ← wt(i) exp (−yiht(xi)) /Zt, for i = 1, 2, . . . , �. (Zt is a normal-
ization factor such that wt+1 is a distribution.)

Call LPREG-AdaBoost, with inputs {yiht(xi)}Tt=1, to output {βt}Tt=1.
Output the final strong classifier: H(x) = sign(f(x)) = sign(

∑T
i=1 βtht(x)).

Table 1. Error Rate: Soft-Boosting against different degree of noisy non-face data.

No Noise 25% Noise 50% Noise 75% Noise 100% Noise
of ht

BH BH BH+Soft BH BH+Soft BH BH+Soft BH BH+Soft

100 0.23 2.96 2.36 4.91 4.07 5.50 4.54 7.03 5.85

200 0.12 2.29 1.99 4.11 3.41 5.16 3.91 6.65 5.23

300 0.11 2.13 1.85 3.77 2.92 5.23 3.74 6.39 4.97

Soft-Boosting. Rätsch et al. [11], show that AdaBoost behaves asymptotically
like a hard-margin classifier, and propose to use soft margins for AdaBoost (or
soft-boosting for abbreviation) to avoid data overfitting (see Figure 1b). Extend-
ing AdaBoost to incorporate soft margins allows certain of difficult patterns to
be misclassified within some ranges during the training stage. Such a strategy
has been tested extensively and successfully in SVMs. We adopt the LPREG-
AdaBoost in [11] that uses linear programming with slack variables to achieve
soft margins. The LPREG-AdaBoost is paired nicely with our implementation
in that it only needs the T weak learners and the margin distributions as in-
puts. The coefficients of weak learners are not used at all. Since the resulting
weak learners have positive unit coefficients, all the available information from
the training stage for selecting weak learners is passed to the regularized linear
programming. In Table 1, we summarize experimental results of applying soft-
boosting to deal with overfitting, using the MIT-CBCL face and non-face data
sets. The noisy non-face data are generated from the false positive samples at
different stages of a cascade structure, proposed by Viola and Jones [17]. When
combining the Bhattacharyya weak learners with soft-boosting, consistent im-
provements in the detection rates are obtained in all experiments. A complete
description of our method is listed in Algorithm 1.

3 Fast Detection with Occlusions

We construct a feature-based face detection system through a simple-to-complex
cascade structure. Such a strategy reduces a face detection problem into the

Fast Object Detection with Occlusions 7

rejections of non-face patterns stage-wise. As it turns out, to detect occluded
faces via a boosted cascade is a nontrivial problem because they are very likely
to be rejected at some intermediate stage. While adopting a more lenient policy
in rejecting non-face patterns may be able to handle occlusions to some degree,
it often causes an increase in the false-positive detection rate. In dealing with
these issues, we propose a method that consists of two schemes: 1) reinforcement
training, to reduce the false positive rates, and 2) cascading with evidence, to
detect faces with occlusions.

3.1 Reinforcement Training

In a cascade structure M, the face detector at stage k can be denoted asHk(x) =
sign(fk(x)) = sign(

∑Tk

t=1 βtht(x)), where the size of Tk increases as k becomes
large. We also use Mk

1 to represent the sub-cascade of the first k stages. To train a
cascade of face detectors, we usually start with a balanced two-class data D, i.e.,
the same number of face and non-face data. During training, data arriving at the
kth stage are those that pass the sub-cascade Mk−1

1 . Among them, most are face
data and only a few are non-face. The situation can lead to a problem that there
could be too few non-face data to be trained with, and consequently, a boosting
method may yield unreliable decision boundary predictions. To alleviate this
problem, we collect an additional set N of images that do not contain any face
patterns, and then perform a two-step reinforcement training whenever there are
too few non-face samples reaching some stage k.

1. The Bootstrap technique is applied to generate non-face patterns by testing
all images in N with the sub-cascade Mk−1

1 . Those that survive are indeed
false positives of Mk−1

1 . We denote them as Nk.
2. In practice, when k is small, there are way too many samples of Nk to be

considered. For each x ∈ Nk, the mapping x �→ (f̃1(x), . . . , f̃k−1(x)) is used
to associate x with a (k − 1)-dimension feature vector. (Note that each f̃
is normalized from the stage-wise f such that

∑
x∈Nk

f̃(x) = 1.) Then, k-
means clustering is applied to divide Nk into six clusters [16] to model the
empirical non-face distribution. The needed non-face samples, at each stage
k, can now be selected uniformly from the six clusters.

The reinforcement strategy enables the system to consider meaningful and
difficult non-face samples from N . Though it is difficult to model the distribution
of non-face patterns, we establish an effective way in selecting representative
ones. With reinforcement training, the system is expected to have a lower false
positive rate in each cascade stage of a testing procedure.

3.2 Cascading with Evidence

Mentioned briefly in Section 2.2, rectangle features used in [17] can be computed
rather efficiently by referencing integral images. A rectangle feature simply com-
putes the difference between sums of pixel intensity in adjacent regions, and

8 Y.-Y. Lin, T.-L. Liu and C.-S. Fuh

A B C D E F G H

Fig. 2. From left to right: eight types of occluded faces (1/3 or 1/4 occlusions).

hence a strong classifier formed by these rectangle features records intensity dis-
tribution in the faces. Apparently, detection systems using rectangle features are
sensitive to occlusions because the intensity differences related to occluded re-
gions are no longer reliable. We instead treat each rectangle feature as a mapping
φ that projects x ∈ D to the resulting intensity difference, and then compute
the Bhattacharyya coefficient between the weighted positive and negative his-
tograms. Still, the derived classifiers only work for regular faces—to account for
occlusions, other mechanisms are needed.

To distinguish an occluded face from non-face samples, the clues lie in the
evidence left behind when a testing sample is in question. In Figure 2, there are
eight types of occlusions that our detection system is designed to handel. The
face data we choose to train our system are images of size 20×20. Totally, about
80, 000 rectangle features can be generated, and represented as a set Ψ . (We use
the same three types of rectangle features proposed in [17].) Then, for each type
I of occluded faces shown in Figure 2, we use OI to denote the occluded region,
and define the largest subset of Ψ disjoint from OI by

ΨI = {ψ |ψ ∈ Ψ and ψ ∩ OI = ∅}, for I = A,B, . . . ,H. (4)

Now, in testing a sample x at some stage k of the cascade, besides calculat-
ing Hk(x), we also compute an additional eight-dimensional feature vector, the
evidence of x at stage k, defined as follows:

Ek(x) = (fA
k (x), fB

k (x), . . . , fH
k (x)) and fI

k (x) =
∑

I βtht(x), (5)

where the summation
∑

I involves only those weak learners that their corre-
sponding rectangle features do not intersect with OI , for I = A,B, . . . ,H. With
(5), we propose a cascading with evidence scheme to detect faces with the eight
types of occlusions efficiently, where its advantages are summarized below.

– Since each βtht(x) has already been evaluated in the computation of Hk(x),
the evidence vector Ek(x) is easier to derive.

– To illustrate, let x be a face sample of type-A occlusion, and x is being
considered to be rejected as a non-face pattern due to Hk(x) < 0. Then,
we can reference its evidence vectors from the k stages. In particular, the
majority of fA

1 , . . . , f
A
k should be positive responses to indicate x is a type-A

occluded face. Such a property is not shared by most true non-face samples.
The details of cascading with evidence are given in Algorithm 2 and 3.

Fast Object Detection with Occlusions 9

Algorithm 2: Cascading with Evidence: Training Procedure
Input : Rectangle feature sets, Ψ and ΨI , for I = A,B, ...,H.

Output : A main cascade M, and 8 occlusion cascades, I = A,B, ...,H.

1. Train a regular cascade V from Ψ , using the techniques in [17].
2. Train 8 occlusion cascades I from ΨI , using V as a benchmark.
3. T I

k ← Number of weak learners used at the kth stage of I.
4. Train cascade M such that |{h1, . . . , hTk} ∩ ΨI | ≥ T I

k , for each stage k.

Algorithm 3: Cascading with Evidence: Testing Procedure
Input : A testing pattern, x.

Output : Face, Non-Face, or Type-I Occluded Face.

1. If x goes throughM return Face.
2. If x is rejected at stage k and all fI

k < 0 return Non-Face.
3. Dispatch x to cascade I if fI

k > 0 and
∑k

t=1 fI
t is the largest.

if x goes through I then
return Type-I Occluded Face

else
return Non-Face

4 Experimental Results

The face training data are obtained from MIT-CBCL database and AR [8] face
database. They are pictured under different lighting, facial expressions, and
poses. We rotate (±15◦) and mirror each face image, and crop the face region
with slightly different scales. The non-face training data are collected from the
Internet. Both face and non-face training data are resized at the resolution, 20
by 20 pixels. Totally, 10, 000 face images and 10, 000 non-face images are used
as our initial training data. We also prepare about 16, 000 images that contain
no faces for generating non-face training data in reinforcement training.

A rectangle feature is indeed a Haar wavelet filter that maps each training
image into a real value. Thus, each rectangle feature gives rise to two different
distributions for face and non-face data. When the number of training samples
is fixed, the number of bins used to model the two distributions is decided on the
tradeoff between accuracy and data overfitting. Empirically, we have used 10 bins
to derive satisfactory results. At each stage, we aim to construct a face detector
with a loose threshold by reducing the false positive rate, while detecting almost
all positive samples. This is achieved by adding weak learners until the false
positive rate is less than 40%, and also the detection rate is higher than 99.9%.

In our implementation, a regular cascade to detect frontal faces (without oc-
clusion) has 21 stages, including 872 weak learners. The first three stages contain
2, 3, and 5 weak learners respectively. We test it on the benchmark testing set,
i.e., CMU+MIT data set. It contains 130 images with 507 frontal faces. There are
totally 81, 519, 506 sub-windows scanned. The detecting results are represented
as an ROC curve shown in Figure 3b. The performance is comparable to other

10 Y.-Y. Lin, T.-L. Liu and C.-S. Fuh

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Features Used

E
rr

or
 R

at
e

BH Weak Learner vs. Rectangle Feature

Training Error of BH + AdaBoost
Testing Error of BH + AdaBoost
Training Error of RF + AdaBoost
Testing Error of RF + AdaBoost

Using MIT−CBCL face and non−face data sets

0 50 100 150 200 250
0.7

0.75

0.8

0.85

0.9

0.95
ROC Curve

Number of False Positives

D
et

ec
tio

n
R

at
e

(a) (b)

Fig. 3. (a) Using Bhattacharyya weak learners outperforms implementation with
rectangle features in accuracy and convergence speed. (b) The ROC curve of our
detector performed on CMU+MIT data set (81, 519, 506 sub-windows scanned).

Table 2. Stage Passing Rate of a Cascade Using CMU+MIT Data Set

Stage Passing Rate Stage Passing Rate Stage Passing Rate Stage Passing Rate

1 0.35503 4 0.01254 7 0.00082 10 0.00018

2 0.10934 5 0.00383 8 0.00048 11 0.00013

3 0.04611 6 0.00165 9 0.00023 12 0.00009

existing face detectors, e.g., [16], [17]. The stage-wise classification efficiency
is shown in Table 2. The first stage rejects about 64.5% sub-windows (almost
non-face). Averagely, a sub-window is classified by only 4.59 weak learners. In
addition, the advantages of using Bhattacharyya weak learners in improving
accuracy and convergence speed are also illustrated in Figure 3a.

To detect frontal and occluded faces at the same time, we need a main cas-
cade, M, and eight occlusion cascades. In designing M, besides satisfying the
detection rate constraints mentioned above, at each stage, the number of weak
learners used should satisfy the condition described in Algorithm 2-(4). The
requirements are to ensure that every component of the evidence vector Ek is
well-defined at each stage k. Since a weak learner may be associated with more
than one type. The number of weak learners used in each stage of the main cas-
cade M is still manageable to produce efficient detection. (The first three stages
of M contain 7, 9, and 12 weak learners, respectively.) Regarding the eight occlu-
sion cascades, each of them contains from 23 to 26 stages respectively. Applying
cascading with evidence, we detect frontal and eight kinds of occluded faces in
three times computing time used in detecting only frontal faces. It detects about
18 320x240 frames per second on a P4 3.06GHz PC. A number of experimental
results are reported in Figure 4 to demonstrate the effectiveness of our system.

Fast Object Detection with Occlusions 11

References

1. Bartlett, M.S., Littlewort, G., Fasel, I., Movellan, J.R.: Real time face detection
and facial expression recognition: Development and applications to human com-
puter interaction. In: Computer Vision and Pattern Recognition HCI Workshop,
Madison, Wisconsin, USA (2003)

2. Dietterich, T.G.: An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning 40 (2000) 139–157

3. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. In: Proc. European Conf. Computational Learning
Theory, Barcelona, Spain (1995) 23–37

4. Kearns, M., Valiant, L.G.: Learning boolean formulae or finite automata is as hard
as factoring. Technical report, Harvard University Aiken Computation Laboratory
(1988)

5. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object
detection. In: Proc. Int’l Conf. Image Processing. Volume 1., Rochester, NY, USA
(2002) 900–903

6. Liu, C., Shum, H.: Kullback-leibler boosting. In: Proc. Conf. Computer Vision
and Pattern Recognition. Volume 1., Madison, Wisconsin, USA (2003) 587–594

7. Li, S., Zhu, L., Zhang, Z., Blake, A., Zhang, H., Shum, H.: Statistical learning
of multi-view face detection. In: Proc. Seventh European Conf. Computer Vision.
Volume 4., Copenhagen, Denmark (2002) 67–81

8. Martinez, A., Benavente, R.: The ar face database. Technical report, CVC Tech-
nical Report #24 (1998)

9. Moghaddam, B., Pentland, A.P.: Probabilistic visual learning for object represen-
tation. IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997)
696–710

10. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application
to face detection. In: Proc. Conf. Computer Vision and Pattern Recognition, San
Jaun, Puerto Rico (1997) 130–136

11. Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for AdaBoost. Machine Learning
42 (2001) 287–320

12. Romdhani, S., Torr, P., Schölkopf, B., Blake, A.: Computationally efficient face de-
tection. In: Proc. Eighth IEEE Int’l Conf. Computer Vision. Volume 2., Vancouver,
BC, Canada (2001) 695–700

13. Roth, D., Yang, M., Ahuja, N.: A snow-based face detector. In: Advances in Neural
Information Processing Systems, Denver, CO, USA (2000) 855–861

14. Schapire, R.E., Singer, Y.: Improved boosting using confidence-rated predictions.
Machine Learning 37 (1999) 297–336

15. Schapire, R.E.: The strength of weak learnability. Machine Learning 5 (1990)
197–227

16. Sung, K.K., Poggio, T.: Example-based learning for view-based human face detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998)
39–51

17. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proc. Conf. Computer Vision and Pattern Recognition. Volume 1.,
Kauai, HI, USA (2001) 511–518

18. Yang, M.H., Abuja, N., Kriegman, D.: Face detection using mixtures of linear sub-
spaces. In: Proc. Int’l Conf. Automatic Face and Gesture Recognition, Grenoble,
France (2000) 70–76

12 Y.-Y. Lin, T.-L. Liu and C.-S. Fuh

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 4. (a)-(f) Detection results derived by applying our face detector to some of
the CMU+MIT data set. (g)-(l) Detection results on several occluded faces. (m)-(o)
Detection results for various exaggerated expressions.

