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Abstract

We present a novel computational model to explore the

relatedness of objectness and saliency, each of which plays

an important role in the study of visual attention. The pro-

posed framework conceptually integrates these two con-

cepts via constructing a graphical model to account for

their relationships, and concurrently improves their estima-

tion by iteratively optimizing a novel energy function real-

izing the model. Specifically, the energy function comprises

the objectness, the saliency, and the interaction energy, re-

spectively corresponding to explain their individual regu-

larities and the mutual effects. Minimizing the energy by

fixing one or the other would elegantly transform the model

into solving the problem of objectness or saliency estima-

tion, while the useful information from the other concept

can be utilized through the interaction term. Experimen-

tal results on two benchmark datasets demonstrate that the

proposed model can simultaneously yield a saliency map of

better quality and a more meaningful objectness output for

salient object detection.

1. Introduction

Visual attention relates to how humans process different

information in a scene, and is primarily analyzed through

investigating the allocation of eye fixations. For vision re-

search, the attention process concerns particularly with two

important concepts, namely, saliency and objectness [3, 12].

The main focuses of this paper are to investigate the close

relationship between the two concepts, introduce a new for-

mulation to effectively approximate them, and propose a

useful algorithm for salient object detection.

To model where we place our eyes in a visual scene, the

saliency-based approaches, e.g., [5, 10, 12, 20], are con-

sidered to be the mainstream in the vision community. In

such techniques, the visual saliency is typically computed

in a bottom-up fashion, as is in the computational model by

Itti and Koch [10] where information gathering from local

image characteristics such as color, intensity, and orienta-

tion is used. Since no high-level cognitive cue is explored

Figure 1. Mutual improvements between objectness and saliency.

Left: Each red window indicates a possible object within it. (Note

that we always draw the top 10 objectness windows for illustra-

tion.) Right: The estimated saliency map, where the color bar on

the right shows the scales of saliency values.

in the computation, visual saliency is more appropriate to

account for free-view eye fixations. Alternatively, for task-

dependent visual attention, additional use of relevant high-

level information would more likely help better explain the

fixation distribution [18, 23].

It is evident that salient object detection would be more

appropriately casted as a task-dependent attention model in-

stead of a free-view one. In this case, the top-down high-

level information is dictated by what kinds of objects we are

to detect, or equivalently, by how the concept of objectness

is defined. Our formulation adopts similar criteria of object-

ness described in [3], and therefore encompasses a huge set

of general objects. By coupling visual saliency and generic

objectness into a unified framework, the proposed approach

can not only yield good performance of detecting salient ob-

jects in a scene but also concurrently improve the quality of

both the saliency map and the objectness estimations. (See

Figure 1 for an illustration.)

Despite the close connection between saliency and ob-

jectness, existing approaches [3, 5, 12, 14, 15, 19, 20] still

lack a good computational model to thoroughly explore the

two concepts and their mutual effects. Only one single di-

rection of the interactions is considered: The techniques in

[5, 12, 15] exploit object detection to help saliency estima-

tions, while those in [3, 14, 19, 20] use saliency information
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Figure 2. Inefficiency of saliency detection and object detection. From left to right: (a) the original image, (b) the ground-truth saliency by

recording eye fixations [12], (c) saliency map detected by [5], (d) region-based saliency map, and (e) the objects detected by [3].

to improve object detection or segmentation. Either way

they see the insufficiencies in each of the two models per-

taining to visual attention. Specifically, in most saliency de-

tection methods, an edge pixel is often assigned a stronger

saliency value since it is more distinct with respect to the

whole image. (See Figure 2c.) Even when a region-based

saliency detection scheme, e.g., [2] is used to alleviate this

effect, the resulting saliency map (e.g., Figure 2d) is still

quite different from the one based on the ground-truth eye

fixations (e.g., Figure 2b). On the other hand, in linking ob-

jectness to the allocation of eye fixations, it seems imprac-

tical to detect all the objects in a scene by simply design-

ing specific purposed object detectors (e.g., face detector) in

that the number of all possible object classes is simply too

large to handle. One may instead consider using a general

purposed object detector [3]. However, the main drawback

is that the detection result may include too many “objects”

that are less likely to attract visual attention. Indeed, the

detector might even not perform well due to its general pur-

pose, as is shown in Figure 2e.

Our method begins by randomly sampling a large num-

ber of windows. Each window is assigned an objectness

value and each pixel (or superpixel) a saliency value. To

link objectness with saliency, we first introduce an object-

level saliency for each window. This value is used to repre-

sent the saliency of the underlying object within each win-

dow. On using objectness to help estimate saliency, a top-

down viewpoint is adopted so that the saliency of a pixel

should be decided by the object-level saliency values of

those windows enclosing it and with high objectness. On

using saliency to help estimate objectness, the objectness of

a window will be high if the object-level saliency can well

explain most of the saliency values of the pixels it covers.

To measure the object-level saliency, instead of using the

conventional center-surround scheme, we make use of the

shape information provided by superpixels to form a new

measurement. In our experiments, the proposed model with

this measurement not only performs better on the mean av-

erage precision but also on the visualization.

2. Related work

Most saliency detection methods [1, 2, 5, 7, 8, 9, 11, 15]

consider only the low-level features. They basically com-

pute the saliency values by a center-surround approach [2].

That is, if a pixel is more “different” from its surrounding

area, then it is assigned a higher saliency value. According

to the size of the surrounding area, these methods can be

further divided into two groups. For techniques in the first

group [7, 11, 15], saliency computation proceeds by com-

paring each pixel with its local neighborhood. While Itti et

al. [11] compute the saliency values by the difference of

Gaussians (DoG) operations, Ma and Zhang [15] just ex-

ploit the differences to the nearby pixels. In [7], Harel et al.

further consider the appearance difference and the geomet-

ric distance of each pixel pair, and then use a graph-based

method to estimate the saliency. In methods of the second

group [1, 2, 5, 8, 9], the saliency estimation would require

comparing each pixel with a large area or even the whole

image. The technique by Hou and Zhang [8] analyzes the

frequency domain of an image. It seeks the frequencies

with uncommon change in magnitude, and identifies pix-

els with high response to these frequencies as salient. Be-

sides using the frequency filters, they [9] also consider the

filters learned from natural images. Now, the filters with

low responses to a given image are uncommon and those

pixels owning high response to such filters are salient. Un-

like searching for the uncommon filters, Goferman et al. [5]

directly compare each pixel with the whole image and pick

out only those most similar to it. If a pixel is still dissimilar

to its most similar ones, it is salient. Instead of computing

so many differences, Achanta et al. [1, 2] use an average

operation to summarize the information of the surrounding

area of a pixel so that its saliency value can be determined

based on the summarized information. Among the afore-

mentioned techniques [1, 2, 5, 7, 8, 9, 11, 15], pixels are

essentially processed independently. Since pixels near the

edges are quite distinct with respect to those in other ar-

eas of an image, methods of this kind often assign higher

saliency values to them. To address this problem, pixels are



either compared with the ones in a very low-pass filtered

images to enhance the saliency of the non-edge ones [2], or

considered in a region-based manner by assuming that those

in the same superpixel have similar property and thus share

the same saliency value.

When the top-down information is used for saliency de-

tection, it generally requires a learning phase to incorporate

the high-level knowledge into the process. Itti and Koch

[10] as well as Ma and Zhang [15] both describe an ab-

stract concept about how to include such information in the

saliency computation. More practical implementations can

be found in [5, 12], where (object-specific) detection results

are used to generate a corresponding binary map. Gofer-

man et al. [5] then directly take a max operation to com-

bine the bottom-up and top-down results while Judd et al.

[12] treat each map as a feature and use supervised learn-

ing to build a saliency classifier. Deviating from the con-

ventional bottom-up concept, Moosmann et al. [17] define

saliency from a top-down viewpoint, and treat it as an at-

tribute to most distinguish a concept of interest from others.

In this sense, finding such a saliency map can be reduced to

learning a classifier, which is exactly what have been pro-

posed by Wang and Forsyth [22], Marchesotti et al. [16],

and Moosmann et al. [17].

Turning now our attention to detect or segment objects,

we particularly focus on the techniques that accomplish the

task via referencing a saliency map. Hou and Zhang [8]

and Achanta et al. [2] both use an image-dependent saliency

threshold to segment the objects. Liu et al. [14] and Rahtu

et al. [19] instead take saliency as one of the features in the

unary term of a conditional random field model. Once the

parameters have been learned, single salient object detec-

tion can be achieved through inference. In addition to these

approaches, Ramanathan et al. [20] explore the fixations

and analyze their effects on the clustering-based segmen-

tation results. Rather than detecting salient objects, Alexe

et al. [3] aim for generic object detection. Nevertheless,

saliency is still used as a cue in their naı̈ve Bayes model.

Recent research efforts have made three databases avail-

able to the vision community. The database of Kienzle et

al. [13] contains 200 grayscale natural images with 18065

fixation locations recorded from 14 subjects. The database

of Judd et al. [12] consists of the fixations from 15 sub-

jects across 1003 color images and the fixations are mostly

found around objects. In the database of Ramanathan et

al. [20], the fixations are recorded from 75 subjects and re-

sult in 758 images. Since this set contains more emotional

or meaningful images, the fixations are thus strongly influ-

enced by scene semantics. However, the fixations in these

three databases are just sparse points in each image. Such

information should be further processed when used in eval-

uating the goodness of a dense saliency map.
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Figure 3. Our graphical model for fusing saliency and objectness.

The red, blue and green edges respectively correspond to the en-

ergy appeared in Fs, Fo and ∆ in (1).

3. Fusing objectness and saliency

For the computational concern, we define the saliency

over superpixels yielded by over-segmenting an image [4].

Besides, representing an image by superpixels also pro-

vides the convenience of utilizing the shape information,

which will be discussed in Section 3.3. Assuming that

an image contains P superpixels and Q potential object

windows, we are to estimate the saliency xs
m for super-

pixel m ∈ {1, . . . , P} and the objectness xo
i for window

i ∈ {1, . . . , Q}. For convenience, the vector notations

xs ∈ [0, 1]P and xo ∈ [0, 1]Q will be used to respectively

represent the saliency values of all superpixels and the ob-

jectness values of all windows. Estimating xs and xo by

our method is achieved by minimizing the following energy

function:

F (xs,xo) = Fs(x
s) + Fo(x

o) + ∆(xs,xo) (1)

where Fs includes the energy affected only by saliency,

Fo contains the energy affected only by objectness, and ∆
models the interactions between saliency and objectness.

Figure 3 is an illustration of the graphical model for (1).

3.1. Saliency energy

To construct the saliency energy Fs in (1), we consider

a smoothness term by assuming that the saliency values of

a pair of adjacent superpixels should not differ too much

if their appearances are similar. In addition, if we have a

prior knowledge psm about the saliency of superpixel m, the



estimated saliency xs
m also should not deviate too far away

from this value. We thus define the saliency energy by

Fs(x
s) =

∑

m

(psm−xs
m)2+λs

∑

m,n∈E

wm,n(x
s
m−xs

n)
2 (2)

where λs is the weight of the smoothness term, E is the set

containing the pairs of adjacency superpixels, and wm,n is

the affinity between superpixels m and n given by

wm,n =
∑

(k,l)∈Bm,n

exp
(
−σ‖vk − vl‖

2
)

(3)

where vk and vl are respectively the RGB values of pixels k
and l, and Bm,n contains the pairs of adjacent pixels across

the boundary of superpixels m and n. The second term in

(2) prefers that in minimizingFs the saliency values xs
m and

xs
n should be close if their corresponding superpixelsm and

n are similar (i.e., large wm,n).

The saliency prior psm can be conveniently estimated by

the existing bottom-up saliency detection methods. In our

experiments, we use the pixel-wise saliency detection by

Goferman et al. [5]. To obtain psm, we then average all the

saliency values of the pixels within superpixel m.

3.2. Objectness energy

Recall that the objectness is to be estimated for each gen-

erated window. We assume that all such windows are inde-

pendent without the saliency information. Thus, given some

prior knowledge poi about the objectness of each window i,
the objectness energy Fo in (1) can be defined as follows:

Fo(x
o) = λo

∑

i

(poi − xo
i )

2 (4)

where λo is the weight of the objectness energy. To come

up with a reasonable prior poi , we consider the objectness

framework in [3]. However, among other image features,

the detector also uses the saliency cue. It implies that a

direct application of such an objectness detector would be

inappropriate to our formulation. We exploit the fact that

the detector is formed by a naı̈ve Bayes model where each

cue is considered independently, and modify it by removing

the saliency cue in all our experiments.

3.3. Interaction energy

The interaction energy ∆ in (1) plays the most pivotal

role in the energy function F . It is designed to model the re-

lationships between superpixel-wise saliency and window-

wise objectness. To further explore the explicit form of ∆,

we need to define the following concept.

Definition 1 Given a window i, its object-level saliency

ci ∈ [0, 1] is said to measure the degree of the difference

of a specific feature distribution between the center (inside

the window) and the surround (around the window) areas.

Figure 4. An illustration of the center and the surround areas given

a set of superpixels and an object window. The superpixels mostly

inside the window (red) are considered as the center area (brown)

while the superpixels around the center area are considered as the

surround area (green).

The definition of the object-level saliency is loose, and

leaves the freedom to choose what kind of the image feature

to compute and how to measure the degree of the difference

between two distributions. In addition, observe that super-

pixels often contain the shape information in that the pixels

inside a superpixel are generally consistent and the bound-

ary of an object usually locates on the boundaries of super-

pixels. We thus make use of this property in deciding the

areas used in the center-surround scheme. Specifically, we

define the area covered by those superpixels that fall mostly

inside a given window (≥ 80% in our experiments) as the

center area, and the area formed by the neighboring super-

pixels around the center area as surround. (See Figure 4.)

Given a window i, let hi,c and hi,s respectively repre-

sent the distributions of its center and surround areas. (In

this work, the distribution is obtained by running K-means

algorithm (K = 20) on a texton image [21].) We then com-

pute the χ2 distance between the two distributions, i.e.,

χ2(hi,c,hi,s) =
∑

k

(hi,c(k)− hi,s(k))
2

(hi,c(k) + hi,s(k))/2
. (5)

Since the χ2 distance can range from 0 to ∞, we use a

sigmoid function to re-scale its value to [0, 1] and define the

object-level saliency of window i as

ci =
1

1 + exp (−(χ2(hi,c,hi,s)− χ̄2))
(6)

where χ̄2 denotes the average χ2 distance over all windows.

Consider now some superpixel m. It typically will be

covered by multiple windows, and each of them has an

object-level saliency value. Altogether, they form a top-

down view about the saliency of m, which is given by

τsm =

∑

{i|m∈wi}
cix

o
i

∑

{i′|m∈wi′}
xo
i′
. (7)

Clearly, τsm is a (normalized) sum of object-level saliency

values weighted by their respective objectness. With (7),



we are now ready to define the interaction energy by

∆(xs,xo) = λ
∑

m

(τsm − xs
m)

2
(8)

where λ is the weight of the interaction energy. To see why

the interaction energy ∆ defined in (8) is the main factor

for concurrently improving the saliency and the objectness

estimations, we first assume that the objectness informa-

tion is given for all windows. Then, the interaction energy

would provide the top-down information as in (7) to help

the saliency computation. The justification for the other di-

rection will be given in the next section, where the related

equation is reduced to a more comprehensive form.

4. Optimization

To minimize (1), we see that the optimization problem

is convex in xs when xo is fixed, and almost convex in xo

when xs is fixed due to the denominator in (7). The in-

convenience can be overcome with a reasonable assumption

that the change in xo is small between two successive iter-

ations. It follows that xo in the denominator of (7) can be

replaced by the estimate at the last iteration.

In detail, to solve xs when xo is fixed, we minimize

‖ps − xs‖2 + λsx
sTLxs + λ‖τ s − xs‖2 (9)

where ps and τ
s are the vector forms of psm and τsm, respec-

tively. L = D −W is the Laplacian matrix, where W is an

affinity matrix with W (m,n) = wm,n and D is a diagonal

matrix with D(m,m) =
∑

n wm,n. In the form of (9), we

have a closed-form solution

xs = (λsL+ (1 + λ)I)−1 · (ps + λτ s) (10)

where I is the identity matrix. Note that (λsL+(1+λ)I)−1

needs to be computed only once since it is fixed throughout

the iterations.

To solve xo when xs is fixed, we first replace xo
i′ in the

denominator of (7) with x̃o
i′ , the estimate in the last iteration.

Then we minimize

λo‖p
o − xo‖2 + λ‖Cxo − xs‖2 (11)

where po is the vector form of poi and C is defined by

C(m, i) =
ci

∑

{i′|m∈wi}
x̃o
i′
× δ[m ∈ wi] (12)

where δ[·] is the indicator function. From the second term

of (11), we can see how saliency helps estimate objectness.

Given xs, it would yield large objectness values to the win-

dows, whose object-level saliency well accounts for the cor-

responding xs (i.e., the saliency values of the superpixels

covered by a window). We use the cvx toolbox [6] to solve

(11). The optimization proceeds by iteratively solving (9)

and (11) until the energy in (1) can not be further reduced.

5. Experimental results

Two datasets are used in our experiments. For evaluating

objectness, we choose the set B by Liu et al. [14], which

contains 5000 images, each of which has object bounding

boxes labeled with higher agreement. For each image, we

directly average the bounding boxes labeled by 9 subjects

as the ground-truth window wg . We then randomly sample

10000 windows {wi}
10000
i=1 and decide, with respect to wg ,

their ground-truth (objectness) label goi by

goi =

{

1, if
|wi∩wg |
|wi∪wg |

≥ To,

0, otherwise,
(13)

where To is the threshold to decide the degree of consis-

tency to wg for a window to be considered as positive. In

our experiments, for the sake of comparison, methods deal-

ing with objectness use the same 10000 windows in each

image. The parameters λs, λo and λ in (2), (4) and (8)

are respectively set to fixed values, namely, 1
64 , 1

40 and 16

across all images. Note that the large weight of the interac-

tion energy confirms its importance in our model.

For comparing saliency, we use the dataset by Judd et

al. [12] since it contains more “object” images than the

other two [13, 20]. From the set, we further choose 373

images that each contains more obvious objects. Pertaining

to generating the ground-truth saliency maps, we consider

two reasonable implementations. The first is the same as

what Judd et al. adopt in [12] to make the maps by applying

Gaussian smoothing to the fixation data. The second is mo-

tivated by that since the fixations in each image are sparse,

their surrounding area subject to similar appearance is likely

to receive the same degree of attention. It follows that for

each superpixel m of size am, we can define the degree of

attention dm to be the number of fixations inside it divided

by am. An example is shown in Figure 2b. To decide which

superpixels or pixels are salient, we follow a similar scheme

in [2], and set the threshold as

Ts = 2×

∑

m dmam
∑

m′ am′

. (14)

Note that the ground-truth saliency map is still in pixel level,

as the superpixel information is used just for deciding which

pixels should receive the same degree of attention.

Our method is run on a PC with Intel i7 CPU @ 2.8 GHz.

It takes about 30 seconds per image to solve (1) with Matlab

and the cvx toolbox [6]. Now, for each window i, we have

its optimal objectness value xo
i as well as the object-level

saliency ci. The product of these two quantities, ci×xo
i , can

then be used for the salient object detection. In addition, we

have for each superpixel m its optimal saliency value xs
m.

By letting all pixels in superpixel m have the same saliency

value xs
m, we can obtain a saliency map in pixel level.



5.1. Evaluation criteria

A number of saliency detection methods [2, 5, 8, 11, 12]

have been included for comparison. Each algorithm has

been tested by resizing all the images into a set of pre-

determined dimensions, and the case that yields the best

performance is listed in the second column of Table 1. Note

that each detection result is obtained by first re-scaling the

saliency map back to its original size, and then evaluated

in pixel level. Since the number of the positive (salient)

points is relatively small in the ground-truth data, the aver-

age precision (AP) would be more suitable for comparing

the performances. The average precision is the area under

the recall-precision curve. Thus, the negative points ranked

below all positive ones will not be considered. Assume that

we have a ranked list r and the ground-truth label list g, the

average precision is then given by
(
∑

i

∑i

j=1 g(r(j))

i
× g(r(i))

)/(
∑

i′

g(r(i′))

)

.

(15)

Analogously, average precision is used in evaluating the

performances of objectness estimation in that the number

of positive windows is also relatively small. (See the sec-

ond column of Table 2.) For all images, we compute the

mean average precision (mAP) as the overall performance.

5.2. Saliency detections

Table 1 reports the saliency detection results in mean av-

erage precision by ours and other methods [2, 5, 8, 12, 11].

Our model is implemented in two versions, Ours-Rect

and Ours-SP. They differ in how the center-surround ar-

eas are decided for computing the window-wise object-level

saliency. The former uses a conventional center-surround

layout based on two rectangles, while the latter adopts the

superpixel-based scheme described in Section 3.3. Note

that [12] uses a supervised learning scheme while the oth-

ers only process each image directly. Our method achieves

better saliency detection results among the learning-free. In

Figure 5, examples of saliency maps by the various tech-

niques are provided for visualizing the detection quality. In

rows 1, 2, 4 and 5 of Figure 5, the saliency of the edge part

by [5, 8, 11, 12] is overemphasized, while the saliency in-

side the objects by ours is visually more reasonable. Com-

paring with Ours-Rect, the saliency detected by Ours-SP is

more conspicuous in the object boundary. (See rows 1, 2,

4 and 5 of Figure 5.) We also show the salient objects de-

tected (i.e., based on the product ci × xo
i ) by Ours-SP. The

detected windows fit the objects well and are able to recover

multiple objects.(See rows 1, 2, 3 and 6 of Figure 5.) Take,

for example, the row 1 of Figure 5: The proposed method

detects not only a person but also his face. In the last row

of Figure 5, we show an example of less satisfactory results

of saliency detections in a more challenging situation.

Method Size mAP-Gaussian mAP-SP

[11] 200× 200 0.2692 0.2481

[2] Whole image 0.2007 0.1963

[8] 32× 32 0.2931 0.2782

[5] 100× 100 0.3885 0.3697

[12] 200× 200 0.4536 0.4176

Ours-Rect Whole image 0.3934 0.4177

Ours-SP Whole image 0.4076 0.4284
Table 1. Saliency detection results with respect to two ground-truth

settings of saliency maps derived by smoothing the fixation maps

with a Gaussian filter (mAP-Gaussian) or superpixels (mAP-SP).

5.3. Objectness estimations

For the objectness estimation, we compare our method

with the generic object detector proposed by Alexe et al.

[3]. The results in mean average precision are listed in Ta-

ble 2. Since we have used a modified version of [3] to obtain

the objectness prior po in (4) and (11), the results by their

model without using the saliency cue are also provided in

the fourth column of Table 2. This way it is convenient to

see the improvements by our model. The experiments are

carried out with respect to different values of the threshold

To, which directly controls the hardness of fitting a ground-

truth bounding box. From Table 2, it can be concluded that

whether the object-level saliency information is used or not,

the proposed method significantly improves the results in

the fourth column (denoted as [3]\Saliency) and also those

by Alexe et al. [3]. It is worth mentioning that our method

may detect meaningful but not salient objects, e.g. the land

in row 2 and columns 3-4 of Figure 6. Overall, the object

detection results by our method are generally better in vi-

sualization than those by Alexe et al. [3]. It can also detect

multiple objects (e.g., row 5). Besides, the salient objects

detected by Ours-SP often better align with the ground truth

(e.g., rows 3 and 4). The last row of Figure 6 shows a failed

example, caused by the distinct center of the flower and the

ambiguity between the flower and the background.

6. Conclusion

Objectness and saliency, the two concepts are somewhat

contrasted to each other in that the former is essentially

cognitive-based, and the latter is simply image-based. Our

formulation emphasizes the use of generic objectness to

avoid the fusion being dominated by strong high-level ob-

ject information, and meanwhile to promote their interac-

tions. Our experimental results have shown that the pro-

posed energy minimization can simultaneously improve the

quality of saliency and objectness estimations. In addition,

it also yields the information of object-level saliency, with

which the objectness estimation can be extended to salient

object detection. Our future work would further explore the

vision applications of the object-level saliency.



Positive Objectness {xo
i } Salient objectness {ci × xo

i }To
windows

[3] [3]\Saliency
Ours-Rect Ours-SP Ours-Rect Ours-SP

0.5 31.56% 0.5082 0.4938 0.5114 0.5224 0.5120 0.5358

0.6 15.07% 0.3353 0.3292 0.3435 0.3567 0.3420 0.3934

0.7 5.11% 0.1797 0.1806 0.1877 0.1998 0.1847 0.2579

0.8 1.01% 0.0658 0.0685 0.0698 0.0770 0.0696 0.1383

0.9 0.06% 0.0127 0.0130 0.0131 0.0149 0.0148 0.0442
Table 2. Results of objectness estimations in mean average precision (mAP).

Image GT-Sal [11] [2] [8] [5] [12] Ours-Rect Ours-SP Ours-Sal-Obj

Figure 5. Examples of saliency detection results by different methods are shown in columns 3 through 9, while the salient objects detected

by Ours-SP are given in the last column. The last row shows an example of failed detections. (GT-Sal denotes ground-truth saliency.)
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