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Abstract. We address the problem of segmenting highly articulated
video objects in a wide variety of poses. The main idea of our approach
is to model the prior information of object appearance via random forests.
To automatically extract an object from a video sequence, we first build
a random forest based on image patches sampled from the initial tem-
plate. Owing to the nature of using a randomized technique and simple
features, the modeled prior information is considered weak, but on the
other hand appropriate for our application. Furthermore, the random
forest can be dynamically updated to generate prior probabilities about
the configurations of the object in subsequent image frames. The algo-
rithm then combines the prior probabilities with low-level region infor-
mation to produce a sequence of figure-ground segmentations. Overall,
the proposed segmentation technique is useful and flexible in that one
can easily integrate different cues and efficiently select discriminating
features to model object appearance and handle various articulations.

1 Introduction

Object segmentation has been one of the fundamental and important problems
in computer vision. A lot of efforts have been made to resolve the problem,
but, partly due to the lack of a precise and objective definition itself, fully-
automatic unconstrained segmentation is still an “unsolved” vision task. The
predicament is further manifested by the success of those characterized with
clear aims, e.g., edge or interest-point detection. Nevertheless, the bottom-up
segmentation approaches based on analyzing low-level image properties have
been shown to achieve stable and satisfactory performances [13], [20], [28], [36],
even though the segmentation outcomes (e.g., see [17]) often contextually differ
from those produced by humans [16], [21]. Humans have abundant experience on
the contexts of images; with our prior knowledge we can infer an object’s shape
and depth, and thus produce meaningful segmentations that are unlikely to be
derived by a general-purpose segmentation algorithm.

While fully automatic image segmentation seems to be an ill-posed problem,
figure-ground segmentation, on the other hand, has more specific goals and is
easier to evaluate the quality of segmenting results. Since the emphasis is on



Fig. 1. Examples of unusual and highly articulated poses.

separating the target object(s) (of which some properties are known a priori)
from the background, it opens up many possibilities regarding how to impose
prior knowledge and constraints on the segmentation algorithms. For instance, an
algorithm may choose from some predefined object models, such as deformable
templates [35] or pictorial structures [11], or learn from the training data [4]
to construct the object representation. Once the representation is decided, the
algorithm can yield segmentation hypotheses in a top-down fashion [4], and
then examines the feasibility of hypothesized segmentations. Indeed top-down
and bottom-up segmentation approaches are not mutually exclusive and, when
properly integrated, they could result in a more efficient framework [30], [34].

In this paper we address figure-ground segmentation for objects in video.
Particularly, we are interested in establishing a framework for extracting non-
rigid, highly articulated objects, e.g., athletes doing gymnastics as shown in
Fig. 1. The video sequences are assumed to be captured by moving cameras,
and therefore background subtraction techniques are not suitable. Furthermore,
since we are mostly dealing with unusual poses and large deformations, top-down
approaches that incorporate class-specific object models such as active contours
[2], exemplars [14], [29], pictorial structures [11], constellations of parts [12],
deformable models [22], and deformable templates [35] are less useful here—
the degree of freedom is simply too high, and it would require either a huge
number of examples or many parameters to appropriately model all possible
configurations of the specified object category. Hence, instead of considering
class-specific segmentation [4], we characterize our approach as object-specific
[34]: Given the segmented object and background in the initial image frame,
the algorithm has to segment the same object in each frame of the whole image
sequence, and the high-level prior knowledge about the object to be applied in
the top-down segmentation process should be learned from the sole example.

1.1 Previous Work

In class-specific figure-ground segmentation, the top-down mechanism is usually
realized by constructing an object representation for a specified object category
and then running the segmentation algorithm under the guidance of the represen-
tation. Borenstein and Ullman [4] introduce the fragment-based representation
that covers an object with class-related fragments to model the shape of the



object. Their algorithm evaluates the quality of “covering with candidate frag-
ments” to find an optimal cover as the segmenting result. Three criteria are used
to determine the goodness of a cover: similarity between a fragment and an im-
age region, consistency between overlapping fragments, and reliability (saliency)
of fragments. Tu et al. [30] propose the image parsing framework that combine
the bottom-up cues with the top-down generative models to simultaneously deal
with segmentation, detection, and recognition. The experimental results in [30]
illustrate the impressive performances of parsing images into background regions
and rigid objects such as faces and text.

Despite the computational issues, Markov random fields (MRFs) have been
widely used in image analysis through these years [15]. Recently several very ef-
ficient approximation schemes for solving MRFs [5], [33] and their successful use
in producing excellent results for interactive figure-ground segmentation, e.g.,
[3], [6], [27], have made this group of approaches even more popular. Aiming
for the class-specific segmentation, Kumar et al. [18] formulate the object cate-
gory specific MRFs by incorporating top-down pictorial structures as the prior
over the shape of the segmentation, and present the OBJ CUT algorithm to ob-
tain segmentations under the proposed MRF model. Typically, graph-cut-based
segmentation approaches use predefined parameters and image features in the
energy functions [6]. Although the GMMRF model [3] allows adjustments to
the color and contrast features through learning the corresponding parameters
from image data, only low-level cues are considered. Ren et al. [26] propose to
learn the integration of low-level cues (brightness and texture), middle-level cues
(junctions and edge continuity), and high-level cues (shape and texture prior)
in a probabilistic framework.

The segmentation task of our interest is related more closely to that of Yu
and Shi [34], where they address the object-specific figure-ground segmentation.
Given a sample of an object, their method can locate and segregate the same
object under some view change in a test image. The algorithm takes account
of both pixel-based and patch-based groupings through solving a constrained
optimization regarding pixel-patch interactions. Still in Yu and Shi [34] the goal
of segmentation is to identify rigid objects in images. We instead consider a
figure-ground technique for video, and more importantly, for segmenting artic-
ulated objects with large deformations. We are also motivated by the work of
Mori et al. [23] that considers detecting a human figure using segmentation.
They use Normalized Cuts [28] to decompose an image into candidate segments.
To generate the body configuration and the associated segmentation, their algo-
rithm locates and then links those segments representing the limbs and torso of
the target human. The experimental results reported in [23] show that the pro-
posed technique can extract from images the baseball players in a wide variety
of poses. Concerning the implementation details, their approach requires logistic
regression to learn the weights of different cues from a set of hand-segmented
image templates. In addition, several global constraints are enforced to reduce
the complexity of searching a large number of candidate configurations. These
constraints are indeed very strong prior knowledge defining what physically pos-



sible configurations of a human body can be, and consequently are not easy to
be generalized to other object categories.

A different philosophy from those of the aforementioned approaches is using
variational models [24] or level-set PDE-based methods [25] for image segmenta-
tion. Approaches of this kind are more flexible to handle deformations. However,
integrating different cues or imposing top-down prior models in such frameworks
is much more sophisticated, which involves adding intriguing terms account-
ing for the desired properties into the PDEs, and thus further complicates the
numerical formulations, e.g., [8], [9]. It is also hard to include learning-based
mechanisms such as parameter estimation and feature selection, to give suitable
weights among low-level information and different aspects of prior knowledge.

1.2 Our Approach

Analogous to regularization for optimization problems, there is a trade-off be-
tween imposing strong prior knowledge and allowing flexibility of object config-
urations when we incorporate a top-down scheme into figure-ground segmenta-
tion. For the images shown in Fig. 1, class-specific shape (or structure) models,
in general, are more restrictive for covering such a wide range of pose variations,
otherwise the search space of possible configurations might be too large to be
tractable.

We propose a new framework for object-specific segmentation that models
the prior information by random forests [7], constructed from randomly sampled
image patches. Owing to the nature of random forests, the modeled prior knowl-
edge is weak but still sufficient for providing top-down probabilistic guidance on
the bottom-up grouping. And this aspect of characteristic is crucial for our task.
Moreover, the randomized technique also enables cue integration and feature
selection to be easily achieved. We shall show that the proposed algorithm is
useful and rather simple for video-based figure-ground segmentation, especially
when the objects are non-rigid and highly articulated.

2 Learning Prior Models with Random Forests

In this section we first describe the image cues for constructing the prior mod-
els, and then explain the technique of embedding a prior model into a random
forest. Given the template and the mask of an object, using Figs. 2a and 2b
as an example, we seek to build a useful prior model with a random forest for
subsequent video object segmentations. For the experiments presented in this
paper, we use color, brightness, and gradient cues, though other cues such as
texture and optical flow can be easily included in the same manner. Specifically,
we first apply Gaussian blur to each color channel of the template as well as the
gray-level intensity, and thus get the smoothed cues as illustrated in Figs. 2c
and 2d. From the smoothed intensity we compute the gradient, and then further
blur it to get the x and y derivatives as shown in Figs. 2e and 2f. Note that the
values of all cues are normalized between 0 and 1. For convenience, these cues



(a) (b) (c) (d) (e) (f)

Fig. 2. Information used for constructing the prior models. (a) Template. (b) Mask.
(c) RGB color cues. (d) Brightness cue. (e) x derivatives. (f) y derivatives.

are combined to get a pseudo-image of six channels. We will treat the pseudo-
image template as a pool of patches that constitute our prior knowledge about
the object.

2.1 Random Forests

Random forests by Breiman [7] are proposed for classification and regression, and
are shown to be comparable with boosting and support vector machines (SVMs)
through empirical studies and theoretical analysis. Despite their simplicity and
the effectiveness in selecting features, random forest classifiers are far less popular
than AdaBoost and SVMs in computer vision, though random forests are indeed
closely related to and partly motivated by the shape-recognition approach of
randomized trees [1]. Random forests have been used for multimedia retrieval
by Wu and Zhang [32]. More recently, Lepetit et al. [19] consider randomized
trees for keypoint recognition, and obtain very promising results.

To model the prior information of an object’s appearance, we generate a
forest of T random binary trees. Each tree is grown by randomly sampling N
patches from the pseudo-image template; we run this process T times to obtain
T trees. The typical window size of a patch we use in the experiments is 5 × 5.
Since a pseudo-image contains six channels, we actually store each patch as
a vector of 5 × 5 × 6 elements (see the illustration at the right hand side of
Fig. 3). Let xk denote a patch, and {xk|xk ∈ R

d}N
k=1 be the sample set (hence

d = 150). For each patch xk we then obtain the label information yk from the
corresponding position (patch center) in the mask. Therefore, we have the labels
{yk|yk ∈ {F, G}}N

k=1 that record a patch belonging to figure (F) or ground (G).
To grow a tree with {(xk, yk)}N

k=1 involves random feature selection and node
impurity evaluation. The tree-growing procedure is described as follows.

1. At each tree-node, we randomly select M features. In this work we consider
a feature as the difference between some ith and jth elements of a patch.
That is, we repeat M times choosing at random a pair of element indices i
and j. With a random pair of indices i and j defining a feature, each patch
xk would give a feature value f = xk

i − xk
j .

2. For each feature, we need to determine a threshold that best splits the
patches reaching the current node by their feature values. The threshold of
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Fig. 3. Growing a random tree. The typical window size of a patch is 5 × 5. Since a
pseudo-image contains six channels, we actually store a patch as a vector of 5 × 5 × 6
elements. A feature is defined as the difference between two randomly selected elements
of a patch. We use the random feature (with an optimized threshold) to split the set
of patches reaching the current node into two parts forming two child nodes, according
to the feature values f of patches being greater or less than the threshold.

feature values for optimal splitting is obtained by maximizing the decrease
in variance impurity of the distribution of the patches. The idea is to purify
each child node such that the patches in a child node would almost carry
the same label. (For brevity’s sake, we skip the definition of impurity and
the description of maximizing the impurity drop. The details can be found
in [10], p. 400.)

3. Among the M randomly selected features we pick the one that produces the
maximum drop in impurity, and use this feature and its threshold to split
the current patches into two child nodes according to the feature values of
patches being greater or less than the threshold, as illustrated in Fig. 3.

4. We stop splitting a node (thus a leaf node) if the number of arriving patches
is less than a chosen constant, or if the predefined limit of tree-height is met.

5. If there is no more node to be split, the growing process is done. Each
internal node stores a feature and a splitting threshold, and each leaf node
yields a probability P (y = F|x reaches this leaf node), which is computed as
the proportion of “the patches in this leaf node belonging to the figure F”
to “all the patches that reach this leaf node.”

The features used in the random trees cover a large number of combinations of
differences between two channels with some spatial perturbations. For instance,
they may represent the difference between the R and B channels of a patch,
or represent two pixels being residing on or separated by an edge. Because the
cues have been smoothed, the features are less sensitive to the exact positions
they are selected. Moreover, these types of features can be efficiently computed;
each computation costs only two memory accesses and one subtraction. Our
experimental results show that they are also quite discriminating in most cases.



2.2 Prior Probabilities about the Object’s Configuration

After constructing a forest of T trees
by repeating the preceding procedure, we
have a random forest that models the ap-
pearance prior of a target object. Then
for each new image frame, we scan the
whole image pixel by pixel to run every
corresponding patch x through the ran-
dom forest, and average the probabilities

new input one tree 25 trees

Fig. 4: Prior probabilities.

{Pt(y = F|x)}T
t=1 advised by the trees. The scheme thus provides top-down

probabilistic guidance on the object’s configuration. Fig. 4 illustrates the prior
probabilities estimated by a single tree and by 25 random trees for a new input
image. Suffice it to say, with a random forest of 25 trees, the object’s appearance
prior can be suitably modeled using the template and mask in Fig. 2. In the next
section, we will show how to combine the top-down hints of prior probabilities
with the bottom-up segmentations.

3 Applying Prior Models to Segmentation

In Figs. 5b and 5c we depict two segmenting results produced by Normalized
Cuts [28]: one contains 4 segments and the other 70 segments. The results show
that, even though directly using Normalized Cuts with a “few-segment” setting
to obtain figure-ground segmentation might not be appropriate, the Normalized
Cuts segmentation that produces many regions (over-segmentation) does provide
useful low-level information about the segments of the object.

3.1 Solving Figure-Ground Segmentation

The key idea is to combine the low-level information of over-segmentation with
the prior probabilities derived from the random-forest prior model to complete
the figure-ground segmentation. Our algorithm can produce segmenting results
like the one shown in Fig. 5d. In passing, based on the segmenting results, it is
straightforward to highlight the object in the video or extract its contour, e.g.,
see Figs. 5e and 5f. We summarize our algorithm as follows.

Voting by prior probabilities: Inside each region of the over-segmentation
derived from Normalized Cuts, compute the number of pixels whose prior
probabilities are above, say, one standard deviation of the mean prior prob-
abilities. That is, a pixel having a high enough prior probability casts one
vote for the region to support it as a part of the figure.

Choosing candidates: A region will be considered as a candidate if it gets
more than half of the total votes by its enclosing pixels.



(a) (b) (c) (d) (e) (f)

Fig. 5. (a) New input. (b) & (c) Two Normalized Cuts segmentations with 4 and 70
segments. (d) Figure-ground segmentation produced by our algorithm. Based on the
segmentation result, it is straightforward to (e) highlight the object in the video, or (f)
extract the contour for other uses such as action analysis.

Filling gaps: Apply, consecutively, morphological dilation and erosion (with a
small radius) to all candidate regions. This will close some gaps caused by
artifacts in low-level segmentation.

Merging the candidates Compute the connected components of the outcome
in the previous step to combine neighboring candidate regions. Set the largest
component as the figure and the rest of the image as the background.

3.2 Locating the Video Object

So far we discuss merely the single-frame case, and assume that a loose bounding-
box surrounding the object is given to point out the whereabouts of the object in
each frame. Thus we take only the cropped image as input for the aforementioned
algorithm. For video, we bring in a simple tracker to find the loose bounding-box
of the object. This is also achieved by working on the prior probabilities. We just
need to search nearby area of the object’s previous location in the previous image
frame to find a tight bounding-box that encloses mostly high prior probabilities.
We then enlarge the tight bounding-box to get a loose one to include more
backgrounds. The optimal tight bounding-box can be very efficiently located
by applying the technique of integral images, as is used in [31]. Our need is to
calculate the sum of prior probabilities inside each bounding-box and find the
one yielding the largest sum. For that, we compute the integral image of the
prior probabilities. Then calculating each sum would require only four accesses
to the values at the bounding-box’s corners in the integral image.

3.3 Updating the Random Forest

Since we are dealing with video, it is natural and convenient to update the ran-
dom forest based on previous observations and segmenting results. The updated
random forest would be consolidated with new discriminating features to dis-
tinguish the object from the changing backgrounds. We propose to update the
random forest by cutting and growing trees. The following two issues are of con-
cern to the updating: 1) which trees should be cut, and 2) which patches could
be used to grow new trees.



Cutting old trees. Because the foreground mask and the object appearance
given at the beginning are assumed to be accurate and representative, we use
them to assess the goodness of the trees in the current random forest. For
an assessment, we sample K patches from the original template to construct
{x̃k}K

k=1 that all correspond to the object (with labels ỹk = F). We run them
through the random forest of T trees and get the probabilities Pt(ỹk = F|x̃k),
where t = 1, . . . , T and k = 1, . . . , K. In addition, we compute the average
probability P̄ (·) =

∑
t Pt(·) of each patch over T trees. The infirmity of a

tree is evaluated by

Lt = −
∑

k

P̄ (ỹk = F|x̃k) log Pt(ỹk = F|x̃k) . (1)

The negative logarithm of a probability measures the error made by a tree
for a given patch. And the average probability P̄ (ỹk = F|x̃k) gives a larger
weight to the patch that is well predicted by most of the trees. Hence a tree
will be penalized more by P̄ (ỹk = F|x̃k) if it performs relatively poor than
others on x̃k. We cut the top T ′ trees that give the largest values on Lt.

Growing new trees. We need to grow T ′ new trees to replace those being
cut. The patches required for constructing new trees are sampled from three
sources: 1) From the inside of the figure segmentation we sample the patches
that are of very high prior probabilities and label them as the figure patches;
2) From the area outside the figure segmentation but inside the bounding-
box, we sample the patches that are of very low prior probabilities and mark
them as background patches; 3) From the area outside the loose bounding-
box, we sample the patches that are of high prior probabilities, and also label
them as background patches—these patches are prone to cause misclassifi-
cations.

After the updating, we have a mixture of old and new trees. The updated random
forest still provides an effective prior model of the object, and becomes more
robust against the varying background.

Note that our presentation in Section 3 is to first detail what needs to be
done for each single frame, and then describe how to handle an image sequence.
In practice, the algorithm of applying a prior model to segmenting a video object
is carried out in the following order: 1) locating the bounding box, 2) solving
figure-ground segmentation, and 3) updating the random forest.

4 Experiments

We test our approach with some dancing and gymnastics video clips downloaded
from the Web3. Some of the image frames are shown in Fig. 6, as well as the prior
probabilities and the figure-ground segmentations produced by our approach.
The objects in these video sequences demonstrate a wide variety of poses. Many
3 http://www.londondance.com http://www.shanfan.com/videos/videos.html

http://www.rsgvideos.com



of the poses are unusual, though possible, and therefore provide ideal tests to
emphasize the merits of our algorithm. Note that even though we only test on
human figures, our approach is not restricted to a specific object category, and
hence should be equally useful in segmenting other types of rigid or non-rigid
objects.

The following are a summary of the implementation details and the param-
eters used. In our experiments the size of a random forest is T = 25. The height
limit of a tree is set to 6. To grow each tree, we sample N = 1800 patches,
each of size 5 × 5 as mentioned earlier, from the template image. (Specifically,
the template image is enlarged and shrunk by 5% to add some scale variations.
Therefore, we have three scales of the template for drawing samples; we sample
600 patches under each scale.) A typical template size is 150×100, which is also
the size of the loose bounding box used in the subsequent processes to locate
the target object. Recall that, at each tree node, we need to randomly select M
features as a trial, we have M = 20 for all the experiments. Regarding updating
the random forest, for each updating we cut T ′ = 10 trees and grow new ones
to keep the size of forest (T = 25). Overall, we find the above setting of random
forests can model the objects quite well.

Our current implementation of the proposed algorithm is in MATLAB and
running on a Pentium 4, 3.4 GHz PC. About the running time, building the
initial random forest of 25 trees takes 5 seconds. And it takes 25 seconds to
produce the figure-ground segmentation for a 240 × 160 input image (including
15 seconds for Normalized Cuts, 5 seconds for computing the prior probabilities,
and 3 seconds for updating the random forest).

5 Conclusion

We present a new randomized framework to solve figure-ground segmentation
for highly articulated objects in video. Although previous works have shown that
using top-down class-specific representations can improve figure-ground segmen-
tations, such representations, which are usually built upon strong constraints and
specific prior knowledge, might lack flexibility to model a wide variety of con-
figurations of highly articulated objects. Our approach to the problem is based
on modeling weak-prior object appearance with a random forest. Instead of con-
structing a representation for a specific object category, we analyze a video object
by randomly drawing image patches from the given template and mask, and use
the patches to construct the random forest as the prior model of the object.
For an input image frame, we can derive the prior probabilities of the object’s
configuration from the random forest, and use the prior to guide the bottom-
up grouping of over-segmented regions. Our experimental results on segmenting
different video objects in various poses demonstrate the advantages of using
random forests to model an object’s appearance—a learning-based mechanism
to select discriminating features and integrate different cues. For future work,
we are interested in testing other filter-based cues to make our algorithm more
versatile, as well as handling occlusion and multi-object segmentation.



(a) Beam

(b) Ball

(c) Floor

(d) Rope

(e) Ballet

Fig. 6. The first two images shown in each of the five experiments are the template and
the mask used for constructing the random forest. For each experiment we show three
examples of the input frame, the prior probabilities, and the figure-ground segmentation
produced by our approach.
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