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Abstract

We present a new approach to learning image metrics. The
main advantage of our method lies in a formulation that re-
quires only a few pairwise examples. Apparently, based on
the little amount of side-information, it would take a very ef-
fective learning scheme to yield a useful image metric. Our
algorithm achieves this goal by addressing two key issues.
First, we establish a global-local (glocal) image representa-
tion that induces two structure-meaningful vector spaces to
respectively describe the global and the local image proper-
ties. Second, we develop a metric optimization framework
that finds an optimal bilinear transform to best explain the
given side-information. We emphasize it is the glocal im-
age representation that makes the use of bilinear transform
more powerful. Experimental results on classifications of
face images and visual tracking are included to demonstrate
the contributions of the proposed method.

1. Introduction

The need of comparing two images is ubiquitous in many
computer vision problems. Naturally, its effectiveness de-
pends on the accuracy of the underlying similarity measure.
Take, for example, the task of recognizing faces: a learned
similarity measure for the face images may greatly improve
the recognition rate, even with a simple classifier that ap-
plies the nearest neighbor rule. In addition, for some prob-
lems such as data clustering or image retrieval, one would
prefer the similarity measure (or the distance function) to
have metric properties. While designing a universal met-
ric suitable for all images is too much to ask, we instead
consider a practical but challenging problem of learning the
task-dependent metrics, with the guidelines from a handful
of user-specified examples. Fig. 1 illustrates a typical sit-
uation that using the Euclidean distance might not succeed
in identifying the same person under different lighting con-
ditions; however, it is probably good enough if we merely
want to detect the lighting changes.

Our approach to image-metric learning can be character-
ized by four hallmarks: 1) The formulation requires only
a few pairwise examples for the learning. In general, it
would be time-consuming and rarely adequate to first an-
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Figure 1: The Euclidean distance cannot properly corre-
late the two images of the same person under different
lighting conditions. For recognition, it should be prefer-
able to have a distance function that describes the two im-
ages on the left to be closer than the two on the right.

alyze a large set of training data, and then re-analyze the
whole set when new data are added. 2) The examples used
in learning an image metric can be provided without speci-
fying their labels. Instead, only side-information reflecting
the relevance between pairs of images is considered [18],
[20]. Indeed, it is more constructive to explore the relational
information rather than the labels, when one could observe
only a small number of samples. 3) A glocal image rep-
resentation is introduced as the cornerstone of our proposed
image-metric learning scheme. The representation accounts
for both global and local intrinsic features of an image, and
can be efficiently computed. As we shall explain later, this
new image representation has several desirable properties
over the conventional pixel-based vector representation. 4)
With the glocal representation, an effective metric-learning
algorithm can be derived by optimization through bilinear
transforms/filterings. And the resulting image metric would
describe more faithfully the specified relations between im-
ages, and operates in a lower dimensional space, a pivotal
factor in speeding up the nearest-neighbor search.

Related Work. Learning distance metrics is crucial for
various vision applications, e.g., object recognition [11],
image retrieval [1], [8], [16], and video retrieval [9]. Most
of these methods do not require the exact labels being
provided with the training data, but work on the side-
information [20] of the similarity relations. Typically, the
side-information is given in the form of pairwise constraints
that each prescribes a pair of data samples as similar (of the
same class) or dissimilar (of different classes). Based on



a learned metric, the distance between every two samples
can better quantify their class relations so that the accuracy
of the nearest neighbor classification can be improved. An
extreme case, different from learning with pairwise data, is
to learn to classify objects from a single sample image [2],
[4]. However, these approaches mostly rely on more com-
plex feature descriptors. Besides improving classification
accuracy, another aspect of consideration for metric learn-
ing is to increase the efficiency of nearest neighbor search.
The BoostMap [1] is one example of such techniques that
learns to embed the data into a low-dimensional Euclidean
space, according to the similarity relations obtained from
other computationally expensive similarity measures.

In fact methods on feature selection can also be viewed
as metric-learning algorithms [6], [15], [19], since the goal
is to give different weights on different dimensions. Let
w contain the feature weights. Then the diagonal matrix
D with elements dii = w2

i would yield the Mahalanobis
distance between, say, x and y as

√
(x − y)T D(x − y).

Gilad-Bachrach et al. [6] incorporate the margin defined for
the nearest neighbor classification into the evaluation func-
tion of feature weights. Maximizing the evaluation function
is analogous to learning the Mahalanobis distance that pulls
each data point’s nearest friend (with the same label) closer,
and meanwhile, pushes away the nearest enemy (with a dif-
ferent label). More generally, a Mahalanobis distance can
include a full matrix that is positive semi-definite. In this
case the metric learning is related to the feature extraction
problems, which are aimed to transform the data to another
space, or to project the data onto a subspace that better rep-
resents the specific data relations [7], [16], [20].

2. Glocal Image Representations

Our formulation for learning an effective image metric
starts with a novel matrix representation that economically
encodes both the global correspondences and the local
neighbors of each pixel. We call such an image descriptor
the glocal image representation for convenience.

Consider now an image IA of size M × N pixels. To
derive its glocal (neighborhood) matrix A, we first partition
IA into n square blocks. In particular, using a block-size
of h × h would give n = �M/h� × �N/h� image blocks
(i.e., the remaining boundary pixels are ignored). Then each
column of A can be obtained by raster-scanning an image
block into a vector of length d (= h × h). The resulting
glocal matrix A is therefore of size d × n. Note that the
processing of image blocks also follows the same raster-
scan order (see Fig. 2). Indeed, depending on the sequences
of scanning the blocks and then the pixels in each block,
there are four possible combinations to generate a glocal
neighborhood matrix. We choose to scan by row for both
the blocks and the pixels in each block. Nevertheless, it is
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Figure 2: Deriving the glocal neighborhood matrix A from
the image IA. In this example, the block size is 3 × 3
(h = 3), and A is of size 9 × 35.

easy to check that the glocal matrices derived from different
scanning orders can be transformed into one another by row
or column permutations. That is, they are equivalent up to a
multiplication of some suitable permutation matrix.

The column space of a glocal matrix is spanned by vec-
tors that depict the local image features (within each block),
while the row space is generated from those that globally
sample image features (from all blocks) of the original im-
age (see Fig. 3). Thus the intrinsic local and global prop-
erties of an image are arranged in a way that techniques on
matrix analysis can be conveniently applied to explore both
aspects. Compared with using other filter-based image fea-
tures, constructing the glocal matrix of an input image is
much faster. Furthermore, since d and n are both smaller
than M × N , to solve the underlying optimization prob-
lems for metric learning based on the glocal representation
is much more efficient and stable, especially when dealing
with a small number of examples (the well-known curse of
dimensionality). For instance, the typical image size in our
experiments is 33 × 33 = 1089. We have d = 9 (h = 3),
and n = 11× 11 = 121. The number of pairwise examples
used can be as small as 10. Clearly, it would be more dif-
ficult to model the data in a space of 1089 dimensions than
in a space of only 9 or 121 dimensions.

3. Learning Image Metrics
On learning task-dependent image metrics, we emphasize
the case of using a few pairwise examples as the training
data. The consideration is particularly significant and use-
ful for online computer vision applications like tracking,
and image/video retrieval. Once we have learned an image
metric, the similarities between other images can be readily
measured in accordance with their relations implied by the
given training examples.



Figure 3: Examples of glocal neighborhood matrices from
three face images of two different individuals.

Concerning the side-information in our metric learning,
it could either include only the similar image pairs or both
the similar and dissimilar ones. Assume that we have a set
of paired examples, denoted as {(IA, IB)} = S∪S′, where
the two sets S and S ′ give the information about these im-
age pairs being similar or dissimilar:

(IA, IB) ∈ S ⇐⇒ IA and IB are similar,

and

(IA′ , IB′) ∈ S′ ⇐⇒ IA′ and IB′ are dissimilar.

Our overall task is to derive an image metric that explains
the pairwise relations in S and S ′, and also gives reasonable
distance measurements for all image samples. In practice,
it would be more flexible to establish a pseudo-metric dis-
tance function instead of a metric one in that the learning
of image metrics often involves dimension reduction of the
data. (Note that a pseudo-metric satisfies all properties of a
metric except that it allows the distance between two differ-
ent data to be zero.) Therefore bear in mind that we are to
require the learned function to be a pseudo-metric, although
hereafter we still refer it as a metric.

Let A, B ∈ R
d×n be the glocal neighborhood matrices

of images IA and IB . Then given two arbitrary rectangular
matrices U ∈ R

d×� (� ≤ d) and V ∈ R
n×m (m ≤ n), we

can define the following image metric

ρ(A, B; U, V ) = ‖UT AV − UT BV ‖F

= ‖UT (A − B)V ‖F .
(1)

where ‖ · ‖F is the Frobenius matrix norm. The proof of the
function ρ in (1) being a pseudo-metric is straightforward
since every normed linear space is also a metric space.

Clearly the goodness of a metric defined by (1) depends
on the bilinear transform consisting of U and V . To gain
insight into this issue, we first consider a formulation that
the learning of a best metric ρ is based on side-information
provided by paired examples only in S. Specifically, we
seek a bilinear transform restricted to orthogonal matrices

Φ(UUT A)

IA

Φ(AV V T )

Figure 4: Reconstruction outcomes of one-sided bilinear
transforms, derived by solving (2) with either V = In or
U = Id. Here Φ is simply a matrix reshaping to restore a
glocal matrix back to its corresponding image matrix.

of U and V , i.e., U T U = I� and V T V = Im, that solves

min
U, V

∑

(IA,IB)∈S
|ρ(A, B; U, V )|2 . (2)

It should be pointed out that incorporating a bilinear
transform into the definition of image metric ρ in (1) would
not yield the same effectiveness, if the pairwise images
were not represented in the glocal form. Recall that a glo-
cal neighborhood matrix induces two structure-meaningful
vector spaces: its row space is spanned by vectors pertain-
ing to global image features, and the column space by vec-
tors related to the local ones. To further understand the
properties of ρ, we now investigate the roles of U and V .

• That the column space of U T A is of a lower dimension
(� ≤ d) implies only those significant/discriminative
features presented in every local area are extracted.
That is, U functions like a filter to screen out unnec-
essary information or variations due to noise or illumi-
nation (in the provided side-information). The effect
of U is illustrated in the first row of Fig. 4.

• Similarly, since m ≤ n, a lower dimension of the row
space of AV indicates feature extraction is performed
to emphasize global image-characteristics shared by
the pairwise images in S. Indeed V operates by giving
different weights to the block positions, and it is useful
for handling occlusions, as shown in Fig. 4.

Alternatively, the side-information used in learning the
metric ρ can include pairwise examples both from S and
S′. In this case, we do not require U and V to be orthogo-
nal matrices, and an optimal image metric ρ is obtained by



solving the following constrained optimization problem:

min
U, V

∑

(IA,IB)∈S
|ρ(A, B; U, V )|2 ,

subject to
∑

(IA′ ,IB′)∈S′
|ρ(A′, B′; U, V )|2 = c ,

(3)

where c is a constant.

4. Algorithm: Bilinear-Glocal (BiGL)
Image Metrics

Since the optimization problems in (2) and (3) employ the
Frobenius norm, and both conform to the general two-sided
Procrustes problem [10], they can be numerically solved by
a flip-flop algorithm [14]. To simplify our discussion, we
shall give a detailed formulation only on the developing of
the algorithm for (2), and succinctly discuss the other.

To begin with, we note that the squared Frobenius
norm can be expressed as the matrix trace: ‖U T AV ‖2

F =
tr(UT AV V T AT U) = tr(V T AT UUT AV ). Now by a
flip-flop algorithm for (2), we repeatedly fix one of the U
and V while solving the other.

V -Step: Let Ũ be the current estimate of U . Rewrite (2)
and solve V in the following optimization problem:

min
V T V =I

∑

(IA,IB)∈S
tr(V T (A − B)T Ũ ŨT (A − B)V ) . (4)

U -Step: Similarly, with the estimate Ṽ , we can solve the
following optimization problem for U :

min
UT U=I

∑

(IA,IB)∈S
tr(UT (A − B)Ṽ Ṽ T (A − B)T U) . (5)

Because the matrix trace is a linear function, the summation
can be moved inside the trace in (4) and (5). Also, let

Du =
∑

(IA,IB)∈S
(A − B)T Ũ ŨT (A − B) , (6)

and analogously,

Dv =
∑

(IA,IB)∈S
(A − B)Ṽ Ṽ T (A − B)T . (7)

Then, by introducing the Lagrange multipliers and by dif-
ferentiating the objective functions and constraints, we ac-
cordingly solve the following two eigenvalue problems to
optimize (4) and (5):

Duv = λv and Dvu = λu . (8)

Solving Duv = λv for the eigenvectors {vi|i = 1, . . . , m}
that correspond to the m smallest eigenvalues, we obtain
the solution Ṽ = [v1 · · ·vm] for the optimization prob-
lem (4). Likewise, solving Dvu = λu for the eigenvectors
{ui|i = 1, . . . , �} that correspond to the � smallest eigen-
values, we have the solution Ũ = [u1 · · ·u�] for the opti-
mization problem (5). To sum up, our algorithm iteratively
solves the two eigenvalue problems in (8) to find V and U
for the bilinear-glocal (BiGL) image metric.

When the dissimilarity constraints are available as in
(3), analogous to (6) and (7), we denote D ′

u and D′
v for

(IA′ , IB′) ∈ S′. Following the same line of derivation, the
optimization problem (3) is reduced to alternately solving
the two generalized eigenvalue problems:

Duv = D′
uλv and Dvu = D′

vλu . (9)

5. Experimental Results
We test our method on the nearest-neighbor classification
problems and multi-object tracking. Totally, there are seven
datasets used for verifying the effectiveness of the BiGL im-
age metrics in describing the correct similarity relations. As
to the multi-object visual tracking, we integrate the BiGL
image metric with particle filters to track three targets un-
der dim and varied lighting conditions.

5.1. Nearest-Neighbor Classifications
In each experiment of nearest-neighbor classifications, we
apply the BiGL algorithm to learn the underlying image
metric with 10 or 20 pairs of images as the side-information.
Then, for each test image, we use the learned metric to find
its nearest neighbor in the dataset, and check whether their
labels are the same. (The class labels can be assigned be-
forehand according to the classification task.) Hence the
performance of a BiGL image metric can be evaluated by
the accuracy of the nearest neighbor classifications. Notice
that the image pairs in S and S ′ for metric learning are ran-
domly selected from the dataset based on the labels. And
each reported error rate is indeed the average over ten runs
of classifications by the metric learned with different S and
S′. Described below are those datasets we use to build var-
ious types of classification problems.

• The AR Database. The AR database [12] contains
face images that are taken during two sessions. Some
typical images of the AR database are shown in Fig. 5.
We choose the images of the first session as the ARall

dataset. This dataset includes 1,534 (= 118 × 13) im-
ages of 118 people. The classification task is to recog-
nize people under illumination changes, variations in
facial expression, and occlusions. In addition, we also
select the four images of each person with the changes



Figure 5: The AR database contains thousands of face im-
ages with different facial expressions, illumination condi-
tions, and occlusions. We use it to generate three datasets,
ARlight, ARlight+exp, and ARall, for our experiments.
Each dataset covers certain types of variations.

S S′

Figure 6: Examples in the similarity and dissimilarity con-
straints for the ARlight+exp dataset. Each column here
represents an instance of intended pairwise relation.

only in illuminations, i.e., other variations are not in-
cluded. We name the resulting dataset ARlight, which
consists of 472 images of 118 people. The correspond-
ing task is to recognize people under different lighting
conditions. Furthermore, from the AR database, we
select 826 (= 118×7) face images as the ARlight+exp

dataset for the face recognition problem on illumina-
tion and expression changes. In Fig. 6, we show some
examples of similar and dissimilar pairs that are used
for the ARlight+exp task.

• YaleB Face Database. The YaleB face database [5]
is a widely-used benchmark for face recognition. It
contains 5,760 single light source images of 10 people.
We choose to use only the frontal-view images, and
construct a dataset of 640 images. The task is also to
identify the same person under lighting changes.

• Caltech Face Images. We select 125 face images of
25 people from the Caltech-101 object categories [3].
Different from AR and YaleB, the dataset contains face
images taken under uncontrolled or natural lighting
conditions. The classification task is again to identify
the subjects. In Fig. 7, we show the five images of the
first subject in the dataset.

• ARlight Gender. The preceding ARlight includes 260
face images of 65 males and the other 212 of 53 fe-
males. Instead of recognizing people, this experiment
is to test the effectiveness of the BiGL metric on dif-
ferentiating between the female and the male faces.

Figure 7: We choose a subset of face images from the
Caltech-101 object categories, and use it for the experi-
ment of recognizing faces with uncontrolled lighting con-
ditions. There are five images from each of the 25 people.

• Natural Textures. We download several webcam
video clips [13] from the Web to generate a dataset for
the experiment on classifying various textures. Tex-
tures of the same type are cropped from the same posi-
tion in the video frames, taken under varying weather
and illumination conditions. Fig. 8 shows two differ-
ent classes of textures in the dataset, which contains
120 texture images of 20 classes.

(a)

(b)

Figure 8: Classifying 20 types of texture patterns. The
images in (a) and (b) belong to two different types of tex-
ture patterns. Textures of the same type are cropped from
the same position in the video frames, which are captured
under different weather and illumination conditions (as
shown in the top row).

For all the aforementioned experiments, we compare the
BiGL metrics with the Mahalanobis distances computed by
the Relevant Component Analysis (RCA) [16], as well as the
Euclidean distance. (RCA computes the whitening transfor-
mation according to the equivalence relations of data.) The
classification outcomes are listed in Table 1. Throughout
this work we use only the gray-level information, and resize
all images in the experiments to 33 × 33 pixels. Therefore,
for RCA and the Euclidean distance, the input vectors have
1089 dimensions; for BiGL, the glocal matrices are of size
9 × 121, where we choose h = 3. As listed in the table, the
dimensionality is reduced to 2×40 (80 for RCA) and 3×50
(150 for RCA), i.e., we have � = 2, 3 and m = 40, 50. (The
setting is to make the comparisons fair.) For convenience,
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Figure 9: We compute the percentages of the correct neighbors in the k-nearest neighborhood, with k = 1, 3, . . . , 15. The
results are ten-run averages for ARlight, ARlight+exp, ARall, YaleB, Caltech faces, and the texture dataset. The numbers
of pairwise examples are |S| = |S ′| = 10, and the number of reduced dimensions is 80 (� = 2, m = 40).

we write BiGL(1) to denote the BiGL metric learned with
S, and BiGL(2) with both S and S ′ (see equations (2) and
(3)). Our results indicate that BiGL and RCA both improve
the Euclidean distance for nearest neighbor classifications.
In particular, the proposed BiGL sufficiently reduces the
dimensionality while improving the accuracy of classifica-
tions. When the number of examples is small, the BiGL
metrics are more effective than RCA in correlating the dis-
tances between image data with their similarity relations.

For a more detailed analysis, we compute the percent-
ages of the correct neighbors in the k-nearest neighborhood
with k = 1, 3, . . . , 15 for all datasets. Six of the results are
illustrated in Fig. 9, where |S| = |S ′| = 10 and the number
of reduced dimensions is 80 (� = 2, m = 40). The results
are consistent with the performances of RCA and BiGL in
the nearest-neighbor classifications.

Besides the comparisons summarized in Table 1, we
have also tested the Relief and the Simba feature selection
algorithms [6] for metric learning. The testings are carried
out by directly using the Web-available MATLAB code [6]
for all the foregoing experiments. However, as these two
methods are aimed at selecting discriminative dimensions
in the original space rather than mapping the data to an-
other subspace (like RCA), Relief and Simba improve the
Euclidean distance marginally, and do not achieve compa-
rable error-rates to those of RCA and BiGL.

Indeed, when we are allowed to more carefully select
the dissimilar examples of the side-information, the error
rates by BiGL(2) might be further decreased. For some
specific problems, e.g., ARlight, we can easily single out
the unwanted factor (i.e., the lighting change) for com-
paring two images. Instead of choosing at random, we
build the dissimilarity constraints by picking out the pairs
of faces that are of different people but with the same
lighting condition. The column of AR light in Table 1 can
then be improved as 24.39%→22.76%, 20.24%→18.19%,
15.15%→14.44%, and 14.13%→13.73%.

We note that if only a few examples are available for
learning, the rank of the covariance matrix for RCA should
be very low, compared with the dimensionality of the input
space. Sine RCA computes the whitening transformation
based on the inverse of the covariance matrix, the whiten-
ing weights derived from a low-rank covariance are prob-
ably inaccurate due to the existence of many nearly-zero
singular values. Although using PCA as a preprocessing
step might alleviate the situation (as presented in [16] for
dimensionality reduction), to compute the total scatter ma-
trix of PCA from very few examples may still be inaccurate.
On the other hand, BiGL suffers less from the singularity
issue for the following two reasons: 1) The glocal image
representation ensures that the number of the dimensions
associated with the bilinear transform is small (e.g., d = 9



and n = 121). Furthermore, the mechanism of dimension-
ality reduction is inherent in the BiGL formulation, no data-
preprocessing step is needed. 2) Even with the singularity,
the optimization problem (2) can still be solved. (In addition
to the effective dimensions, we just need to choose arbitrary
orthogonal bases satisfying U T U = I� and V T V = Im for
the singular dimensions.) When applying the metric to the
test data, the distances measured in the singular dimensions
will keep unchanged to let the effective dimensions dom-
inate the measurement, whereas RCA will give inaccurate
whitening weights to the singular dimensions and thus de-
teriorate the measurement of the effective dimensions.

5.2. Multi-Object Tracking

The efficiency of learning an image metric from a few ex-
amples allows us to apply the BiGL algorithm to online ap-
plications like visual tracking. It has been shown in the
seminal work of [17] that metrics can be integrated in an
exemplar-based probabilistic paradigm for tracking. In our
experiment, we use a simpler setting to test the BiGL met-
rics. The BiGL learning algorithm is combined with the
particle filters to simultaneously track multiple targets in a
video sequence. During the tracking with particle filters, we
collect the image patches that are of high observation prob-
ability, and generate the pairwise examples for S and S ′.
The set S therefore contains image pairs of the same target,
and S ′ could include pairs of image samples of different tar-
gets, or of a target and nearby background. In general, we
maintain ten pairs for each set (|S| = |S ′| = 10), and peri-
odically replace some previous pairs in S and S ′ with new
ones. The first few frames are tracked using the Euclidean
distance. Once S and S ′ are ready, we construct the BiGL
metric for all targets, and thereafter use it in the observa-
tion likelihood of the particle filters. More specifically, the
observation likelihood includes the BiGL metric by

p(z|X) ∝ 1
Z

exp−γ ρ
(
A(Iz), B(X, I0); U, V

)
, (10)

where A(Iz) is the glocal matrix of the observed image
patch Iz , and B(X, I0) is the glocal matrix of the target
template I0 with the transformation hypothesized by the
particle state X . We test this tracking algorithm on a video
sequence with a dim lighting condition. Two sample frames
are displayed in Fig. 10, and the tracking results of the re-
spective frames are shown in the bottom row. Note that
the brightness and the contrast of these face images are en-
hanced just for better displaying. In our experiment, we
do not apply any image enhancement operator to the im-
age frames. With the learned metrics, our algorithm suc-
cessfully tracks the three faces throughout the whole of 195
frames, using 500 particles for each target. (See the supple-
mentary video for the complete tracking result.)

Figure 10: The top row includes two sample frames from
the video sequence for our experiment on multi-object
tracking. The targets in the respective frames are shown in
the bottom row. Note that, in this figure, we enhance the
brightness and the contrast of the face images for better
displaying; however, we do not apply any image enhance-
ment operator to the image frames in our experiment.

6. Conclusions

We have described a new method for learning an image
metric based on a few pairwise examples. Throughout our
work there are two main concepts: image representation
and bilinear-transform optimization. The motivation for
proposing a new image representation is prompted by the
inefficiencies and unsatisfactory results of testing by di-
rectly applying the bilinear transform to the canonical form
of an image matrix. On the contrary, to respectively em-
bed the local and global image properties into the column
and row spaces of a glocal matrix is very convenient for the
analysis of bilinear transform, and indeed greatly enhances
the effectiveness of a resulting image metric.

Overall, the proposed BiGL metric learning algorithm
finds an optimal bilinear transform for image data to best
explain the pairwise similarity or dissimilarity relations,
given as the side-information. With the glocal image rep-
resentation, the optimal bilinear transform takes advantage
of the intrinsic global and local image features to yield an
effective image metric. We have also pointed out when the
number of data is small, solving an optimization problem of
a high dimensionality is prone to numerical instability due
to the rank deficiency and the matrix singularity. Since the
BiGL algorithm only needs to solve an optimization prob-
lem of a lower dimensionality (benefitted from the glocal
representation), the offline or online learning process is thus
computationally more stable and more efficient.
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Table 1: The Average Error Rates (%) of the Nearest Neighbor Classifications.

Method Dimensions
Number

ARlight ARlight+exp ARall YaleB Caltech
ARlight

Textureof pairs Gender

Euclidean 1089 — 98.51 64.04 80.44 13.90 40.00 10.80 30.00

RCA 80 10 44.80 52.20 67.321 10.03 26.56 8.87 16.25
BiGL(1) 2 × 40 10 23.08 33.13 52.44 6.78 16.72 5.57 9.66
BiGL(2) 2 × 40 10 + 10 24.39 35.16 55.44 5.71 15.20 5.38 10.83

RCA 150 10 38.03 44.81 61.16 7.81 20.72 7.45 13.83
BiGL(1) 3 × 50 10 18.91 27.16 44.83 3.17 13.60 4.70 8.00
BiGL(2) 3 × 50 10 + 10 20.24 29.17 48.26 4.45 13.52 4.21 8.75

RCA 80 20 23.24 35.41 57.26 5.75 13.20 5.80 9.41
BiGL(1) 2 × 40 20 17.34 24.83 44.68 4.54 8.32 5.93 8.75
BiGL(2) 2 × 40 20 + 20 15.15 24.07 41.87 3.70 8.32 4.66 7.08

RCA 150 20 20.65 31.05 51.57 5.01 11.20 5.21 8.33
BiGL(1) 3 × 50 20 14.72 22.35 37.48 2.81 8.08 4.55 7.41
BiGL(2) 3 × 50 20 + 20 14.13 21.89 34.89 2.81 6.64 3.91 6.66

The number of pairs indicates |S| for RCA and BiGL(1), and |S| + |S′| for BiGL(2). Each reported error rate is the average over
ten runs of classifications by the metrics learned with randomly-selected S and S′.
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