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Abstract. We address the problem of single image super-resolution by
exploring the manifold properties. Given a set of low resolution image
patches and their corresponding high resolution patches, we assume they
respectively reside on two non-linear manifolds that have similar locally-
linear structure. This manifold correlation can be realized by a three-
layer Markov network that connects performing super-resolution with
energy minimization. The main advantage of our approach is that by
working directly with the network model, there is no need to actually
construct the mappings for the underlying manifolds. To achieve such
efficiency, we establish an energy minimization model for the network
that directly accounts for the expected property entailed by the mani-
fold assumption. The resulting energy function has two nice properties
for super-resolution. First, the function is convex so that the optimization
can be efficiently done. Second, it can be shown to be an upper bound
of the reconstruction error by our algorithm. Thus, minimizing the en-
ergy function automatically guarantees a lower reconstruction error— an
important characteristic for promising stable super-resolution results.

1 Introduction

In this work super-resolution specifically means the technique to estimate a high-
resolution (HR) image from one or more low-resolution (LR) instances taken of
the same scene by some imaging processes. One reason for looking into such
an issue is due to the quality constraints on many existing imaging devices,
especially on nowadays digital imaging systems. Although a large portion of
them are suitable for most imaging applications, the current resolution levels by
the affordable price still can not satisfy certain common needs. Take, for example,
the ubiquitous security surveillance systems. To completely monitor the whole
area of interest, lots of cameras are often needed. However, the quality of these
cameras is generally not good enough for providing useful information. While
it is always possible to physically increase the quality of sensors by investing
more budgets, image processing techniques such as super-resolution provide a
reasonable solution, and have been studied for years.

Super-resolution has lately become an active topic in vision research. Its
application ranges from medical imaging to image compression. An extensive



number of useful approaches have thus been proposed to address the problem
with different aspects of consideration [1], [3], [5], [6], [7], [10], [12], [13], [15],
[17], [18], [19], [20], [21]. By the underlying models, these methods can be roughly
divided into two categories [1], [19]: reconstruction-based and recognition-based.
Typically a reconstruction-based technique tries to accomplish super-resolution
with an ML or a MAP formulation [5], [10], [17], [18], [20]. To avoid causing an
underdetermined system, some kind of prior information needs to be imposed for
regularizing the results of super-resolution and for adding more high frequencies.
On the other hand, the recognition-based methods, e.g., [1], [7], [19], often first
resize an LR image into the desirable size of a target HR one, and then add the
appropriate high frequencies from the training set to improve the quality of the
resized image. While the reconstruction-based methods assume a more realis-
tic model, which simulates the process that we produce an LR image and can
be solved by standard optimization algorithms, the recognition-based methods
indeed provide more feasible results, especially for the case that the number of
given LR images is rather small.

Different from previous approaches for super-resolution, we are motivated
by investigating the manifold property of LR and HR image patches, with an
emphasis on the assumption that for each pair of corresponding LR and HR
image patches their local neighborhoods on some proper nonlinear manifolds
would be similar. Specifically, our method deals with the single (LR) image
super-resolution problem, and uses a three-layer Markov network to realize the
manifold assumption. The key contribution of the proposed approach is to ex-
plore the connection between the LR and HR manifolds without the need to
explicitly construct the respective manifolds. We achieve such efficiency by es-
tablishing an energy minimization model that directly accounts for the expected
property entailed by the implicit manifold structure. It therefore results in an
optimization-based algorithm for super-resolution, and requires only a training
set consisting of a small number of pairwise LR and HR image patches.

2 Previous Work

For convenience we always denote an LR image by L, and an HR image by
H . The task of single image super-resolution is therefore to find a best H of
a specified higher resolution, from which the given L can be reasonably repro-
duced. Indeed over the years there are many attempts to address the problem,
including, e.g., direct interpolation, or frequency-domain reconstruction [12]. Our
discussion here focuses only on more recent super-resolution techniques, sorted
according to the following two classes.

Reconstruction-based Methods of this kind typically assume an observation
model that describes how one can get L from H . If L and H are represented in
the form of column vectors, the observation model can often be written out in a
linear form:

L = TH + Z, (1)



where T can be thought of as some underlying imaging system transformingH to
L, and Z is the additive zero-mean Gaussian noise. As an example to illustrate,
suppose H is of size XH pixels and L is of size XL pixels. Then the observation
model in the work of Elad et al. [5] can be stated as

L = DBH + Z, (2)

where B is a blur matrix of size XH -by-XH , and D is a downsampling operator
of size XL-by-XH . Notice that we have omitted the geometric motion matrix and
the indices of image frames in [5] owing to that in our case there is only one LR
image, namely L, as the input. With equation (1), the derivation of H can be
readily casted as solving an ML (maximum likelihood) or a MAP (maximum a
posteriori) problem, e.g., [5], [10], [17], [18], [20].

Still the huge dimensional characteristic of the super-resolution problem like
(1) or (2) can be a challenging factor. A simple and effective technique has
been proposed by Irani and Peleg [13] that approximates a solution of (2) based
on iterative back projection (IBP). Their method starts with an initial guess
H0 for the HR image, projects the temporary result Hk by the same process
for producing an LR image, and then updates Hk into Hk+1 according to the
projection error. These steps can be summarized by

Hk+1 = Hk +B′U(L−DBHk), (3)

where U is now an upsampling matrix and B′ is another blur matrix distributing
the projection error. The IBP scheme given by (3) is intuitive and fast. How-
ever, it has no unique solution due to the ill-posed nature of equation (2), and
cannot be effectively extended to include prior information on H for regular-
izing the solution. The concern of adding the prior information is necessary in
that for the single image super-resolution problem the matrix T in (1) is in-
herently singular. Consequently, without using appropriate prior information on
H , a reconstruction-based method for (1) could yield super-resolution results
containing appreciable artifacts. Alternatively, the projection onto convex sets
(POCS) approach [5], [20] applies set theories to the super-resolution problem,
and allows constraints on additional prior information. The main disadvantages
of POCS-based methods include non-uniqueness of solution, slow convergence,
and high computational cost.

The ill-posedness of super-resolution noticeably hinders the performance of
reconstruction-based methods, and could yield jaggy or ringing artifacts, e.g., as
in the results of [19]. While adding some prior may alleviate the problem, it is
generally too simple for simulating the real world texture. In fact regularizing
super-resolution with prior information mostly smooths out small derivatives.
When carefully done, it could produce good edges. However, the scheme may
also suppress useful details, and is insufficient for representing complex textures.

Recognition-based To more naturally retain good image characteristics for
super-resolution, the recognition-based techniques [1], [3], [7], [11], [19] resort to



a training set of LR and HR image patches. The main idea is to use the actual
HR patches to construct the results of super-resolution. Such methods usually
carry out super-resolution by the following steps: divide the given LR image into
small (overlapping) patches, compare them with LR image patches in the train-
ing set, and replace them with the corresponding HR patches. In [1], Baker and
Kanade discuss the limits of reconstruction-based approaches, and also estab-
lish a recognition-based super-resolution technique. Freeman et al. [7] propose
a Markov model, in which overlapping patches are used to enhance the spatial
continuity. However, in most of the recognition-based algorithms, the recognition
of each LR patch gives a hard assignment to a specific HR counterpart in the
training set. The mechanism could cause blocky effect, or oversmoothness—if
image processing is performed to eliminate the blocky effect [3].

With the exception of [19], the above-mentioned recognition-based methods
are restricted by the class of their collected training sets. Indeed Sun et al. [19]
only replace the patches of detected primal sketches, and then apply IBP [13] to
ensure the reconstruction constraint. Though the primal-sketch scheme is useful
for processing a wide range of LR images, its super-resolution results may contain
artifacts induced by the back projection scheme. More recently, Chang et. al [3]
consider neighbor components in generating the HR image patches so that the
size of the training set can be dramatically reduced.

There are some attempts to integrate the two concepts, reconstruction-based
and recognition-based, for establishing a super-resolution technique that has low
reconstruction error, and meanwhile enriches a resulting HR image with complex
priors learned from training patches. For example, Pickup et al. [15] include the
learned image prior into a MAP model for super-resolution. The way they define
the image prior on an image pixel is to assume a Gaussian distribution with
the mean obtained by searching the set of training patches, finding the patch
most similar to the neighborhood region around this image pixel, and identifying
the value from the central pixel of the resulting patch. To feasibly optimize the
formulation, Pickup et al. assume that small perturbations of the neighborhood
region will not affect the searching result, an assumption that is not necessary
the case. In some ways the method of Sun et al. [19] also has the advantages of
the two types of approaches, but it is in essence an IBP algorithm with a better
initial guess (learned from the training set).

3 Manifold Ways for Super-Resolution

Given a single LR image L, which can be thought of being derived by blurring and
then downsampling some HR image of a real scene, the task of super-resolution is
then to approximate a high-resolution H that is similar to the original scene. In
our formulation we shall split L into n overlapping patches {�i}n

i=1. Intuitively,
for each LR patch �i, the corresponding site i on H should have an HR patch hi

that is closely related to the appearance of �i (see Figure 1a).
Note that the site correlation between �i and (a desired) hi does not imply

it needs a training set, denoted as Ω, comprising numerous pairs of LR and HR
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Fig. 1. (a) The corresponding low- and high-resolution patches �i and hi (highlighted
in red). (b) The 1-D illustration for the 3-layer Markov model. Note that in the output
layer for describing the resulting HR image H each node represents an image pixel.

patches to construct a reasonable H . The supporting evidence could come from
investigating the properties of natural image statistics. One key conclusion re-
lated to our application is that although images are typically represented as high
dimensional data, the natural images are actually distributed over a relatively
low dimensional manifold. For example, Lee et al. [14] find that the state space
of natural image patches of size 3-by-3 pixels is indeed very sparse.

We assume that, among our training data, the set of HR patches and the
set of corresponding LR patches respectively reside on two different nonlinear
manifolds, but with similar locally-linear structure. In other words, the linear
neighborhood relation of �i on the LR manifold can be used as a hint to correlate
hi and its neighbors on the HR manifold. The same assumption has been made
in Chang et al. [3], and shown to produce stable super-resolution performance.
Nonetheless, we emphasize a crucial difference that in [3] the locally-linear struc-
ture of the LR manifold is approximated exclusively with information from the
LR patches in Ω. And each patch of the resulting HR image is independently
determined via a hard assignment by imposing a similar locally-linear structure
on the HR manifold. For each pixel covered by different overlapping HR patches,
the average of these different values is assigned to resolve inconsistency. Such a
tactic sometimes introduces oversmoothness in the results [3].

Even though our discussion so far has indicated that the proposed super-
resolution algorithm involves learning two different manifolds from the training
data Ω, it turns out to be more a conceptual idea. In practice there is no need
to explicitly construct the LR and HR manifolds as we are only interested in
exploring their underlying locally-linear property. Later in the next section we
will explain how to use a Markov network to conform the two manifolds without
knowing their structure. For now we shall give more discussions on the assump-
tion that the two manifolds have similar locally-linear structure.



3.1 Locally Linear Assumption

Locally linear embedding (LLE) [16] is a way to map high dimensional data into a
low dimensional space with the useful property of maintaining the neighborhood
relationship. LLE assumes that each data point Xi and its neighbors lie on
(or close to) a locally-linear patch of the manifold. This local geometry can be
characterized by linear coefficients Wij that reconstruct each data point Xi from
its neighbors Xj ’s. The coefficient matrix W is decided by minimizing

∑
i

‖Xi −
∑

j

WijXj‖2, (4)

where Wij is required to be 0 if Xj is not a neighbor of Xi. The objective of LLE
is therefore to construct a lower dimensional data set whose local geometry can
also be characterized byW . For the LR and HR manifolds to have similar locally-
linear structure, the coefficient matrix W ∗ minimizing the LLE formulation (4)
on the HR patches should also yield a small value of (4) when the data are
replaced with the LR patches, and vice versa. While it is non-trivial to verify
the property analytically, the linear model (1) relating an HR image H with its
corresponding LR image L suggests the assumption is indeed a reasonable one.

4 The Energy Minimization Model

We now describe how super-resolution on nonlinear manifolds can be done with
the convenience of skipping constructing the manifolds. Suppose we have a pair
of LR and HR image patches, respectively denoted as � and h. (Each image
patch will hereafter be represented as a column vector.) Let P and Q be two
matrices with the same number of columns. In particular, the columns of P are
�’s neighbors in the training set Ω, and those of Q are h’s neighbors in Ω. By
the similar locally-linear structure of the LR and HR manifolds, we can find a
reconstruction coefficient vector w satisfying

[
�
h

]
=

[
P
Q

]
w +

[
ε
δ

]
, (5)

where ε and δ are Gaussian noise terms. Clearly equation (5) is the mathematical
interpretation for the adopted manifold assumption, and it also nicely connects
pivotal elements in solving the single image super-resolution problem.

To realize the manifold concept embodied in (5), we consider a three-layer
Markov network, shown in Figure 1b. In the input layer of the network, each
node represents an LR patch, say, �i from the ith site of the given LR image L.
Each node of the second (hidden) layer is a coefficient vector wi, stating how �i
and the corresponding patch hi from the ith site of the approximated HR image
H can be reconstructed from their neighbors in the training set Ω. Note that
each node of the output layer consists of only one pixel of H . In the network
each node �i is connected to the reconstruction coefficient vector wi, and wi is



further connected to those nodes (image pixels) in the ith site of H . The output
layer itself is a fully-connected graph, i.e., a big clique.

With (5) and the Markov network described above, we are in a position to
define the energy function F for the network by

F (W,H ;L) =
∑

i

φ(�i, wi) + λ2
1

∑
i

∑
j∈ site i

ψ(wi, H
j) + λ2

2 ζ(H), (6)

where there are in turn three kinds of potential functions, namely φ, ψ, and ζ to
be specified, W = [w1 · · ·wn] is the coefficient matrix, λ1 and λ2 are parameters
to weigh the contributions of the three terms, andHj denotes the jth pixel of H .
We next give the definitions for each of the three potential functions. To begin
with, for each LR patch �i and the connected node wi, the network is designed
to maximize the joint probability of �i and wi. Thus, from (5), we arrive at the
following definition:

φ(�i, wi) = ‖�i − Piwi‖2. (7)

Suppose Hj is the kth pixel on site i of H (i.e. hi). Then the potential function
ψ for wi and Hj can be defined by

ψ(wi, H
j) = ‖eT

k hi − eT
kQiwi‖2, (8)

where ek is the kth coordinate vector. Notice that, from (5), minimizing the
summation

∑
j∈site i ψ(wi, H

j) is equivalent to maximizing the joint probability
of hi and wi. Finally, the potential function ζ in (6) is to add appropriate image
prior for super-resolution, and is defined on the big clique of the whole H :

ζ(H) = ‖SH‖2, (9)

where we shall discuss the matrix S later, and here we simply treat S as the zero
matrix. With (7), (8), and (9) so defined, the energy function F in (6) is convex
to wi and H . Hence the super-resolution output H∗ by the Markov network can
be achieved by minimizing F with respect to wi and H , respectively and itera-
tively. The proposed super-resolution algorithm is summarized in Algorithm 1.
(Notice that the computation of H described in line 5 of Algorithm 1 is for the
convenience of presentation. Owing to the structure of the Markov network, we
can indeed compute H pixelwise for a more efficient implementation.)

4.1 Bound the Reconstruction Error

Besides being convex for the ease of optimization, the energy function F defined
in (6) can be shown to be an upper bound of the reconstruction error yielded
by our algorithm. That is, since our approach is to minimize F , a resulting
super-resolution result H∗ by Algorithm 1 would have a small reconstruction
error (bounded by the minimal energy F ∗). Thus the proposed direct energy
minimization method not only possesses the convenience for not constructing
the manifolds explicitly but also produces stable super-resolution results.



Algorithm 1: Direct Energy Minimization for Super-Resolution
Input : An inpute LR image L, and a training set Ω.
Output: An HR image H∗.

Split L into n overlapping LR image patches, {�i}n
i=1.1

For each �i, find its K nearest LR neighbors in Ω, and form Pi as in (5).2

For each Pi, take the corresponding K HR patches in Ω to form Qi as in (5).3

For each i, compute the initial wi based on Pi and �i.4

Repeat
For each i, compute hi from (5), given wi and Qi.5

For each i, compute wi from (5), given �i, hi, Pi, and Qi.6

Until Convergence

With (2) and a given LR image L, the reconstruction error of H∗ derived by
Algorithm 1 can be expressed in the following matrix form

‖DBH∗ − L‖2, (10)

where B is a symmetric blur matrix and D is the downsampling matrix. We
now explain why the reconstruction error in (10) will be lower than F in (6).
Let B′ and D′ be the corresponding blur and downsampling matrices on the
HR patches. It can be shown that there exists a (mask) matrix M to extract a
central region within an LR patch such that M�j = MD′B′hj for any pair of
patches �j and hj in Ω. We split the input L into overlapping {�i}n

i=1. For each
�i we define Mi to select pixels from the central region defined by M such that L
is a disjoint union of {�̃i = Mi�i}n

i=1. The above procedure can be accomplished
by splitting L into denser overlapping patches, or by adjusting Mi for each site
i. The reconstruction error in (10) can then be rewritten as∑

i

‖MiD
′B′h∗i −Mi�i‖2 =

∑
i

‖MiD
′B′(Qiwi + δi) −Mi(Piwi + εi)‖2

=
∑

i

‖MiD
′B′δi −Miεi‖2 ≤

∑
i

(‖D′B′δi‖2 + ‖εi‖2)

≤
∑

i

(λ2
1‖δi‖2 + ‖εi‖2) ≤ F (11)

The only restriction for (11) to be valid is that λ1 should be larger than the
downsampling ratio. One can see that F is not a tight bound for the reconstruc-
tion error. So in some cases the resulting reconstruction errors by our method
are higher than those induced by the IBP. However, in our experiments the pro-
posed algorithm often gives satisfactory results and lower reconstruction errors
in fewer iteration steps than those required by IBP. (See Figure 2b.)

4.2 The Partial Gestalt Prior

We now discuss the use of prior information for super-resolution. Indeed those
HR patches in the training set Ω can be considered as some kind of prior.
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Fig. 2. Dragonfly. (a) The original low-resolution image. (b) Reconstruction errors
of IBP and ours. (c) Our approach with S = 0. (d) Our approach with Gestalt prior.

However, due to the computation complexity, most super-resolution methods,
including ours, can manage only small patches. Otherwise, the variances of image
patches would cause Ω to grow into an infeasible size. Due to such limitation,
there are some features of large scale as well as high frequencies cannot be
recovered by techniques that work on small patches. One example can be seen in
Figure 2c. To account for such artifacts, we adopt the concept of Gestalt [2], [4].
The Gestalt theory contains many rules to describe human visual perceptions,
including symmetry, closeness, and good continuation, to name a few. In this
work we adopt only the good continuation as the large-scale prior information
for super-resolution in that properties such as symmetry are often well preserved
in LR images, and can be recovered even by simple magnifying schemes.

One way to keep good continuation is to make H smoother along edges and
ridges. Thus we choose to define the matrix S in (9) to be the directional deriva-
tive operator pixelwise according to the main (edge) direction multiplied by the
confidence. More precisely, at pixel j, large confidence cj means a high probabil-
ity of having an edge around j in the main direction dj . We model this claim as
an attributed graph that is similar to a Gestalt field [9]. (A Gestalt field is actu-
ally a specific mixed Markov model [8] where each address node is connected to
only one regular node.) In the generated attributed graph G = (V,E), each node
v represents a site on the desired H and has attributes (d, c, {a1, ..., a4}). The
attributes d and c mean the main edge direction and the confidence of the patch,



Algorithm 2: Constructing Partial Gestalt Prior
Input : Qi for each site of H .
Output: (d, c, {a1, ..., a4}) for each site of H .

For each site i, initialize three directions and a confidence c by referencing Qi.
Repeat

Find the site that has the largest confidence value c among unvisited sites.
Decide d and {a1, ..., a4} such that the local compatibility can be achieved.
Update the main direction d and the confidence value c of this site.
Mark this site as visited.

Until All sites are visited

respectively. The attributes {a1, ..., a4} are address variables whose values are
neighbors of v (if an edge goes through them) or nil. Intuitively, d and c should
be compatible with the neighbors of v in Ω as well as the neighbors indicated
by {a1, ..., a4} in the graph. We can therefore define two compatible functions.
Like Guo et al. [9], we propose a greedy method to decide (d, c, {a1, ..., a4}). (See
Algorithm 2.) However, we discrete the direction into 16 values, and specify the
marching order to be the same as the decreasing order of confidence values. In
Algorithm 2, the main directions and confidences of sampled HR patches are de-
tected by a set of the first and second Gaussian directional-derivative filters [19].
The improvement owing to adding this prior term can be seen in Figure 2d.

5 Implementation and Discussions

As described before, we optimize F in (6) with respect to wi and to H , respec-
tively and iteratively. Given H , the derivative of F with respect to wi is

∂F

∂wi
= 2

[
PT

i , λ1Q
T
i

] [
Pi

λ1Qi

]
wi − 2

[
PT

i , λ1Q
T
i

] [
li

λ1hi

]
. (12)

Hence the optimization with respect to wi can be achieved directly. Given wi,
the derivative of F with respect to H is

∂F

∂H
= λ2

1 [V1, ..., VXH ]T + 2λ2
2S

TSH, (13)

where Vj =
∑
i∈Cj

(−2eT
g(j,i)Qiwi + 2Hj), for j = 1, . . . ,XH, (14)

Cj means the set of sites that cover jth pixel of H , and g(j, i) indicates the order
of the jth pixel of H in site i. If S is the zero matrix or λ2 = 0, optimizing F
according to H can also be done in one step. Otherwise, STS is a very large
matrix and may be singular. In this case we implement a conjugate gradient
algorithm as suggested in [21].



5.1 Experimental Results

Due to the fact that humans are more sensitive to changes in luminance channel,
we only test our method on the luminance channel, and magnify the color channel
to the desired size through bicubic interpolation. Thus, after being preserved only
the luminance channel, the training images are blurred with a 5-by-5 Gaussian
kernel, and then downsampled into one third of the original sizes. In all our
experiments the LR patches are of size 4-by-4 and the HR patches are of size
8-by-8. The parameter λ1 is set to be

√
(4 × 4)/(8 × 8) to balance errors induced

by (7) and (8). The other parameter λ2 is set as a relatively smaller number,
0.2λ1, because we believe that the information from the training set is more
important. We have run our algorithm over two classes of images. To enrich the
training set we shift the training images by 0 to 2 pixels in each direction before
the training set generating process, and produce nine times more patch pairs.
The experimental results can be seen in Figures 2 and 4. In each case we set K
(the number of neighbors) to be 20, and carry out the algorithm for 30 iterations.
For comparison, we also include the results by IBP and by Chang et al. [3] in
Figure 4. Overall, the super-resolution results by our method are of satisfactory
quality.

(a) (b)

Fig. 3. The two training sets used for the results reported in this work.

5.2 Discussions

We have proposed a new model for the single image super-resolution problem.
Our approach is motivated by the manifold property of LR and HR image
patches, and is fortified by the use of a three-layer Markov network. Through the
proposed framework, we can directly use the information from the training data,
and suppress the reconstruction error in the same time. The method thus has
the advantages of both recognition-based and reconstruction-based approaches.



Unlike [19], our direct energy minimization formulation guarantees reasonable
reconstruction errors so there is no need to worry about that the learned informa-
tion may be destroyed by depressing the reconstruction error. When compared
with [15], the convex energy function, defined in (6), for the Markov network
ensures better convergency property. The related work by Chang et al. [3] also
starts at the manifold assumption. Suppose we use the same features to mea-
sure the distances between image patches. Then the super-resolution algorithm
of [3] in fact does similar effects as those produced by our algorithm at the first
iteration without using additional image prior.

A direct generalization of our method could be dealing with only primal
sketch patches [19]. Furthermore, since we update the high-resolution image
pixelwise, the proposed approach can be more easily extended to handle multiple
image super-resolution than other recognition-based methods.
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Fig. 4. From top to bottom of both columns: the low-resolution images, the results
by IBP, the results by Chang et al. [3], and the results by our method.


