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Abstract

Optimization methods based on iterative schemes can
be divided into two classes: linesearch methods and trust-
region methods. While linesearch techniques are commonly
found in various vision applications, not much attention
is paid to trust-region methods. Motivated by the fact
that linesearch methods can be considered as special cases
of trust-region methods, we propose to apply trust-region
methods to visual tracking problems.

Our approach integrates trust-region methods with the
Kullback Leibler distance to track a rigid or non-rigid ob-
jectinreal-time. If not limited by the speed of a camera, the
algorithm can achieve frame rate above 60 fps. To justify
our method, a variety of experiments/comparisons are car-
ried out for the trust-region tracker and a linesearch-based
mean-shift tracker with same initial conditions. The exper-
imental results support our conjecture that a trust-region
tracker should perform superiorly to a linesearch one.

1. Introduction

The primary goal of thiswork is to establish area-time
tracking framework using trust-region methods. We will
describe the concepts of trust-region methodsin detail, then
illustrate the efficiency of the algorithm with examples.

Tracking methods based on frame differencing and shape
analysis are most common. Pfinder [12] is ared-time sys-
tem to perform one-person tracking using a multi-class sta-
tistical model of color and shape. Haritaoglu et al. [8] have
proposed the the W* system to track people and their part
structures in an outdoor environment. To deal with inter-
actions among the tracked people, appearance models are
used to resolve the ambiguities. In [11] a system for color
image seguences is presented. The approach is similar to
W* built upon a background model combining pixel RGB
and chromaticity values with local image gradients.

Severa systems have been proposed for 3D object track-
ing. In[7], Gavrilaand Davis describe a decomposition ap-
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proach and a best-first local search to reconstruct 3D pose
with images taken from multiple views and predict the pose
in the new coming image frames. Delamarre and Faugeras
use 3D articulated models for human tracking with two or
more cameras [5]. An interesting approach to recover mod-
erate motions in image sequences is proposed by Bregler
and Malik [2]. Their method is based on twists and expo-
nential maps to recover high degree-of-freedom of motion
configurations.

The /CONDENSATION algorithms [9], [10] by Isard
and Blake are used to track curvesin clutter using stochas-
tic analysis and importance/factored sampling. The meth-
odsare superior to previous Kaman filter based approaches,
and achieves real -time performance.

Bradski has proposed a Continuously Adaptive Mean
Shift (CAMSHIFT) algorithm for use in a perceptual user
interface to track face [1]. The method is based on non-
parametric technique and mean shift to find the peak mode
of a color probability distribution. In [3], Comaniciu et a.
apply mean shift to real-time tracking for non-rigid objects.
They also model the objects by their color distributions,
then measure the similarities between objects with the Bhat-
tacharyya coefficient.

Our approach: Our system is an integration of trust-
region methods and Kullback Leibler distance. To track a
target, rigid or non-rigid, we compute its RGB color proba-
bility distribution, then use the Kullback Leibler distance to
detect a similar distribution/object in each succeeding im-
age frame. The Kullback Leibler distance isto measure the
dissimilarity between the target distribution and a candidate
distribution. In each image frame, to find out a distribution
most similar to the target’sin real timeis not an easy task.
Perhaps, an iterative optimization technique is the most ap-
propriate way to do it. Judging from the efficiency and ro-
bustness of trust-region methods, we adopt them to perform
the optimization processes. It turnsout to be a perfect match
for usein area-timetracking system.



2. Trust-Region Methods

There are two classes of iterative agorithms for op-
timization: linesearch methods and trust-region methods.
While linesearch techniques are commonly applied in vari-
ous vision applications, not much attention is paid to trust-
region methods by the computer vision community. In fact,
linesearch methods can be considered as specia cases of
trust-region methods.

2.1. What Are Trust-Region M ethods?

To explain the basic ideas of trust-region methods, we
consider the following unconstrained optimization problem
over an image frame I:

min f(x), D
where x = [z1,22]” isany pixel in I, and f(x) is some
objective function to be minimized. Unlike the linesearch
methods, trust-region methods will try to find the next ap-
proximate solution within aregion of the current iterate.

Two issues need to be emphasized: (1) how to determine
the size of the region, and (2) how to approximatea solution
in the region. These turn out to be the two most important
elements of any trust-region method. The first has to do
with the trust-region radius, and the second is determined
by solving atrust-region subproblem.

More precisely, suppose an initial point x¢, and aninitial
trust-regionradius Ao > 0 aregiven. Let i1, 12, 1, and 2
be some constants and satisfy

O<m <<l and 0<y <y <l

Following [4], weuse n; = 0.01, 72 = 0.9, and y; =
vo = 0.5. Then, at each iteration k& with current iterate
Xy, and trust-region radius A, the following two steps are
performed until {x} converges.

1. Trust-region subproblem: A model m, is constructed
to approximate f withinthetrust region. A trust-region sub-
problem is then to compute an s;, such that my is " suffi-
ciently reduced” and xj, + si, isin theregion. In thiswork,
we will use quadratic model to approximate the objective
function, i.e.,

1
mk(xk + S) = mk(xk)—i— < gk,S > +§ < S,HkS >,

where my(xx) = f(xx), gr = Vxf(xx), and Hy
is the Hessian. For visua tracking application, H, =
Vxxmi(Xk) IS a 2-by-2 symmetric matrix to approximate

Vxxf (Xk). When Hy, # 0, my, is said to be a second-order
model. Thus the corresponding trust-region subproblemis

1
min (s) =< gk,s>+- <s,Hps>. 2
”SHSMW( ) =< Gk 5 k @)

2. Trust-region radius. After solving the subproblem,
the trial point x;, + s will be tested to seeif it is a good
candidate for the next iterate. This is evaluated explicitly
by the following formula:

_ f(xk) = f(xx +sk)
om(xg) — m(xy +sp) )

where if p > n1, then the trial point is accepted, i.e.,
Xk+1 = Xk + Sk. Otherwise, Xk+1 = Xk Since 71 isa
small positive number, the above rule adopts the trial point
only when the value of objective function f isalso reduced.
When m;, approximates f well and yields a large pi, the
trust-region radius will be expanded for the next iteration.
On the other hand, if pj is smaler than n; or is negative,
it suggests that the objective function f is not well approx-
imated by the model function mj, within the current trust
region. Therefore, the trust-region radius will be reduced to
derive amore appropriate subproblem for the next iteration.
The new trust-region radius can be updated as follows.

[Ak,OO) if Pk 2 12,
A1 € § [12Ak, Ak if pr € [1,m2),
V1A%, Y2 Ak if pr <M.

2.2. Trust-Region vs. Linesearch

Since linesearch methods are indeed special cases of
trust-region methods, there are some favorable properties
of trust-region methods not shared by the linesearch ones.
For example, during an optimizing process, trust-region ra-
diuses are adjusted adaptively to the shape of the objective
function so that it can have better approximations. Also,
unlike a linesearch method that optimizes only along the
descent direction, trust-region methods carry out an opti-
mization task based on region information. In the follow-
ing, we describe two schemes that can be incorporated into
trust-region methods for further improvements.

Non-convex subproblem: Due to the trust region con-
straint, a second order trust-region subproblem may be non-
convex, i.e., Hx may not be positive semidefinite. When
this happens, it may cause the trust-region iterates to be
trapped into a saddle point. To avoid this, observe that
the least eigenvalue of a non-convex Hj; must be nega
tive. The negative curvature information provides the other



possible candidate when computing the next iterate. In
[4], such point is named as eigenpoint, it is the intersec-
tion of the trust-region boundary and a straight line along
the direction of the corresponding eigenvector for the neg-
ative eigenvalue. To illustrate, consider the following ex-
ample. We use a linesearch gradient-descent method and
a trust-region method to minimize the objective function
f(x,y) = —5sin(z — 0.57) + 2. Both start from the same
point (0, —4.7), but the linesearch one will end up at the
saddle point (0,0), and the trust-region one will converge
to the right answer (see Figure 1(a),(b)).

Non-monotone convergence: In general, during a mini-
mization process, the sequence of {f(xx)} a the iterates
X, 1S monotonically decreasing. For trust-region methods,
it is possible to relax the monotone condition so that the al-
gorithms are more flexible and efficient. This is achieved
by defining areference index (k) for each iteration & such
that »(0) = 0 and r(k) < k. Then, instead of imposing
the monotonicity condition on {f(x)}, we now require
Frr—1)) < f(Xr())-

3. Tracking with Trust-Region Methods

In this section, we explain how to apply trust-region
methodsfor real-time visual tracking of singletarget object.

3.1. Objective Function for Tracking

Motivated by [1] and [3], our tracking system uses color
distributions to represent objects. The RGB color space is
divided into n bins, and a well-defined single-valued bin
assignment function b is defined uniquely by pixel’s RGB
valueasb : y, — {1,...,n}, wherey; isany pixel in an
image. An object can then be represented by its RGB color
distribution using a color histogram analysis.

To begin with, we need to define the probability distri-
bution for the target object to be tracked. Let 19 bethe first
image frame, and A(x) denote a square area centered at
pixel x. Suppose a square area A(x?) is chosen from 1° to
be the target object. Then, its color probability distribution,
denoted as p(u; x°), is defined by

px’) = o 3 wlyax)iy) ), @
P yieA(x0)

where w; is a weighting function to adjust the contribu-
tion of y; in the probability distribution, and ¢ is the Kro-
necker delta function. Notice that the constant C', is the to-
tal weight, i.e,, C, = ZyieA(xU) w;(y:;xY). Thisimplies
S p(u;x%) = 1. The notation p(u; x°) will be simplify
to p(u) if the omission does not cause any confusion.
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(a) Gradient descent (b) Trust region
Figure 1. (a) A linesearch scheme based on
gradient descent is trapped into a saddle
point, (0,0). (b) Using negative curvature in-
formation, a trust-region method can locate
the eigenpoint, marked as a square, and find
its way to one of the minima.

Similarly, during tracking, an areaenclosing by A(x) at
the tth image frame I¢, its color probability distribution,
denoted as ¢(u; x), is

w;(yi; x)0(b(yi) —u), (5)

1
(00 = o
Yi€A(x)

q

where C,, isthetotal weight suchthat 37, g(u;x) = 1.

With the above probability distribution models, the prob-
lem of tracking the target object can be transformed into
finding a color distribution g(u;x) most similar to p(u)
at each image frame. In our system, the Kullback Leibler
distance is used to measure the similarity between two
probability distributions. Given two distributions p(u)
and ¢(u; x), their Kullback Leibler distance is denoted as
D(p(u)|q(u; x)).

We are now in a position to define the objective func-
tion f used for tracking with trust-region methods. At each
image frame I, the objective function f is defined by

0 = Do) la(ui)) = Y- pta)log L9
u=1 ’

where pixel x € I isacandidate position which the target
object may located at.

3.2. Model Approximation and Analysis
At image frame I, the trust-region methods can be ap-

plied to detect where the target is most likely located by
minimizing f(x). Starting from x'~1, the optimizer will



try to find a convergent sequence of points by solving the
trust-region subproblems iteratively. The final convergent
point will be the new target location, i.e., x°.

Two issues need to be addressed when considering a
trust-region subproblem. The first is how to construct a
model appropriately approximating the objective function
in the trust region; the second is how to solve the underly-
ing subproblem with the chosen model.

We adopt a second order model m . to approximate the
Kullback Leibler objective function f, i.e., at each iteration
k, the corresponding subproblem (2) will have

gk =

u=1

xxf Xk Vixx <Zp X)k)> .

To solve the subproblem, we use the conjugate gradi-
ent method to approximate an s;, sufficiently reducing the
model. There are three possible cases:

u)
xf Xk <Zp U Xk)) )

H, =

e If Hy, ispositive definite and the minimum of ¢ (s) in
(2) isinside the trust region, then the sy, is set to the
minimizer.

e |f Hy is positive definite and the minimum is outside
the trust region, s will be set to the intersection be-
tween the negative gradient —g;, and the trust region
boundary.

e If Hj; has a negative eigenvalue, then s, will be set
to either the the intersection between —g; and the
trust region boundary or the eigenpoint, depending on
which one reduces the model most.

3.3. Trust Region vs. Mean Shift

To justify our approach, we compare the performances
of atrust-region tracker with a mean-shift tracker [3]. The
main reason is that a tracker based on mean shift is driven
solely by alinesearch engine along a descent direction. So,
from our analysisin the previous sections, atracking system
using trust-region methods is expected to perform better.

In [3], the Bhattacharyya coefficient, defined by f(x) =
S v/plu)g(u;x), is used as the objective function to
be maximized for tracking. In order to carry out a careful
and fair comparison, we have implemented the mean-shift
tracker exactly following the steps described in that paper.
The experimental results for the two methods will be dis-
cussed later. For now, let’'s focus on what makes the two
approaches different.

Firstly, we have noticed that a Bhattacharyya objective
function typicaly results in a smoother level surface for

each image frame, compared to the one produced by the
Kullback Leibler distance (see Figure 2 (a),(b)).

Kullback Leibler

Point (121,

Bhattacharyya

o1y -Point (121,96) stays still in a flat region

ves to point (81,108)

€Y (b)

Figure 2. (a) The Bhattacharyya level surface
of frame 118 of car sequence. (b) The Kull-
back Leibler level surface of frame 118 of car
sequence (see Figure 4(k)).

For a further investigation, we have tested trust-region
methods with a Bhattacharyya coefficient. The perfor-
mance is similar to a mean-shift tracker. Then, the Kull-
back Leibler distance is used as the objective function for
a mean-shift tracker. However, such combination has de-
graded the mean-shift tracker’s performance a lot. Using
Figure 3(a) as an example, the two points, 1 and 4, inside
the small square are the car’s positions at previous and cur-
rent frame, respectively. For a tracker to track the target
correctly, its optimizer should be able to move from point 1
to point 4. In Figure 3(c), the Kullback Leibler level curves
corresponding to the small square area are plotted, where
an enlarge portion is plotted in Figure 3(d). When using a
trust-region method, it takes 3 iterationsto convergeto point
4(1 — 2 — 3 — 4). Nevertheless, a mean-shift tracker
will first try to reach point A (see Figure 3(d)), then find out
the energy there is higher so that it will iterate backward
aong the line passing through 1 and A. In this case al the
backward iterates happen to have higher level values. This
causes the mean-shift tracker to stay at point 1, and misses
the target.Taken all the above discussion into account, we
have made the following observations.

e Since a trust-region method can adapt to the shape
of an objective function by dynamically adjusting the
trust-region radiuses, it is more general and robust to
accommodate various objective functions. This also
reflects in the tracker’s speed. A trust-region tracker
is much faster than a linesearch one. It can have large
steps between iterates when the trust-region radius is
large. Contrarily, each step of a mean-shift tracker is
limited by the size of search widow.

e The mean shift method is limited by the linesearch na-
ture so that it is sensitive to the selection of an objec-
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(b) K-L Level surface

(d) Localy enlarged of (c)

(c) K-L Level curves

Figure 3. The Kullback Leibler level sur-
face/curves and tracking outcomes of an im-
age frame from car sequence.

tive function. In fact, our experimental results suggest
that the Kullback Leibler distanceis abetter choicefor
use in tracking. However, it does not match well with
mean shift since it will yield rather non-smooth level
surfaces when used as an objective function.

4. Experimental Resultsand Discussion

We have presented a new tracking algorithm based on
trust-region methods. Depending on the target size, the sys-
tem runs efficiently with aframerate above 60 fpson a P-111
733 PC. A variety of experiments have been carried out to
test our method. In each test, the RGB spaceis divided into
16 x 16 x 16 = 4096 binsand a Gaussian weighting scheme
is adopted for w;. For comparison, each video sequence is
also tested separately with a mean-shift tracker using the
same initial conditions. The results we obtain are encour-
aging, and they support our speculation that a trust-region
based tracker should outperform alinesearch-based tracker.
Some of the test results are shown in Figure 4, where the
framerates for each test arelisted in Table 1. For the future
work, we are now working on extending the trust-region
tracker to handle scale and orientation changes, and to track
multiple objects simultaneously.

| Method | Trust Region | Mean Shift |

Amy
A(xg) Size: 34x34 73.05fps 58.28 fps
el 53.73fps 35.81 fps
A(xo) Size: 42x42 131p 81fp:
Magnet
A(xy) Sze 30@0 | (o54fps | Slalfps

Table 1. Frame rates for a trust-region tracker
and a mean-shift tracker, respectively.
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Figure 4. (a)-(d) Amy sequence. The two trackers perform almost the same since there is not much
distraction in the background. (e)-(f) Magnet sequence. The mean-shift tracker starts to miss the
target at the 32nd frame (the number between images is the frame number). (i)-(I) Car sequence.
The mean-shift tracker loses the target due to the rapid motion and similar background color.




