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Abstract. We describe a clustering approach with the emphasis on de-
tecting coherent structures in a complex dataset, and illustrate its effec-
tiveness with computer vision applications. By complex data, we mean
that the attribute variations among the data are too extensive such that
clustering based on a single feature representation/descriptor is insuffi-
cient to faithfully divide the data into meaningful groups. The proposed
method thus assumes the data are represented with various feature rep-
resentations, and aims to uncover the underlying cluster structure. To
that end, we associate each cluster with a boosting classifier derived from
multiple kernel learning, and apply the cluster-specific classifier to feature
selection across various descriptors to best separate data of the cluster
from the rest. Specifically, we integrate the multiple, correlative training
tasks of the cluster-specific classifiers into the clustering procedure, and
cast them as a joint constrained optimization problem. Through the op-
timization iterations, the cluster structure is gradually revealed by these
classifiers, while their discriminant power to capture similar data would
be progressively improved owing to better data labeling.

1 Introduction

Clustering is a technique to partition the data into groups so that similar (or
coherent) objects and their properties can be readily identified and exploited.
While such a goal is explicit and clear, the notion of similarity is often not well
defined, partly due to the lack of a universally applicable similarity measure.
As a result, previous research efforts on developing clustering algorithms mostly
focus on dealing with different scenarios or specific applications. In the field
of vision research, performing data clustering is essential in addressing various
tasks such as object categorization [1, 2] or image segmentation [3, 4]. Despite the
great applicability, a fundamental difficulty hindering the advance of clustering
techniques is that the intrinsic cluster structure is not evidently revealed in the
feature representation of complex data. Namely, the resulting similarities among
data points do not faithfully reflect their true relationships.

We are thus motivated to consider establishing a clustering framework with
the flexibility of allowing the data to be characterized by multiple descriptors.
The generalization aims to bridge the gap between the resulting data similari-
ties and their underlying relationships. Take, for example, the images shown in
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Fig. 1. Images from three different categories: sunset, bicycle and jaguar

Fig. 1. Without any ambiguities, one can easily divide them into three clusters.
Nevertheless, say, in an object recognition system, color related features are re-
quired to separate the images in category sunset from the others. Analogously,
shape and texture based features are respectively needed for describing cate-
gories bicycle and jaguar. This example not only illustrates the importance of
using multiple features but also points out that the optimal features for ensuring
each cluster coherent often vary from cluster to cluster.

The other concept critical to our approach is unsupervised feature selection. It
is challenging due to the absence of data labels to guide the relevance search, e.g.,
[5, 6]. To take account of the use of multiple descriptors for clustering, our formu-
lation generalizes unsupervised feature selection to its cluster/group-dependent
and cross feature space extensions. To that end, each cluster is associated with
a classifier learned with multiple kernels to give a good separation between data
inside and outside the cluster, and data are dynamically assigned to appropri-
ate clusters through the progressive learning processes of these cluster-specific
classifiers. Iteratively, the learned classifiers are expected to facilitate the reveal-
ing of the intrinsic cluster structure, while the progressively improved clustering
results would provide more reliable data labels in learning the classifiers.

Specifically, we integrate the multiple, correlative training processes of the
cluster-specific classifiers into the clustering procedure, and realize the unified
formulation by 1) proposing a general constrained optimization problem that
can accommodate both fully unlabeled and partially labeled datasets; and 2)
implementing multiple kernel learning [7] in a boosting way to construct the
cluster-specific classifiers. Prior knowledge can thus be conveniently exploited
in choosing a proper set of visual features of diverse forms to more precisely
depict the data. Indeed our approach provides a new perspective of applying
multiple kernel learning, which typically addresses supervised applications, to
both unsupervised and semisupervised ones. Such a generalization is novel in
the field. Different from other existing clustering techniques, our method can
not only achieve better clustering results but also have access to the information
regarding the commonly shared features in each cluster.

2 Related Work

Techniques on clustering can vary considerably in many aspects, including as-
suming particular principles for data grouping, making different assumptions
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about cluster shapes or structures, and using various optimization techniques
for problem solving. Such variations however do not devalue the importance of
clustering being a fundamental tool for unsupervised learning. Instead, cluster-
ing methods such as k-means, spectral clustering [3, 8], mean shift [4] or affinity

propagation [9] are constantly applied in more effectively solving a broad range
of computer vision problems.

Although most clustering algorithms are developed with theoretic support,
their performances still depend critically on the feature representation of data.
Previous approaches, e.g., [5, 6], concerning the limitation have thus suggested
to perform clustering and feature selection simultaneously such that relevant
features are emphasized. Due to the inherent difficulty of unsupervised feature
selection, methods of this category often proceed in an iterative manner, namely,
the steps of feature selection and clustering are carried out alternately.

Feature selection can also be done cluster-wise, say, by imposing the Gaus-

sian mixture models on the data distribution, or by learning a distance function
for each cluster via re-weighting feature dimensions such as the formulations
described in [10, 11]. However, these methods typically assume that the under-
lying data are in a single feature space and in form of vectors. The restriction
may reduce the overall effectiveness when the data of interest can be more pre-
cisely characterized by considering multiple descriptors and diverse forms, e.g.,
bag-of-features [12, 13] or pyramids [14, 15].

Xu et al. [16] instead consider the large margin principle for measuring how
good a data partitioning is. Their method first maps the data into the kernel-
induced space, and seeks the data labeling (clustering) with which the maximum
margin can be obtained by applying SVMs to the then labeled data. Subse-
quently, Zhao et al. [17] introduce a cutting-plane algorithm to generalize the
framework of maximum margin clustering from binary-class to multi-class.

The technique of cluster ensembles by Strehl and Ghosh [18] is most relevant
to our approach. It provides a useful mechanism for combining multiple cluster-
ing results. The ensemble partitioning is optimized such that it shares as much
information with each of the elementary ones as possible. Fred and Jain [19]
introduce the concept of evidence accumulation to merge various clusterings to
a single one via a voting scheme. These methods generally achieve better clus-
tering performances. Implicitly, they also provide a way for clustering data with
multiple feature representations: One could generate an elementary clustering
result for each data representation, and combine them into an ensemble one.
However, the obtained partitioning is optimized in a global fashion, neglecting
that the optimal features are often cluster-dependent.

Finally, it is possible to overcome the unsupervised nature of clustering by
incorporating a small amount of labeled data in the procedure so that satisfac-
tory results can be achieved, especially in complex tasks. For example, Xing et
al. [20] impose side information for metric learning to facilitate clustering, while
Tuzel et al. [2] utilize pairwise constraints to perform semisupervised clustering
in a kernel-induced feature space.
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3 Problem Definition

We formalize and justify the proposed clustering technique in this section. Prior
to that, we need to specify the notations adopted in the formulation.

3.1 Notations

Given a dataset D = {xi}
N
i=1, our goal is to partition D into C clusters. We shall

use a partition matrix, Y = [yic] ∈ {0, 1}N×C, to represent the clustering result,
where yic = 1 indicates that xi belongs to the cth cluster, otherwise yic = 0.
Besides, let yi,: and y:,c denote the ith row and cth column of Y respectively.

To tackle complex clustering tasks, we consider the use of multiple descriptors
to more precisely characterize the data. These descriptors may result in diverse
forms of feature representations, such as vectors [21], bags of features [22], or
pyramids [14]. To avoid directly working with these varieties, we adopt a strategy
similar to that in [15, 23], where kernel matrices are used to provide a uniform
representation for data under various descriptors. Specifically, suppose M kinds
of descriptors are employed to depict each sample, i.e., xi = {xi,m ∈ Xm}Mm=1.
For each descriptor m, a non-negative distance function dm : Xm × Xm → R is
associated. The corresponding kernel matrix Km and kernel function km can be
established by

Km(i, j) = km(xi,xj) = exp (−γmd2m(xi,m,xj,m)), (1)

where γm is a positive constant. By applying the procedure to each descriptor,
a kernel bank Ω of size M is obtained, i.e., Ω = {Km}Mm=1. The kernel bank will
serve as the information bottleneck in the sense that data access is restricted
to referencing only the M kernels. This way our method can conveniently work
with various descriptors without worrying about their diversities.

3.2 Formulation

The idea of improving clustering performances for complex data is motivated
by the observation that the optimal features for grouping are often cluster-
dependent. Our formulation associates each cluster with a classifier to best inter-
pret the relationships among data and the cluster. Specifically, a cluster-specific
classifier is designed to divide the data so that its members would share cer-
tain common features, which are generally distinct from the rest. Furthermore,
the goodness of the clustering quality about a resulting cluster can be explicitly
measured by the induced loss (namely, the degree of difficulty) in learning the
specific classifier. It follows that the proposed clustering seeks an optimal data
partitioning with the minimal total loss in jointly learning all the C cluster-
specific classifiers.

As one may notice that our discussion so far would lead to a cause-and-effect
dilemma: While the data labels are required in learning the cluster-specific clas-
sifiers, they in turn can only be determined through the clustering results implied
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by these classifiers. We resolve this difficulty by incorporating the learning pro-
cesses of the cluster-specific classifiers into the clustering procedure, and cast
the task as the following constrained optimization problem:

min
Y,{fc}C

c=1

C∑

c=1

Loss(fc, {xi, yic}
N
i=1) (2)

subject to Y ∈ {0, 1}N×C, (3)

yi,:eC = 1, for i = 1, 2, ..., N, (4)

ℓ ≤ e⊤Ny:,c ≤ u, for c = 1, 2, ..., C, (5)

yi,: = yj,:, if (i, j) ∈ S, (6)

yi,: 6= yj,:, if (i, j) ∈ S′, (7)

where {fc}
C
c=1 are the cluster-specific classifiers. eC and eN are column vectors,

whose elements are all one, of dimensions C and N respectively.
We now give justifications for the above constrained optimization problem.

Our discussions focus first on the part of constraints. With (3) and (4), Y is
guaranteed to be a valid partition matrix. Since in practical applications most
clusters are rarely of extreme sizes, we impose the desired upper bound u and
lower bound ℓ of the cluster size in (5). The remaining constraints (6) and (7)
are optional so that our method can be extended to address semisupervised
learning. In that case, (6) and (7) would provide a set of pairwise instance-level
constraints, each of which specifies either a pair of data points must reside in
the same cluster or not. S in (6) and S′ in (7) are respectively used to denote
the collections of these must-links and cannot-links.

Assuming that all the constraints are satisfied, the formulation would look for
optimal data partitioning Y ∗ such that, according to (2), the total induced loss
of all the cluster-specific classifiers is minimized. That is, the proposed clustering
approach would prefer that data residing in each cluster are well separated from
the rest by the cluster-specific classifier (and hence yields a small loss), which is
derived by coupling a discriminant function with an optimal feature selection to
achieve the desired property. This implies that most of the data in an arbitrary
cluster c would share some coherent characteristics implicitly defined by the
optimal feature selection in forming f∗

c . The proposed optimization elegantly
connects the unsupervised clustering procedure with the supervised learning
of the specific classifiers. By jointly addressing the two tasks, our method can
uncover a reasonable cluster structure even for a complex dataset.

4 Optimization Procedure

To deal with the cause-and-effect factor in (2), we consider an iterative strategy
to solve the constrained optimization problem. At each iteration, the cluster-
specific classifiers {fc}

C
c=1 and the partition matrix Y are alternately optimized.

More specifically, {fc} are first optimized while Y is fixed, and then their roles are
switched. The iterations are repeated until the loss cannot be further reduced.
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4.1 On learning cluster-specific classifiers

Notice that in the constrained optimization problem (2) the cluster-specific clas-
sifiers {fc} only appear in the objective function, and there is no correlation
among them once Y is fixed. Thus, these classifiers can be optimized indepen-
dently by minimizing their corresponding loss function. That is, fc can be derived
by considering only the binary labeled data {xi, yic}

N
i=1.

Our choice of selecting a suitable supervised learning methodology for con-
structing the classifiers is based on two key requirements stemming from the
properties related to the classifiers and the iterative training process. First, the
cluster-specific classifiers should be generated by using information from mul-
tiple kernels, i.e., via multiple kernel learning [7]. Second, the degree of data

fitting in the classifiers can be conveniently controlled. The latter requirement
arises due to the expected phenomenon that the data labels {yic}

N
i=1 would be

noisy during the earlier iterations, and then progressively become more accurate
through the iterative optimization. By addressing this effect, we can significantly
alleviate the possibility of overfitting or underfitting in learning the classifiers.
Having taken the two into account, we consider each fc a boosting classifier. In
what follows, we describe the two main elements in learning such classifiers.

The pool of weak learners We adopt a similar strategy proposed in [24].
To begin with, the discriminant power of each kernel is transferred into a set of
weak learners, called dyadic hypercuts [25]. We then construct the pool of weak
learners by including the dyadic hypercuts generated from all the kernels in Ω.
The procedure naturally enables a boosting algorithm to learn classifiers that
inherit the discriminant power from the multiple kernels.

A dyadic hypercut h is specified by three parameters: a positive sample xp,
a negative sample xn, and a kernel function km. (Note that the positive and
negative samples here depend on labels {yic}

N
i=1.) The model for prediction is

h(x) = a · sign(km(xp,x)− km(xn,x)− θ) + b, (8)

where a and b are real values, and θ is used for thresholding. The size of the
set of weak learners is |H| = N+ ×N− ×M , where N+ (N−) is the number of
positive (negative) training data, and M is the number of kernels.

Loss function for boosting Among the many choices of loss function for learn-
ing boosting classifiers, we have implemented two of the most popular ones, i.e.,
ExpLoss and LogLoss [26, 27], to test our method. In our experiments, LogLoss
leads to better performances, and is thus adopted. It follows that in (2) we have

Loss(fc, {xi, yic}
N
i=1) =

N∑

i=1

ln (1 + exp (−ỹicfc(xi))), (9)

where ỹic = 2yic−1 is to convert a binary label yic ∈ {0, 1} in partition matrices
to ỹic ∈ {−1, 1} for boosting models. With the pool of weak learners generated
from the kernel bank Ω and the loss function (9), all cluster-specific classifiers
{fc} can be learned one by one via LogitBoost [27].
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4.2 On assigning data into clusters

Once the cluster-specific classifiers are fixed, we illustrate that how the partition
matrix Y in (2) can be optimized by binary integer programming (BIP) [28]. For
the ease of our discussion, the canonical form of a BIP problem is given below

min
z

d⊤z (10)

subject to Az ≤ b and Aeqz = beq, (11)

zi ∈ {0, 1}. (12)

It suffices to show the proposed constrained optimization can be transformed
to the above form. To rewrite the objective function (2) as the inner product
(10), we let z ≡ vec(Y ) = [y11 · · · y1C · · · yic · · · yNC ]

⊤, the vectorization of
partition matrix Y and set the column vector d = [dic] as

dic = ln (1 + exp (−fc(xi))) +

C∑

c′=1 & c′ 6=c

ln (1 + exp (fc′(xi))). (13)

The definitions of d and z would lead to

d⊤z = d⊤vec(Y ) =

C∑

c=1

N∑

i=1

ln (1 + exp (−ỹicfc(xi))). (14)

Indeed the derivation of (14) is based on (4). For each sample xi, there is one
and only one element whose value is 1 in the vector yi,: = [yi1 · · · yiC ]. And no
matter which element equals to 1, we have

C∑

c=1

dicyic =
C∑

c=1

ln (1 + exp (−ỹicfc(xi))). (15)

Now, summing over all the data on the both sides of (15) gives (14). We are left
to express the constraints (3)–(7) into (11) and (12). Since the derivations related
to (3)–(6) are straightforward, we focus on the reduction of constraint (7). To
represent yi,: 6= yj,:, we consider additional auxiliary variables, p ∈ {0, 1}C×1

and q ∈ {0, 1}C×1, and the following three constraints

yi,: − yj,: = p− q, p+ q ≤ eC , and e⊤Cp+ e⊤Cq = 2. (16)

It can be verified that yi,: 6= yj,: if and only if the constraints in (16), which
are all conformed to (11), hold. Thus, our discussion justifies that when {fc} are
fixed, the constrained optimization problem (2) can be effectively solved by BIP
to obtain a new data partitioning Y .

4.3 Implementation details

In solving the constrained optimization, we begin by providing an initial Y de-
rived by randomly splitting the data into clusters of similar sizes. As it turns out
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the proposed optimization procedure is robust against different initializations,
and converges fast. (Further details will be discussed in the next section.)

It is useful to progressively adjust the data fitting power in learning the
classifiers, since the reliability of the data labeling is expected to improve through
the iterations. Specifically, say, at iteration t, we set the number of weak learners
in fc as base + t*step size, where the value of step size is decided by the
tradeoff between the convergence speed and the risk of overfitting. In all our
experiments, we have base = 5 and step size = 2. Also note that the boosting
classifiers tend to perfectly classify the training data, and underestimate the
LogLoss (9). This can be resolved by leave-one-out estimation: The induced loss
of sample xi in (9) is evaluated by the classifier learned with the rest of the data.
(For computational issue, we implement ten-fold cross-validation.)

Being a special case of integer programming, BIP is still NP-hard. A practical
implementation of an appropriate methodology such as branch-and-bound or
cutting plane would require a feasible initialization to reduce BIP into a series
of linear programs, and thus speed up the underlying optimization process. In
our case, we design a greedy scheme to find an initial set of data labels. We
first assume an upper bound on the cluster size. Then, among those undecided
samples we identify the next possible sample labeling such that the assignment
yields the smallest loss and would not cause the size of the target cluster to exceed
the upper bound. The process is repeated until the data labeling is completed.
Given the initialization, we apply MOSEK [29] to efficiently solving the BIP
problems. For example, it takes less than one second when (N,C) = (600, 20).

5 Experimental Results

We carry out two sets of experiments: visual object categorization and face image
grouping. The image data used in the experiments are complex and display
rich variations caused by various factors. They nevertheless provide a good test
bed to demonstrate the importance of using multiple feature representations. In
the first experiment, we compare our approach with state-of-the-art clustering
algorithms and discuss the convergence issue. In the second experiment, we show
the advantages of our approach in the aspects of performing cluster-dependent,
cross-space feature selection and incorporating partially labeled data.

5.1 Visual object categorization

Dataset The Caltech-101 dataset [30], collected by Fei-Fei et al., is used in our
experiments of object categorization. Following the setting in [1], we select the
same twenty object categories from the Caltech-101 dataset, and randomly pick
30 images from each category to form a set of 600 images. The large and diverse
intraclass variations make clustering over the dataset very challenging.

Descriptors, distances and kernels We consider five different image descrip-
tors and their corresponding distance function. Via (1), they yield the following
kernels (denoted below in bold and in abbreviation):
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Table 1. The performances in form of [ACC (%) / NMI] by different clustering meth-
ods. Top: each kernel is considered individually. Bottom: all kernels are used jointly

kernel k-means Affinity Prop. Spectral Clus. Ours
GB 68.0 / 0.732 52.5 / 0.578 69.5 / 0.704 75.0 / 0.742

SIFT 62.5 / 0.680 59.8 / 0.638 62.5 / 0.668 69.6 / 0.706

SS 65.7 / 0.659 55.7 / 0.574 63.3 / 0.655 62.1 / 0.639
C2 37.8 / 0.417 47.5 / 0.517 57.7 / 0.585 51.2 / 0.550

PHOG 53.3 / 0.547 43.3 / 0.464 61.0 / 0.624 55.2 / 0.569

kernels CE + k-means CE + Affinity Prop. CE + Spectral Clus. Ours
All 73.8 / 0.737 63.3 / 0.654 77.3 / 0.758 85.7 / 0.833

– GB. For a given image, we randomly sample 400 edge pixels, and character-
ize them by the geometric blur descriptor [12]. With these image features, we
adopt the distance function suggested in equation (2) of the work by Zhang
et al. [22] to obtain the kernel.

– SIFT. The kernel is analogously constructed as is the kernel GB, except
that the features are described with the SIFT descriptor [13].

– SS. We consider the self-similarity descriptor [31] over an evenly sampled
grid of each image, and use k-means clustering to generate visual words from
the resulting local features of all images. Then the kernel is built by matching
spatial pyramids, which are introduced in [14].

– C2. Mutch and Lowe [21] have proposed a set of features that emulate the
visual system mechanism. We adopt these biologically inspired features to
depict images and construct an RBF kernel.

– PHOG. We also use the PHOG descriptor [15] to capture image features.
Together with the χ2 distance, the kernel is established.

Quantitative results In all the experiments, we set the number of clusters
to the number of classes in ground truth, and evaluate clustering performances
with the two criteria: clustering accuracy (ACC) [6], and normalized mutual

information (NMI) [18]. The output ranges of the two criteria are both [0, 1].
The larger the values, the better the clustering results are. Our approach starts
from a random initialization of data partitioning Y . We run our algorithm 20
times with different random partitionings, and report the average performance.
Besides, we respectively set ℓ and u in (5) as ⌊0.8k1⌋ and ⌈1.2k2⌉, where k1 and
k2 are the minimal and the maximal cluster sizes in the dataset respectively.

We first evaluate our method in the cases that each descriptor is used indi-

vidually, and compare it with three popular clustering methodologies: k-means,
affinity propagation [9], and spectral clustering [8]. The implementations for the
three techniques are as follows. k-means works on data in Euclidean space, so we
use multidimensional scaling [32] to recover the feature vectors of data from their
pairwise distances. Affinity propagation detects representative exemplars (clus-
ters) by considering similarities among data. We set the pairwise similarities as
the negative distances. Spectral clustering and our approach both take a kernel
matrix as input. The outcomes by the four clustering algorithms are shown in
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Fig. 2. With different initializations, the clustering accuracy (left) and normalized
mutual information (right) of the proposed approach along the iterative optimization

Table 1 (top). In this setting, the proposed method outperforms k-means and
affinity propagation, and is competitive with spectral clustering.

When multiple kernels are used simultaneously, we compare the proposed
framework with cluster ensembles (CE) [18]. In particular, our implementation of
cluster ensembles is to combine the five separately generated clustering results by
one of the following three techniques: k-means, affinity propagation and spectral
clustering. We report the results in Table 1 (bottom). First of all, our approach
achieves significant improvements of 10.7% (= 85.7% − 75.0%) in ACC and
0.091 (= 0.833 − 0.742) in NMI over the best results obtained with a single
kernel. It suggests that these kernels tend to complement one another, and our
method can exploit this property to yield better clustering results. Furthermore,
unlike that cluster ensembles relies on merging multiple clustering results in a
global fashion, our approach performs cluster-dependent feature selection over
multiple descriptors to recover the cluster structure. The quantitative results
show that our method can make the most of multiple kernels, and improves the
performances from 77.3% to 85.7% in ACC and from 0.758 to 0.833 in NMI.

Pertaining to the convergence issue, we evaluate our algorithm with 23 differ-
ent initializations, including 20 random data partitionings and three meaningful
clustering results by applying k-means, affinity propagation and spectral cluster-
ing to kernel GB, respectively. The clustering performances through the iterative
optimization procedure are plotted in Fig. 2. It can be observed that the pro-
posed optimization algorithm is efficient and robust: It converges within a few
iterations and yields similar performances with diverse initializations.

5.2 Face image grouping

Dataset The CMU PIE database [33] is used in our experiments of face image
grouping. It comprises face images of 68 subjects. To evaluate our method for
cluster-dependent feature selection, we divide the 68 people into four equal-size
disjoint groups, each of which contains face images from 17 subjects reflecting a
certain kind of variations. See Fig. 3 for an overview.

Specifically, for each subject in the first group, we consider only the images of
the frontal pose (C27) taken in varying lighting conditions (those under the di-



Clustering Complex Data with Group-Dependent Feature Selection 11
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(c) (d)

Fig. 3. Four kinds of intraclass variations caused by (a) different lighting conditions,
(b) in-plane rotations, (c) partial occlusions, and (d) out-of-plane rotations

(a) (b)

φ ψψ′

Fig. 4. (a) Images obtained by applying the delighting algorithm [34] to the five images
in Fig. 3a. (b) Each image is divided into 96 regions. The distance between the two
images is obtained when circularly shifting causes ψ′ to be the new starting radial axis

rectory “lights”). For subjects in the second and third groups, the images with
near frontal poses (C05, C07, C09, C27, C29) under the directory “expression”
are used. While each image from the second group is rotated by a randomly sam-
pled angle within [−45◦, 45◦], each from the third group is instead occluded by
a non-face patch, whose area is about ten percent of the face region. Finally, for
subjects in the fourth group, the images with out-of-plane rotations are selected
under the directory “expression” and with the poses (C05, C11, C27, C29,
C37). All images are cropped and resized to 51× 51 pixels.

Descriptors, distances and kernels With the dataset, we adopt and design
a set of visual features, and establish the following four kernels.

– DeLight. The data representation is obtained from the delighting algorithm
[34], and the corresponding distance function is set as 1−cos θ, where θ is the
angle between a pair of samples under the representation. Some delighting
results are shown in Fig. 4a. It can be seen that variations caused by different
lighting conditions are significantly alleviated under the representation.

– LBP. As is illustrated in Fig. 4b, we divide each image into 96 = 24 × 4
regions, and use a rotation-invariant local binary pattern (LBP) operator [35]
(with operator setting LBP riu2

8,1 ) to detect 10 distinct binary patterns. Thus
an image can be represented by a 960-dimensional vector, where each dimen-
sion records the number of occurrences that a specific pattern is detected in
the corresponding region. To achieve rotation invariant, the distance between
two such vectors, say, xi and xj , is the minimal one among the 24 values
computed from the distance function 1−sum(min(xi,xj))/sum(max(xi,xj))
by circularly shifting the starting radial axis for xj . Clearly, the base kernel
is constructed to deal with variations resulting from rotations.
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Table 2. The performances of cluster ensembles and our approach in different settings

dataset (number of classes)method kernel(s)
All (68) Lighting (17) Rotation (17) Occlusion (17) Profile (17)

DeLight 40.2 / 0.628 91.4 / 0.974 21.0 / 0.435 25.5 / 0.508 23.0 / 0.487
LBP 47.3 / 0.672 71.1 / 0.886 59.9 / 0.744 30.0 / 0.500 28.2 / 0.512Ours

RsLTS 39.3 / 0.647 35.4 / 0.518 32.9 / 0.495 61.4 / 0.757 27.6 / 0.492
RsL2 31.6 / 0.628 50.9 / 0.685 27.6 / 0.464 19.5 / 0.352 28.4 / 0.509

CE All 55.4 / 0.746 92.6 / 0.975 43.8 / 0.657 55.4 / 0.695 29.8 / 0.535
Ours All 61.9 / 0.822 93.6 / 0.985 57.8 / 0.730 64.8 / 0.781 31.6 / 0.554

– RsL2. Each sample is represented by its pixel intensities in raster scan order.
Euclidean (L2) distance is used to correlate two images.

– RsLTS. The same as RsL2 except that the distance function is now based
on the least trimmed squares (LTS) with 20% outliers allowed. The kernel is
designed to take account of the partial occlusions in face images.

Quantitative results We report the performances of applying our approach
to the four kernels one by one in the third column of Table 2 (top). Besides,
we also record the performances with respect to each of the four groups in the
last four columns of the same table. (Each group is named according to the
type of its intraclass variation.) Note that each result in the last four columns is
computed by considering only the data in the corresponding group. No additional
clustering is performed. As expected, each of the four kernels generally yields
good performances in dealing with a specific kind of intraclass variations. For
example, the kernel DeLight achieves a satisfactory result for subjects in the
Lighting group, while LBP and RsLTS yield acceptable outcomes in Rotation
and Occlusion groups respectively. However, none of them is good enough for
dealing with the whole dataset. Still the results reveal that if we could choose
proper features for each subject, it would lead to substantial improvements.

To verify the point, we apply the proposed clustering technique to the four
kernels simultaneously, and compare it with cluster ensembles, which is used to
merge the four clustering results derived by implementing our approach with
single kernel. In Table 2 (bottom), it shows that using multiple kernels in our
approach can achieve remarkable improvements over the best result obtained
from using a single kernel (i.e. LBP), and also significantly outperforms the
foregoing setting for cluster ensembles.

Indeed performing clustering with this dataset is hard, due to the large sub-
ject number and the extensive intraclass variations. We thus randomly generate
one must-link and one cannot-link for each subject, and denote the setting of
semisupervised clustering as 1M1C. Analogously, we also have 0M0C (i.e. unsuper-
vised), 2M2C and 3M3C. Combining different amounts of pairwise constraints and
different settings of kernel(s), the performances with respect to ACC and NMI
of our approach are shown in Fig. 5. It is clear that by introducing only a few
constraints, our approach can achieve considerable gains in performance.
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Fig. 5. The performances of cluster ensembles and our approach w.r.t. different
amounts of must-links and cannot-links per subject and different settings of kernel(s)

6 Conclusion

We have presented an effective approach to clustering complex data that con-
siders cluster-dependent feature selection and multiple feature representations.
Specifically, we incorporate the supervised training processes of cluster-specific
classifiers into the unsupervised clustering procedure, cast them as a joint op-
timization problem, and develop an efficient technique to accomplish it. The
proposed method is comprehensively evaluated with two challenging vision ap-
plications, coupled with a number of feature representations for the data. The
promising experimental results further demonstrate its usefulness. In addition,
our formulation provides a new way of extending the multiple kernel learning
framework, which is typically used in tackling supervised-learning problems, to
address unsupervised and semisupervised applications. This aspect of general-
ization introduces a new frontier of applying multiple kernel learning to handling
the ever-increasingly complex vision tasks.
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