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Abstract

Optimization methods based on iterative schemes can
be divided into two classes: linesearch methods and trust-
region methods. While linesearch techniques are commonly
found in various vision applications, not much attention
is paid to trust-region methods. Motivated by the fact
that linesearch methods can be considered as special cases
of trust-region methods, we propose to apply trust-region
methods to visual tracking problems.

Our approach integrates trust-region methods with the
Kullback Leibler distance to track a rigid or non-rigid ob-
ject in real-time. If not limited by the speed of a camera, the
algorithm can achieve frame rate above 60 fps. To justify
our method, a variety of experiments/comparisons are car-
ried out for the trust-region tracker and a linesearch-based
mean-shift tracker with same initial conditions. The exper-
imental results support our conjecture that a trust-region
tracker should perform superiorly to a linesearch one.

1. Introduction

The primary goal of this work is to establish a real-time
tracking framework using trust-region methods. We will
describe the concepts of trust-region methods in detail, then
illustrate the efficiency of the algorithm with examples.

Tracking methods based on frame differencing and shape
analysis are most common. Pfinder [12] is a real-time sys-
tem to perform one-person tracking using a multi-class sta-
tistical model of color and shape. Haritaoglu et al. [8] have
proposed the the W 4 system to track people and their part
structures in an outdoor environment. To deal with inter-
actions among the tracked people, appearance models are
used to resolve the ambiguities. In [11] a system for color
image sequences is presented. The approach is similar to
W 4 built upon a background model combining pixel RGB
and chromaticity values with local image gradients.

Several systems have been proposed for 3D object track-
ing. In [7], Gavrila and Davis describe a decomposition ap-

proach and a best-first local search to reconstruct 3D pose
with images taken from multiple views and predict the pose
in the new coming image frames. Delamarre and Faugeras
use 3D articulated models for human tracking with two or
more cameras [5]. An interesting approach to recover mod-
erate motions in image sequences is proposed by Bregler
and Malik [2]. Their method is based on twists and expo-
nential maps to recover high degree-of-freedom of motion
configurations.

The I/CONDENSATION algorithms [9], [10] by Isard
and Blake are used to track curves in clutter using stochas-
tic analysis and importance/factored sampling. The meth-
ods are superior to previous Kalman filter based approaches,
and achieves real-time performance.

Bradski has proposed a Continuously Adaptive Mean
Shift (CAMSHIFT) algorithm for use in a perceptual user
interface to track face [1]. The method is based on non-
parametric technique and mean shift to find the peak mode
of a color probability distribution. In [3], Comaniciu et al.
apply mean shift to real-time tracking for non-rigid objects.
They also model the objects by their color distributions,
then measure the similarities between objects with the Bhat-
tacharyya coefficient.

Our approach: Our system is an integration of trust-
region methods and Kullback Leibler distance. To track a
target, rigid or non-rigid, we compute its RGB color proba-
bility distribution, then use the Kullback Leibler distance to
detect a similar distribution/object in each succeeding im-
age frame. The Kullback Leibler distance is to measure the
dissimilarity between the target distribution and a candidate
distribution. In each image frame, to find out a distribution
most similar to the target’s in real time is not an easy task.
Perhaps, an iterative optimization technique is the most ap-
propriate way to do it. Judging from the efficiency and ro-
bustness of trust-region methods, we adopt them to perform
the optimization processes. It turns out to be a perfect match
for use in a real-time tracking system.



2. Trust-Region Methods

There are two classes of iterative algorithms for op-
timization: linesearch methods and trust-region methods.
While linesearch techniques are commonly applied in vari-
ous vision applications, not much attention is paid to trust-
region methods by the computer vision community. In fact,
linesearch methods can be considered as special cases of
trust-region methods.

2.1. What Are Trust-Region Methods?

To explain the basic ideas of trust-region methods, we
consider the following unconstrained optimization problem
over an image frame I:

min
x∈I

f(x) , (1)

where x = [x1, x2]
T is any pixel in I , and f(x) is some

objective function to be minimized. Unlike the linesearch
methods, trust-region methods will try to find the next ap-
proximate solution within a region of the current iterate.

Two issues need to be emphasized: (1) how to determine
the size of the region, and (2) how to approximate a solution
in the region. These turn out to be the two most important
elements of any trust-region method. The first has to do
with the trust-region radius, and the second is determined
by solving a trust-region subproblem.

More precisely, suppose an initial point x0, and an initial
trust-region radius �0 > 0 are given. Let η1, η2, γ1, and γ2

be some constants and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1.

Following [4], we use η1 = 0.01, η2 = 0.9, and γ1 =
γ2 = 0.5. Then, at each iteration k with current iterate
xk, and trust-region radius �k, the following two steps are
performed until {xk} converges.

1. Trust-region subproblem: A modelmk is constructed
to approximate f within the trust region. A trust-region sub-
problem is then to compute an sk such that mk is ”suffi-
ciently reduced” and xk + sk is in the region. In this work,
we will use quadratic model to approximate the objective
function, i.e.,

mk(xk + s) = mk(xk)+ < gk, s > +
1
2
< s, Hks > ,

where mk(xk) = f(xk), gk = ∇xf(xk), and Hk

is the Hessian. For visual tracking application, Hk =
∇xxmk(xk) is a 2-by-2 symmetric matrix to approximate

∇xxf(xk). When Hk �= 0, mk is said to be a second-order
model. Thus the corresponding trust-region subproblem is

min
‖s‖≤�k

ψk(s) =< gk, s > +
1
2
< s, Hks > . (2)

2. Trust-region radius: After solving the subproblem,
the trial point xk + sk will be tested to see if it is a good
candidate for the next iterate. This is evaluated explicitly
by the following formula:

ρk =
f(xk) − f(xk + sk)
m(xk) −m(xk + sk)

, (3)

where if ρk ≥ η1, then the trial point is accepted, i.e.,
xk+1 = xk + sk. Otherwise, xk+1 = xk. Since η1 is a
small positive number, the above rule adopts the trial point
only when the value of objective function f is also reduced.
When mk approximates f well and yields a large ρk, the
trust-region radius will be expanded for the next iteration.
On the other hand, if ρk is smaller than η1 or is negative,
it suggests that the objective function f is not well approx-
imated by the model function mk within the current trust
region. Therefore, the trust-region radius will be reduced to
derive a more appropriate subproblem for the next iteration.
The new trust-region radius can be updated as follows.

∆k+1 ∈




[∆k,∞) if ρk ≥ η2,

[γ2∆k,∆k] if ρk ∈ [η1, η2),
[γ1∆k, γ2∆k] if ρk < η1.

2.2. Trust-Region vs. Linesearch

Since linesearch methods are indeed special cases of
trust-region methods, there are some favorable properties
of trust-region methods not shared by the linesearch ones.
For example, during an optimizing process, trust-region ra-
diuses are adjusted adaptively to the shape of the objective
function so that it can have better approximations. Also,
unlike a linesearch method that optimizes only along the
descent direction, trust-region methods carry out an opti-
mization task based on region information. In the follow-
ing, we describe two schemes that can be incorporated into
trust-region methods for further improvements.

Non-convex subproblem: Due to the trust region con-
straint, a second order trust-region subproblem may be non-
convex, i.e., Hk may not be positive semidefinite. When
this happens, it may cause the trust-region iterates to be
trapped into a saddle point. To avoid this, observe that
the least eigenvalue of a non-convex Hk must be nega-
tive. The negative curvature information provides the other



possible candidate when computing the next iterate. In
[4], such point is named as eigenpoint, it is the intersec-
tion of the trust-region boundary and a straight line along
the direction of the corresponding eigenvector for the neg-
ative eigenvalue. To illustrate, consider the following ex-
ample. We use a linesearch gradient-descent method and
a trust-region method to minimize the objective function
f(x, y) = −5 sin(x− 0.5π)+ y2. Both start from the same
point (0,−4.7), but the linesearch one will end up at the
saddle point (0, 0), and the trust-region one will converge
to the right answer (see Figure 1(a),(b)).

Non-monotone convergence: In general, during a mini-
mization process, the sequence of {f(xk)} at the iterates
xk is monotonically decreasing. For trust-region methods,
it is possible to relax the monotone condition so that the al-
gorithms are more flexible and efficient. This is achieved
by defining a reference index r(k) for each iteration k such
that r(0) = 0 and r(k) < k. Then, instead of imposing
the monotonicity condition on {f(xk)}, we now require
f(xr(k−1)) < f(xr(k)).

3. Tracking with Trust-Region Methods

In this section, we explain how to apply trust-region
methods for real-time visual tracking of single target object.

3.1. Objective Function for Tracking

Motivated by [1] and [3], our tracking system uses color
distributions to represent objects. The RGB color space is
divided into n bins, and a well-defined single-valued bin
assignment function b is defined uniquely by pixel’s RGB
value as b : yi 	→ {1, . . . , n}, where yi is any pixel in an
image. An object can then be represented by its RGB color
distribution using a color histogram analysis.

To begin with, we need to define the probability distri-
bution for the target object to be tracked. Let I 0 be the first
image frame, and A(x) denote a square area centered at
pixel x. Suppose a square area A(x0) is chosen from I0 to
be the target object. Then, its color probability distribution,
denoted as p(u;x0), is defined by

p(u;x0) =
1
Cp

∑
yi∈A(x0)

wi(yi;x0)δ(b(yi) − u) , (4)

where wi is a weighting function to adjust the contribu-
tion of yi in the probability distribution, and δ is the Kro-
necker delta function. Notice that the constant Cp is the to-
tal weight, i.e., Cp =

∑
yi∈A(x0) wi(yi;x0). This implies∑n

u=1 p(u;x0) = 1. The notation p(u;x0) will be simplify
to p(u) if the omission does not cause any confusion.

(a) Gradient descent (b) Trust region

Figure 1. (a) A linesearch scheme based on
gradient descent is trapped into a saddle
point, (0, 0). (b) Using negative curvature in-
formation, a trust-region method can locate
the eigenpoint, marked as a square, and find
its way to one of the minima.

Similarly, during tracking, an area enclosing by A(x) at
the tth image frame I t, its color probability distribution,
denoted as q(u;x), is

q(u;x) =
1
Cq

∑
yi∈A(x)

wi(yi;x)δ(b(yi) − u) , (5)

where Cq is the total weight such that
∑n

u=1 q(u;x) = 1.
With the above probability distribution models, the prob-

lem of tracking the target object can be transformed into
finding a color distribution q(u;x) most similar to p(u)
at each image frame. In our system, the Kullback Leibler
distance is used to measure the similarity between two
probability distributions. Given two distributions p(u)
and q(u;x), their Kullback Leibler distance is denoted as
D(p(u)||q(u;x)).

We are now in a position to define the objective func-
tion f used for tracking with trust-region methods. At each
image frame I t, the objective function f is defined by

f(x) = D(p(u)||q(u;x)) =
n∑

u=1

p(u) log
p(u)
q(u;x)

, (6)

where pixel x ∈ I t is a candidate position which the target
object may located at.

3.2. Model Approximation and Analysis

At image frame I t, the trust-region methods can be ap-
plied to detect where the target is most likely located by
minimizing f(x). Starting from xt−1, the optimizer will



try to find a convergent sequence of points by solving the
trust-region subproblems iteratively. The final convergent
point will be the new target location, i.e., xt.

Two issues need to be addressed when considering a
trust-region subproblem. The first is how to construct a
model appropriately approximating the objective function
in the trust region; the second is how to solve the underly-
ing subproblem with the chosen model.

We adopt a second order model mk to approximate the
Kullback Leibler objective function f , i.e., at each iteration
k, the corresponding subproblem (2) will have

gk = ∇xf(xk) = ∇x

(
n∑

u=1

p(u) log
p(u)

q(u;xk)

)
,

Hk = ∇xxf(xk) = ∇xx

(
n∑

u=1

p(u) log
p(u)

q(u;xk)

)
.

To solve the subproblem, we use the conjugate gradi-
ent method to approximate an sk sufficiently reducing the
model. There are three possible cases:

• If Hk is positive definite and the minimum of ψk(s) in
(2) is inside the trust region, then the sk is set to the
minimizer.

• If Hk is positive definite and the minimum is outside
the trust region, sk will be set to the intersection be-
tween the negative gradient −gk and the trust region
boundary.

• If Hk has a negative eigenvalue, then sk will be set
to either the the intersection between −gk and the
trust region boundary or the eigenpoint, depending on
which one reduces the model most.

3.3. Trust Region vs. Mean Shift

To justify our approach, we compare the performances
of a trust-region tracker with a mean-shift tracker [3]. The
main reason is that a tracker based on mean shift is driven
solely by a linesearch engine along a descent direction. So,
from our analysis in the previous sections, a tracking system
using trust-region methods is expected to perform better.

In [3], the Bhattacharyya coefficient, defined by f(x) =∑n
u=1

√
p(u)q(u;x), is used as the objective function to

be maximized for tracking. In order to carry out a careful
and fair comparison, we have implemented the mean-shift
tracker exactly following the steps described in that paper.
The experimental results for the two methods will be dis-
cussed later. For now, let’s focus on what makes the two
approaches different.

Firstly, we have noticed that a Bhattacharyya objective
function typically results in a smoother level surface for

each image frame, compared to the one produced by the
Kullback Leibler distance (see Figure 2 (a),(b)).
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Figure 2. (a) The Bhattacharyya level surface
of frame 118 of car sequence. (b) The Kull-
back Leibler level surface of frame 118 of car
sequence (see Figure 4(k)).

For a further investigation, we have tested trust-region
methods with a Bhattacharyya coefficient. The perfor-
mance is similar to a mean-shift tracker. Then, the Kull-
back Leibler distance is used as the objective function for
a mean-shift tracker. However, such combination has de-
graded the mean-shift tracker’s performance a lot. Using
Figure 3(a) as an example, the two points, 1 and 4, inside
the small square are the car’s positions at previous and cur-
rent frame, respectively. For a tracker to track the target
correctly, its optimizer should be able to move from point 1
to point 4. In Figure 3(c), the Kullback Leibler level curves
corresponding to the small square area are plotted, where
an enlarge portion is plotted in Figure 3(d). When using a
trust-region method, it takes 3 iterations to converge to point
4 (1 → 2 → 3 → 4). Nevertheless, a mean-shift tracker
will first try to reach pointA (see Figure 3(d)), then find out
the energy there is higher so that it will iterate backward
along the line passing through 1 and A. In this case all the
backward iterates happen to have higher level values. This
causes the mean-shift tracker to stay at point 1, and misses
the target.Taken all the above discussion into account, we
have made the following observations.

• Since a trust-region method can adapt to the shape
of an objective function by dynamically adjusting the
trust-region radiuses, it is more general and robust to
accommodate various objective functions. This also
reflects in the tracker’s speed. A trust-region tracker
is much faster than a linesearch one. It can have large
steps between iterates when the trust-region radius is
large. Contrarily, each step of a mean-shift tracker is
limited by the size of search widow.

• The mean shift method is limited by the linesearch na-
ture so that it is sensitive to the selection of an objec-



1

4

60
70

80
90

100
60

70
80

90

100

105

110

115

120

125

130

5

10

15

20

25

XY

f

2

A

1

(a) A car (b) K-L Level surface

40 50 60 70 80 90 40

70

80

90

100

110

120

X

Y

1

2

3

4

65 70 75 80 85 90 95 100

105

110

115

120

125

130

X

Y 1

A

2

(c) K-L Level curves (d) Locally enlarged of (c)

Figure 3. The Kullback Leibler level sur-
face/curves and tracking outcomes of an im-
age frame from car sequence.

tive function. In fact, our experimental results suggest
that the Kullback Leibler distance is a better choice for
use in tracking. However, it does not match well with
mean shift since it will yield rather non-smooth level
surfaces when used as an objective function.

4. Experimental Results and Discussion

We have presented a new tracking algorithm based on
trust-region methods. Depending on the target size, the sys-
tem runs efficiently with a frame rate above 60 fps on a P-III
733 PC. A variety of experiments have been carried out to
test our method. In each test, the RGB space is divided into
16×16×16 = 4096 bins and a Gaussian weighting scheme
is adopted for wi. For comparison, each video sequence is
also tested separately with a mean-shift tracker using the
same initial conditions. The results we obtain are encour-
aging, and they support our speculation that a trust-region
based tracker should outperform a linesearch-based tracker.
Some of the test results are shown in Figure 4, where the
frame rates for each test are listed in Table 1. For the future
work, we are now working on extending the trust-region
tracker to handle scale and orientation changes, and to track
multiple objects simultaneously.

Method Trust Region Mean Shift

Amy
A(x0) Size: 34x34

73.05 fps 58.28 fps

Car
A(x0) Size: 42x42

53.73 fps 35.81 fps

Magnet
A(x0) Size: 30x30

78.54 fps 51.41 fps

Table 1. Frame rates for a trust-region tracker
and a mean-shift tracker, respectively.
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(a)Amy 0 (b) Amy 110 (c) Amy 159 (d) Amy 205

(e) Magnet 0 (f) Magnet 32 (g) Magnet 38 (h) Magnet 257

(i) Car 0 (j) Car 34 (k) Car 118 (l) Car 133

Figure 4. (a)-(d) Amy sequence. The two trackers perform almost the same since there is not much
distraction in the background. (e)-(f) Magnet sequence. The mean-shift tracker starts to miss the
target at the 32nd frame (the number between images is the frame number). (i)-(l) Car sequence.
The mean-shift tracker loses the target due to the rapid motion and similar background color.


