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Abstract

Although object recognition methods based on local

learning can reasonably resolve the difficulties caused by

the large variations in images from the same category, the

high risk of overfitting and the heavy computational cost

in training numerous local models (classifiers or distance

functions) often limit their applicability. To address these

two unpleasant issues, we cast the multiple, independent

training processes of local models as a correlative multi-

task learning problem, and design a new boosting algo-

rithm to accomplish it. Specifically, we establish a para-

metric space where these local models lie and spread as a

manifold-like structure, and use boosting to perform local

model training by completing the manifold embedding. Via

sharing the common embedding space, the learning of each

local model can be properly regularized by the extra knowl-

edge from other models, while the training time is also sig-

nificantly reduced. Experimental results on two benchmark

datasets, Caltech-101 and VOC 2007, support that our ap-

proach not only achieves promising recognition rates but

also gives a two order speed-up in realizing local learning.

1. Introduction

One of the major challenges in designing an object

recognition system is to resolve the difficulty arising from

the large intraclass variations depicted in images from the

same object category. Such complications can be due to

both intrinsic and extrinsic factors, and they significantly in-

crease the complexity of separating data of one class from

those of other classes or the rest of the world. In Figure 1,

examples of images with substantial intraclass variations

are shown to illustrate the scenario.

Local learning is effective in tackling large intraclass

variations in data. Unlike the global approach, it consid-

ers multiple local models, each of which is learned to ac-

count for only a subset of data. For instance, to detect both

frontal and profile faces, Schneiderman and Kanade [26]

(a) face (b) airplane

Figure 1. Images from categories (a) face and (b) airplane, with

large intraclass variations in appearance, shape, color, scale, etc.

use multiple view-based detectors to specifically uncover

faces within a certain range of poses. Similar strategies are

also adopted in recent researches for image classification

and recognition, e.g., [12, 13, 19, 21]. However, except for

certain cases such as the face images that can be reasonably

aligned and divided into subsets by their pose, it is generally

a difficult task to partition image data into meaningful sub-

sets, each of which is covered by one local model. In the

aforementioned approaches, the learning is performed for

each sample or its neighborhood, and results in local mod-

els as many as the number of training data. In [12, 13, 21],

the local model corresponds to a distance function, while in

[14, 19] it relates to a kernel matrix.

Even for a modest size of training data, learning the

sample-specific local models may already not scale well.

Take, for example, the two popular benchmark datasets for

object recognition, Caltech-101 [10] and VOC 2007 [9].

Each comprises thousands of images, and learning all the

local models often takes time in the order of hours or even

days. It almost makes parameter tuning, a key step for ob-

taining satisfactory classification results, infeasible. Fur-

ther, local learning may suffer from the risk of overfitting

in that it often considers a relatively small group of train-

ing data. Addressing these two unfavorable issues of local

learning will be among the main focuses of this work.

1.1. Related work

Local learning has been an active research topic in ma-

chine learning [2]. It draws on the idea that a local model



should most likely better characterize the distinctive prop-

erties shared by a small subset of data than a global one

does for the whole data. Consequently adopting multiple

locally adaptive models would achieve better performances.

For example, to enhance the nearest neighbor rule for clas-

sification, Domeniconi and Gunopulos [8] propose a local

flexible metric by adaptively reweighting dimensions of the

feature space according to the sample location.

An important issue in local learning is how to deploy the

local models among data points. In [16], Kim and Kittler

use k-means clustering to partition data into several clus-

ters, and train a linear discriminant analysis (LDA) classi-

fier for each cluster. Dai et al. [7], motivated by that more

local models should be located near data with high risks

of being misclassified, propose the responsibility mixture

model, in which an EM algorithm is adopted to place lo-

cal classifiers according to the distribution of data uncer-

tainty. However, for approaches of this kind, it is hard to

pre-determine the optimal number of local models. After

all, the Gaussian assumptions for the data distribution or

uncertainty distribution are not always valid.

Alternatively, in [12, 13, 21], a local model is specifi-

cally designed for each training sample. Thus, no assump-

tions about the data distribution are required. In addition,

local learning in these works is often coupled with feature

fusion. That is, not only the discriminant functions but also

the discriminant visual features are jointly selected to en-

hance the power of each local model. Nevertheless, training

the sample-specific models is time-consuming.

Pertaining to object recognition, the tasks of learning a

local model from a given dataset are typically correlated.

As is pointed out from the literature of multi-task learning,

e.g., [1, 6, 29], investigating related tasks jointly in most

cases can achieve a considerable performance improvement

than independently, since the extra knowledge from other

tasks may convey useful information to the completion of

the underlying task.

1.2. Our approach

Our method focuses on efficiently learning sample-

specific local models to improve the accuracies on object

recognition. In our framework, each local model is a clas-

sifier derived by boosting, and has a special form such that

the collection of them spreads as a manifold-like structure

in the resulting classifier space. By respecting this global

structure of local classifiers, we design a boosting algorithm

to learn them jointly. The main contributions of our ap-

proach can be characterized as follows: 1) We propose to

cast the independent training procedures of local classifiers

as a multi-task learning problem. 2) We introduce a boost-

ing algorithm that solves the underlying multi-task problem

with good efficiency, scales well to the data size, and pro-

duces local classifiers with proper regularization and less

redundancy. 3) We establish a new way of carrying out mul-

tiple kernel learning (MKL) [17, 25] when several image

descriptors are used to account for the given data. It can

yield recognition rates comparable to those reported by the

state-of-the-art MKL tools, e.g., [25].

The proposed approach is related to JointBoost [29] in

the sense that multiple boosted classifiers are simultane-

ously generated under a specific form of multi-task learning.

However, our method can accomplish it more efficiently.

We also note that our use of dyadic hypercuts, introduced in

Moghaddam and Shakhnarovich [22], as the weak learners

for boosting is pivotal to the formulation in that they can ef-

fectively capture useful information in a kernel matrix, and

elegantly connect multiple kernel learning with boosting.

2. Multi-task local learning

We begin by specifying the notations used in this work,

defining the problem of local learning for object recogni-

tion, and describing its link to the multi-task learning.

2.1. Notations

Since the multi-class object recognition can always be

reduced to an array of two-class problems by adopting one-

against-one or one-against-all rules, we assume a binary

dataset S = {xn ∈ X , yn ∈ ±1}Nn=1, where N is the data

size and X denotes the input space.

In view of the complexity of visual object recognition,

it is hard to find a universal descriptor to well characterize

the whole dataset. Instead, we consider representing each

xn with totally M kinds of different descriptors, i.e., xn =
{xn,m ∈ Xm}

M
m=1, and each descriptor is associated with a

distance measure dm : Xm ×Xm → R.

The useful data representations are often of high dimen-

sional and in diverse forms, such as vectors [23], histograms

[5], bags of features [34], or pyramids [18]. To avoid the

difficulties caused by working with these varieties, we rep-

resent data under each descriptor by a kernel matrix. And

it leads to M kernel functions {km}
M
m=1 together with the

corresponding kernel matrices {Km}
M
m=1:

Km(n, n′) = km(xn,xn′) = exp(−γmd2
m(xn,xn′)) (1)

where γm is a positive constant.

2.2. Local learning

Our goal is to carry out local learning by deriving a

classifier fi for each training sample xi such that fi is ex-

pected to give good performances for testing samples falling

around xi. To this end, we specify the neighborhood of xi

with a weight distribution wi = {wi,n}
N
n=1 over S by

wi,n =

{

1/C, if xn ∈ C-NN of xi,

0, otherwise,
(2)
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Figure 2. (a) Two training samples, xi and xi′ , and their respective neighborhoods (denoted by blue dotted circles). (b) All the local

classifiers, including fi and fi′ , spread as a manifold-like structure in the high-dimensional classifier space induced by H. (c) These

classifiers can be obtained by incrementally completing the manifold embedding. The embedding space is spanned by weak learners {ht},

and the new coordinates of fi and fi′ in the embedding space are their respective ensemble coefficients αi and αi′ .

where C-NN of xi denotes the C nearest neighbors of

xi (including xi itself). In cases that multiple descriptors

are used, we compute wi for data under each representa-

tion and average the outcomes. Then each local classifier

fi can be obtained by coupling an optimal function with

suitable features to best discriminate the weighted dataset

Si = {xn, yn, wi,n}
N
n=1. The purpose of our local learning

is to learn such classifiers {fi}
N
i=1.

Specifically, each fi is resulted from the boosting algo-

rithm, and consists of a set of weak learners. Let H denote

the domain of weak hypotheses. Our formulation assumes

that each weak learner h ∈ H is generated by referencing

only the M kernels defined in (1). The main advantage of

so doing is that it uses these kernels as the unified informa-

tion bottleneck, and enjoys the convenience of working with

different descriptors and distance measures. In our discus-

sions below, we will treat the training of each local classifier

as a particular task. It follows that the numbers of tasks and

training samples are both N . For sake of clarity, hereafter

we will use subscript i as the index to tasks or classifiers,

and n to the training samples.

2.3. Multitask formulation

While local learning is effective for addressing compli-

cated vision problems like object recognition, care must be

taken to ensure that the learning procedure has been prop-

erly done for a given dataset. In particular, we pinpoint the

following two critical issues related to learning local classi-

fiers {fi}
N
i=1. First, each fi is learned with a small portion

of training data. When the number of weak learner candi-

dates |H| is large or infinite, fi is at the high risk of over-

fitting. Second, learning a local classifier for each training

sample is indeed an inefficient procedure. And the situation

gets worse when dealing with a large dataset, but it is often

the case for vision applications.

To alleviate the two above-mentioned unfavorable ef-

fects, we view completing the independent training pro-

cesses of {fi}
N
i=1 as a correlative multi-task learning prob-

lem. This is accomplished by assuming these local classi-

fiers share the same weak learners, but have their respective

ensemble coefficients, i.e.,

fi(x) =

T
∑

t=1

αi,tht(x), for i = 1, 2, ..., N. (3)

With (3), all the classifiers will be learned jointly. We will

later describe a systematic way for constructing {fi}
N
i=1

with multi-task learning in the next section. For now we

give justifications on why the two unfavorable effects can

be eased by setting local classifiers in the form of (3).

Proper regularization. It is instructive to think as if all

the local classifiers lie in a parametric space induced by H.

The space dimension is |H|, and the coordinates of a classi-

fier (i.e., a point) in the space are its ensemble coefficients

over the weak learners. Consider now two local classifiers

fi and fi′ corresponding to two nearby samples xi and xi′ .

According to (2), the highly overlapping neighborhoods, wi

and wi′ , should lead to the high similarity between fi and

fi′ . Hence, fi and fi′ are expected to be close in the clas-

sifier space. Extending the concept to all the classifiers, it

suggests that they would spread as a manifold-like struc-

ture. We instill this property into regularizing the training

process of each classifier. In other words, we learn all the lo-

cal classifiers simultaneously by respecting the underlying

manifold structure. This could lessen the instability (overfit-

ting) problem when otherwise independently learning each

classifier with insufficient training data would cause. Ob-

serve that constructing the local classifiers of the form in

(3) can capture the idea faithfully. As we will show later,

while the ensemble coefficients {αi,t}
T
t=1 are to represent

the embedding coordinates of fi, the shared weak learners

{ht}
T
t=1 can be optimized to span the embedding space. An

illustration of the regularization is given in Figure 2.

Redundancy elimination. If {fi}
N
i=1 are learned indepen-

dently, redundancy can easily become an unpleasant con-

cern. The phenomenon can be understood from both the

aspects of weak learners and training data. Since a weak

learner generally yields similar performances in the related

tasks, learning each of them separately is to overlook such

relatedness. On the other hand, as a training sample can



be accessed by multiple tasks, inefficiency can occur when

measuring the loss induced by the sample is evaluated in-

dependently throughout the relevant tasks. Our strategy is

to learn all local classifiers of (3) jointly so that information

redundancy among them can be reasonably circumvented

with a substantial speed-up in the training process.

3. A multi-task boosting algorithm

The main theme of this section is to detail the steps of

the proposed multi-task boosting algorithm, and to discuss

its justifications and useful properties.

3.1. Design of weak learners

We consider dyadic hypercuts [22] as the weak learners

in that they can achieve good classification performances,

and be generated by referencing only the kernel functions

{km}
M
m=1 or matrices {Km}

M
m=1 of (1). A dyadic hypercut

h is specified by a kernel and a pair of training samples of

opposite labels. Specifically, h is parameterized by positive

sample xn, negative sample xn′ , and kernel function km,

and can be expressed by

h(x) = sign(km(xn,x)− km(xn′ ,x)− θ), (4)

where θ is for thresholding. The size of the resulting pool

of weak learners is |H| = N+ ×N− ×M , where N+ and

N− are the numbers of positive and negative training data.

To have an efficient boosting process, we randomly sample

a subset of weak learners from the pool at each iteration.

3.2. The boosting algorithm

The multi-task setting of local learning is accomplished

via a boosting algorithm, in which task i is to learn

classifier fi as in (3) with the weighted dataset Si =
{xn, yn, wi,n}

N
n=1. Steps of the proposed multi-task boost-

ing are listed in Algorithm 1. Note that the algorithm main-

tains a two-dimensional weight array {w
(t)
i,n}

N
i,n=1 to link

successive iterations, where w
(t)
i,n denotes the weight of xn

in task i at iteration t. In what follows, we describe the

details of running iteration t.
We start by defining the loss function of task i. At iter-

ation t, fi =
∑t−1

τ=1 αi,τhτ is a linear combination of the

(t − 1) selected weak learners. With the exponential loss

model [11], the loss of fi with respect to Si is

L(fi, Si) =

N
∑

n=1

wi,n exp(−ynfi(xn)). (5)

Since all the classifiers are trained jointly, a reasonable

choice of the joint objective function is the total loss in-

duced by these classifiers in all the tasks, i.e.,

Loss =

N
∑

i=1

L(fi, Si). (6)

Algorithm 1: Multi-task Boosting for Local Learning

Input : N tasks: task i involves weighted dataset

Si = {xn, yn, wi,n}
N
n=1.

Output: Local classifiers {fi}
N
i=1, where

fi(x) =
∑T

t=1 αi,tht(x).

Initialize: w
(1)
i,n = wi,n, for i, n = 1, 2, ..., N .

for t← 1, 2, . . . , T do

1. Compute the cross-task data weights {w̃
(t)
n }Nn=1:

w̃
(t)
n =

∑N

i=1 w
(t)
i,n.

2. Select the optimal dyadic hypercut ht:

ht = arg minh

∑N

n=1 w̃
(t)
n · 1[h(xn) 6=yn].

3. Compute task-wise weighted errors {ǫi,t}
N
i=1:

ǫi,t =
∑N

n=1 w
(t)
i,n · 1[ht(xn) 6=yn].

4. Compute task-wise weighted accuracies {ci,t}
N
i=1

ci,t =
∑N

n=1 w
(t)
i,n · 1[ht(xn)=yn].

5. Set task-wise ensemble coefficients {αi,t}
N
i=1:

αi,t = max(0, 1
2 ln

ci,t

ǫi,t
).

6. Update data weights {w
(t+1)
i,n }Ni,n=1:

w
(t+1)
i,n = w

(t)
i,n exp(−ynαi,tht(xn)).

To decide the best weak learner ht shared by all classifiers

at iteration t, we minimize the total loss as in (6):

ht = argmin
h

N
∑

i=1

L(fi + h, Si) (7)

= arg min
h

N
∑

i=1

N
∑

n=1

wi,n exp(−yn(fi(xn) + h(xn))) (8)

= arg min
h

N
∑

i=1

N
∑

n=1

w
(t)
i,n exp(−ynh(xn)) (9)

= arg min
h

N
∑

n=1

w̃(t)
n exp(−ynh(xn)) (10)

In (9), we have w
(t)
i,n = wi,n exp(−ynfi(xn)) from the ini-

tialization and step 6 of Algorithm 1. The cross-task data

weight of xn is defined to be its total weight in all tasks,and

is denoted by w̃
(t)
n =

∑N

i=1 w
(t)
i,n. Thus, (10) implies that

the optimal discrete h is the one with the minimal cross-

task weighted error, i.e.,

ht = arg min
h

N
∑

n=1

w̃(t)
n · 1[h(xn) 6=yn]. (11)



Once we have ht, the remaining work at iteration t is to

determine its task-specific ensemble coefficients {αi,t}
N
i=1.

Analogously, the optimal value of αi,t is set to minimize

(6). We observe that αi,t has influence only on L(fi, Si),
and is irrelevant to the loss of other tasks. Thus the optimal

value of αi,t can be obtained by setting the first derivative

of L with respect to αi,t to zero. It follows that

αi,t =
1

2
ln

ci,t

ǫi,t

, where (12)

ǫi,t =
N

∑

n=1

w
(t)
i,n · 1[ht(xn) 6=yn], ci,t =

N
∑

n=1

w
(t)
i,n · 1[ht(xn)=yn].

Note that the resulting αi,t is not guaranteed to be positive.

However, we allow only nonnegative combinations of weak

learners. Thus αi,t will be set to zero if it is negative. Fi-

nally, iteration t is completed by updating the data weights

as in step 6 of Algorithm 1.

Novel sample prediction. In the testing phase, given a

new sample z, the proposed technique will first find its near-

est training sample, say, xi, and then use local classifier fi

to predict the label of z. Since z belongs to the neighbor-

hood of xi, such a tactic is justified by that fi is optimized

to give good classification performances around xi.

3.3. Useful Properties

The proposed multi-task boosting is simple, easy to im-

plement, and has theoretic merit. At each iteration, it picks

the optimal weak learner and computes its ensemble coef-

ficients by directly minimizing the total exponential loss as

in (6). Although the selected weak learners are shared cross

tasks, it can be readily verified that the exponential loss of

each task is monotonically decreased in training. This prop-

erty guarantees the convergence of our algorithm.

Regarding the gain efficiency of leaning all the local

classifiers, we elucidate this point with two aspects of con-

siderations. First, observe that according to (11), no matter

how many tasks sample xn is associated with, evaluating

whether xn is misclassified by some weak learner h is per-

formed only once. Second, each selected weak learner is

shared cross all the tasks, and the degree of sharing in these

tasks is adaptively controlled by the ensemble coefficients.

It is in this aspect that the proposed approach has the advan-

tage over other related work, e.g., JointBoost [29], where

jointly training would quickly become infeasible due to an

exponential growth in the number of search hypotheses as

the size of training dataset increases.

As is noted before, the algorithm maintains a 2-D weight

array {wi,n} throughout the boosting iterations. It records

not only the difficulties of training data but also those of

the tasks. With iterative re-weighting, high weights will be

gradually distributed to the difficult data and tasks, and re-

sults in more emphases on them. The strategy ensures that

all learning tasks will be appropriately addressed.

One final remark about the multi-task boosting is that

it iteratively learns classifiers by fusing information from

multiple kernels and thus inherently leads to an on-line

and incremental way to perform multiple kernel learning

(MKL). In addition, compared with conventional optimiza-

tion techniques like semi-definite programming (SDP) [32],

it does scale better when the size of data is increased.

4. Experimental results

To evaluate the performances of the proposed method,

we carry out experiments of object recognition on two

benchmark databases, Caltech-101 [10] and VOC 2007 [9].

Both the two datasets contain images with multiple class

labels, and are complicated by large intraclass variations.

Therefore, they serve as good test beds for justifying the

effectiveness of our approach to local learning.

4.1. Caltech101

We implement the one-against-all rule for our approach

to handle multi-class recognition on Caltech-101. In the

following, we respectively describe the image data, the

adopted descriptors, the experiment setting and the results.

4.1.1 Dataset

The Caltech-101 dataset contains 101 object categories and

one additional category of background images. Each cate-

gory consists of 31 ∼ 800 images. Although the object is

positioned near the central region of each image, the large

class number and intraclass variations still result in a chal-

lenging recognition task. Since the resolutions of images in

the dataset are different, we resize them to around 60, 000
pixels before performing feature extraction.

4.1.2 Descriptors and kernels

To enrich the set of weak learners, several image descriptors

and their associated distance function are used to extract

diverse image features. From (1), the resulting kernels are

• GB-Dist: For a given image, the geometric blur de-

scriptor [3] is applied to each of 400 randomly sam-

pled edge pixel. Coupling with the distance function

suggested in (2) of [34], the kernel is constructed.

• GB: The same as GB-Dist, except the geometric dis-

tortion term is excluded in evaluating the distance.

• SIFT-Dist: The same as GB-Dist, except SIFT de-

scriptor [20] is used instead.



1-NN SVM AdaBoost Ours

GB-Dist 42.4 ± 1.3 61.4 ± 0.8 61.5 ± 0.7 63.2 ± 0.8

GB 37.4 ± 0.9 57.6 ± 1.0 58.5 ± 0.7 59.7 ± 1.2

SIFT-Dist 49.6 ± 0.8 58.7 ± 0.9 57.5 ± 1.0 57.8 ± 0.7
SIFT-SPM 48.8 ± 0.7 56.1 ± 0.9 53.3 ± 0.8 55.2 ± 0.7

SS-Dist 31.7 ± 1.4 53.4 ± 1.0 56.1 ± 0.7 56.3 ± 0.9

SS-SPM 41.7 ± 0.9 53.9 ± 0.9 55.5 ± 0.7 56.9 ± 1.3

C2-SWP 22.0 ± 0.8 28.3 ± 0.8 26.0 ± 0.9 26.9 ± 1.0
C2-ML 37.7 ± 0.7 46.3 ± 1.0 44.8 ± 0.9 46.6 ± 0.6

PHOG 27.7 ± 1.0 43.9 ± 0.8 41.3 ± 1.0 42.9 ± 0.8
GIST 36.8 ± 1.1 48.7 ± 0.8 49.1 ± 1.0 51.2 ± 0.8

(a)

AdaBoost
SimpleMKL

(local)
Ours

All
74.3 ± 1.2 74.6 ± 1.3 75.8 ± 1.1

3.26 × 102 sec. 1.87 × 105 sec. 3.92 × 103 sec.

(b)

Table 1. Recognition rates [mean ± std %] of several approaches

on the Caltech-101 dataset. (a) A kernel is taken into account at a

time. (b) All kernels are jointly considered.

• SIFT-SPM: With a densely sampled grid, SIFT fea-

tures are extracted and quantized into visual words.

The kernel is built by matching spatial pyramids [18].

• SS-SPM / SS-Dist: The same as SIFT-SPM and SIFT-

Dist respectively, except the self-similarity descriptor

[28] is used to replace the SIFT descriptor.

• C2-SWP / C2-ML: We adopt biologically inspired

features to depict images. Both the C2 features sug-

gested by Serre et al. [27] and by Mutch and Lowe [23]

are respectively used to establish the two RBF kernels.

• PHOG: The PHOG descriptor [5] is used to summa-

rize the distributions of edge orientations. Together

with the χ2 distance, the kernel is established.

• GIST: The images are resized to 128×128 pixels prior

to applying the gist descriptor [24]. The RBF kernel is

then constructed with the L2 distance.

The distance matrices result from different parameter

values of each descriptor are combined in advance. It is

used for ensuring that the resulting kernels individually

reach their best performances.

4.1.3 Quantitative results

Like in [3, 33, 34], we randomly pick 30 images from each

of the 102 categories, and split them into two disjoint sub-

sets: one contains Ntrain images per category, and the other

consists of the rest. The two subsets are respectively used

for training and testing. The whole evaluation process are

repeated 20 times by using different splits between the train-

ing and testing subsets. Recognition rates are measured in

cases that Ntrain is set to 5, 10, 15, 20, and 25.
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Figure 3. The recognition rates of several approaches on Caltech-

101 dataset with different numbers of training data per class.

We first investigate the effectiveness of each kernel by

comparing our method with the one-nearest-neighbor (1-

NN) classifier, SVM, and AdaBoost. When the value of

Ntrain is 15, the recognition rates are reported in Table 1a.

The 1-NN serves as the baseline for the experiment. By

transforming a kernel to a set of dyadic hypercuts (weak

learners), AdaBoost and our approach can fuse these hy-

percuts into a global classifier and a set of local classifiers,

respectively. Observe that AdaBoost achieves comparable

performance to that of SVM. It implies that the hypercuts

can capture useful information in a kernel. Overall, the pro-

posed local learning consistently outperforms AdaBoost,

and gives the best recognition rates in most cases.

Focusing now on the case that multiple kernels are con-

sidered simultaneously, we evaluate the performances of

SimpleMKL [25], AdaBoost for local learning, and our

method. SimpleMKL is a well-known software for multi-

ple kernel learning, and can learn an optimal ensemble ker-

nel by searching the convex combinations of kernels. With

SimpleMKL, a global classifier is obtained with training

time 326 seconds, and achieves recognition rate 74.3%. We

then compare AdaBoost and our approach in realizing lo-

cal learning. While AdaBoost carries out local learning for

a total of N = 1530 classifiers one by one, our method

constructs them via a joint training. The recognition rates

and computational costs are shown in Table 1b. The results

demonstrate that our approach achieves not only a better

performance but also gives a two order speed-up.

In Figure 3, the accuracy rates of several recent tech-

niques, including ours, on Caltech-101 are plotted with re-

spect to different numbers of training data. The outcomes

of ours are 60.1 ± 1.1%, 70.5 ± 0.7%, 77.5 ± 0.7%, and

79.1 ± 2.1% when Ntrain is set to 5, 10, 20, and 25 re-

spectively. For the case that Ntrain is 15, the recognition

rate 75.8% by our method is either better or comparable to

those by other published systems, e.g., [4, 5, 13, 15, 18, 34].



4.2. VOC 2007

The second set of our experiments is performed on the

dataset provided by the VOC 2007 classification challenge,

which serves as a benchmark for comparing image classifi-

cation methods in dealing with realistic scenes.

4.2.1 Dataset

The VOC 2007 dataset contains 20 object categories, in-

cluding indoor objects, vehicles, animals, and people. Each

category consists of 195 ∼ 4192 images, and most of them

are of similar sizes. Unlike Caltech-101, objects in the im-

ages are neither centrally located nor with similar scales.

Besides, more than one kind of objects can be present in an

image. The overall learning task contains 20 binary clas-

sification problems, each of which is to predict the pres-

ence/abcense of objects from a certain category.

4.2.2 Descriptors and kernels

We use 18 distance matrices generated from the combina-

tions of six kinds of descriptors and three kinds of spatial

pyramids. The image descriptors are

• SIFT / GB / SS: We extract the SIFT features from a

densely sampled grid over multiple scales, and quan-

tize them into 4000 visual words. The χ2 distance is

adopted as the distance function. Following the same

procedure, we build the other two using the geometric

blur and self-similarity features.

• TC-SIFT: The same as SIFT, except that SIFT fea-

tures are computed over three normalized RGB chan-

nels separately [30].

• GIST: All images are resized to resolution 128× 128
before performing feature extraction. Then the L2 dis-

tance is used as the distance function.

• C2-ML: This is constructed with the C2 feature by

Mutch and Lowe [23], and the L2 distance function.

Three kinds of spatial pyramids, 1×1 (whole image), 2×2
(image quarters) [18], and 1 × 3 (horizontal bars), are con-

sidered to exploit the spatial information. Coupling the de-

scriptors and the spatial pyramids yields 18 distance matri-

ces. However, using all the distance matrices will lead to

large memory consumption, and it can be resolved by using

only one average distance matrix for each descriptor. To

address the possibly large variations due to using different

distance measures, the distance matrices are normalized by

dividing their respective standard deviation. After generat-

ing the distance matrices, the hyper-parameters γm in (1)

are tuned to form kernels that achieve best performances.

Train Train+Val

SVM Ours SVM Ours

SIFT 46.3 47.5 50.7 51.4

TC-SIFT 46.8 46.9 51.1 51.1

SS 48.4 48.8 52.4 52.1

GB 45.4 42.8 47.5 46.7

Gist 38.6 39.4 43.1 44.3

C2-ML 34.6 36.2 39.8 39.6

SimpleMKL Ours SimpleMKL Ours

All 51.4 55.2 57.3 59.3

Table 2. Average APs (%) for the VOC 2007 dataset.

4.2.3 Quantitative results

The VOC 2007 dataset provides two training sets: the larger

one (Train+Val) contains 5011 images, and the other (Train)

has 2501 images. We experiment on both training sets and

use the same test set, which consists of 4952 images, for

performance evaluation.

For each category, one needs to predict if there exists

at least one object of that class in a test image. Each pre-

diction should be a real value to reflect the confidence of

object presence. The precision-recall curve is built on the

prediction values of all test images, and the performance is

measured by the average precision (AP), which is propor-

tional to the area under the precision-recall curve. Finally

the average of 20 APs is used for the comparison.

In Table 2, we report the results of comparing our

method with SVM and SimpleMKL. When training with

one individual kernel at a time, our method performs

slightly better than SVM on the Train set, and compara-

bly as SVM on the Train+Val set. It shows that the learned

local models give the same or better results than a global

one does. When learning with multiple kernels, our method

achieves average AP 59.3% on the Train+Val set, and yields

significant improvements to those learned on each individ-

ual kernel. The performance gain in the classification accu-

racy supports that the use of various distances can comple-

ment each other and the concept of local models can better

capture the structures of complex data. When SimpleMKL

is applied to the same kernels to learn a global model, the

resulting average AP is 57.3%.

Table 3 summarizes the per-class results on the

Train+Val set of our method, SimpleMKL, the top three

(denoted respectively as INRIA, XRCE, and TKK) in VOC

Challenge 2007 [9], and van Gemert et al. [31], which has

produced by far the best results for the dataset. Our method

achieves average AP 59.3%, and performs the best in 4 out

of 20 categories. The performance by the proposed ap-

proach is consistently better than that of SimpleMKL, while

it is also comparable with that by INRIA and meanwhile

falls slightly behind the average AP 60.5% reported in [31].



avg. Aero. Bicy. Bird Boat Bott. Bus Car Cat Chair Cow Table Dog Horse Moto. Pers. Plant Sheep Sofa Train Tv

INRIA 59.4 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2

XRCE 57.5 72.3 57.5 53.2 68.9 28.5 57.5 75.4 50.3 52.2 39.0 46.8 45.3 75.7 58.5 84.0 32.6 39.7 50.9 75.1 49.5

TKK 51.7 71.4 51.7 48.5 63.4 27.3 49.9 70.1 51.2 51.7 32.3 46.3 41.5 72.6 60.2 82.2 31.7 30.1 39.2 71.1 41.0

van Gemert et al. [31] 60.5 80.4 64.9 57.0 69.1 24.6 65.8 78.2 54.3 56.9 42.4 53.7 47.0 81.5 65.6 87.9 38.3 52.3 53.9 83.2 53.3

SimpleMKL 57.3 74.1 62.7 48.7 66.9 29.1 62.6 75.0 56.9 54.5 42.7 54.8 44.2 76.3 65.8 83.6 28.7 42.5 51.5 74.7 50.9

Ours 59.3 76.5 64.6 51.8 68.3 32.2 61.3 77.5 57.8 56.3 43.5 58.8 44.8 78.4 65.2 85.4 30.4 47.7 54.6 76.4 54.6

Table 3. Average APs (%) of several approaches on Train+Val set of the VOC 2007 dataset.

5. Conclusion

We have introduced an efficient local learning approach

to resolving the difficulties in object recognition caused by

large intraclass variations. We cast multiple, independent

training processes of local classifiers to a correlative multi-

task learning problem, and develop a boosting-based algo-

rithm to accomplish it. The proposed technique is com-

prehensively evaluated with two benchmark datasets. The

recognition rates in both datasets are comparable to those

yielded by the respective state-of-the-art approaches. Our

method can be considered as a general multi-task learn-

ing tool for vision applications where multiple correlative

classifiers are required, such as multi-view face detection,

multi-part object tracking, or user-dependent media rank-

ing. The framework also provides a new way to carry out

multiple kernel learning in an incremental manner.
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