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Abstract

Representing shapes is a signi�cant problem for vi�
sion systems that must recognize or classify objects�
We derive a representation for a given shape by inves�
tigating its self�similarities� and constructing its shape
axis�SA� and shape axis tree �SA�tree��

We start with a shape� its boundary contour� and
two di�erent parameterizations for the contour� To
measure its self�similarity we consider matching pairs
of points �and their tangents� along the boundary con�
tour� i�e�� matching the two parameterizations� The
matching� or self�similarity criteria may vary� e�g��
co�circularity� parallelism� distance� region homogene�
ity� The loci of middle points of the pairing contour
points are the shape axis and they can be grouped into
a unique tree graph� the SA�tree� The shape axis for
the co�circularity criteria is compared to the symmetry
axis� An interpretation in terms of object parts is also
presented�

� Introduction
With the goal to compare shapes� this paper aims

to develop and compute a shape representation�

��� Motivation� Shape Similarity

Methods to compare two shape contours based on
evaluating global deformations ���� tend to be sensi�
tive to occlusion and fail to account for local deforma�
tions �such as articulations� since these deformations
may change the global appearance of objects consid�
erably while the entire deformation is concentrated in
speci	c points�

A class of methods compares objects by deforming
one object into another and evaluating the amount of
deformation applied in this process� including ��
� 
���
Guaranteed methods� typically� use dynamic program�
ming �time�warping� to register two contours� These
are all string �contour� matching algorithms� e�g��
�
����� The problem with these approaches� as pointed
out in �
�� is that they do not account for region infor�
mation and for symmetries �see Figure����

Figure �
 A shape contour followed by two shapes
obtained by di�erent deformations �stretching� into
the 	rst one� Local string deformation methods will
fail to distinguish the dissimilarity between them
and the 	rst one�

Our aim is to develop a shape representation of ob�
jects that allow similarity measures that account for
local deformations� symmetries� and region informa�
tion� Our representation gives a shape tree axis� where
every pair of consecutive nodes �edge� correspond to
an object part� The similarity measure between two
objects is de	ned by a tree matching scheme� where
the cost of matching edges is the cost of comparing two
object parts �local deformations and region informa�
tion can be accounted�� Tree�matching uses the partial
order induced by the trees but is rather more com�
plex than simple string matching algorithms� More�
over� node deletions account for occlusions and moving
nodes account for articulations� Figure�
 shows result
of using this representation for matching objects�

��� Shape Representation

Our formulation is a variational one� We start
with a shape� its boundary contour� We seek a self�
similarity measure to structure the representation of
shapes� Our insight is to generate two di�erent pa�
rameterizations for the contour and to measure its
self�similarity by matching the two parameterizations�
i�e�� by matching pairs of points �and their tangents�
along the boundary contour� The matching� or self�
similarity� criteria may vary� e�g�� co�circularity� par�
allelism� distance� region homogeneity� The middle



�a�

�b�

Figure 

 In �a�� the best match is obtained via a
cut� �a� and �b� display the advantage of performing
shape similarity via shape tree axis when dealing
with articulations and occlusions�

point of the pairing contour points gives a shape axis
and is guaranteed to yield a tree graph� or a shape
tree axis� It is also plausible to extend our work to
include curvature sign �convexity�� The shape axis for
the co�circularity criteria is compared to the symme�
try axis� An interpretation in terms of object parts is
also presented�

��� Previous Work

Blum ��� 	rst proposed to represent shapes by their
symmetry and thickness ���� Binford ��� is also a pio�
neer and bring the attention to generalized cylinders�
Other early work include �������� Other work addresses
a�ne transformations ��� and ���� and direct �D con�
siderations are given in ����� Pizer et al� ��� have pro�
posed a computational model for object representation
via �cores�� or regions of high medialness in inten�
sity images ���� Ogniewicz ���� has given an e�cient
method based on Voronoi diagrams� Leymarie and
Levine ���� have used the grass	re transform �from the
psychology literature� which is a simpli	ed description
of Siddiqi and Kimia�s work �

�� Siddiqi and Kimia�s
work has given an interesting mathematical formula�
tion based on the reaction�di�usion equation� where
the symmetry axis is obtained and described by the de�
velopment of the shocks �	rst�second�third� and fourth
order ones�� They are motivated by their framework
for shape analysis via shock�di�usion equations �����
Our view di�ers from them on trying to generate a
variational formulation for the problem� arguing that

we obtain more control over the criteria to seek the
representation �our approach goes beyond the sym�
metry axis representation and allows for regulariza�
tion of the solution against small changes in shape��
Moreover� it is important to our work that the result�
ing shape axis give a SA�tree� since our interest is to
perform a shape matching based on the tree structure�
In Zhu and Yuille�s work �
��� a system is proposed to
recognize and represent �exible objects from their sil�
houettes� The silhouettes are derived from skeleton
extraction and part segmentation using a deformable
circle method� Their derivation of the skeleton is of
interest� though di�erent from ours� it is not derived
from a variational model�

� Variational Matching of Curves
We shall determine the shape axis of a curve by

	nding a �good match� between the curve and its mir�
ror image� It is convenient to begin� however� with the
more general task of 	nding a �good match� between
a pair of curves in the plane�

Consider a pair of parameterized curves � � fx�s� 

� � s � �g and �� � f�x�t� 
 � � t � �g� By a
match between � and �� we mean a monotone corre�
spondence between the two curves� taking endpoints
to endpoints� A match can be represented in sev�
eral di�erent ways� One representation uses the map
s �� t � t�s� such that x�s� corresponds to �x�t�s��� A
second uses the inverse map t �� s � s�t�� so �x�t� cor�
responds to x�s�t��� A third alternative has the advan�
tage of treating the two curves symmetrically
 it spec�
i	es a pair of monotone functions s��� and t���� each
de	ned for � � � � �� such that x�s���� corresponds
with �x�t����� �The 	rst two alternatives are special
cases� obtained by taking s��� � � and t��� � � ��

To determine a �good match� we minimize an ap�
propriate variational problem� Concentrating for the
moment on our third� more symmetrical representa�
tion� the matching energy should have the formZ �

�

F �x� � � �x� �� � s�� t�� d�� ���

where � � xs�jxsj and �� � �xt�j�xtj are the oriented
unit tangent vectors to � and �� at x�s� and �x�t��
Our notation in ��� is somewhat abbreviated
 the
integrand must evaluated at the appropriate point
x � x�s����� � � ��s����� � � � � s� � ds�d�� and
t� � dt�d��

Our framework imposes two structural conditions
on the matching energy density F � The 	rst is the
symmetry condition

F �p� �� q� �� v� w� � F �q� �� p� ��w� v��



which assures that the notion of �matching� is sym�
metric� i�e�� the two curves � and �� play equivalent
roles� The second is the scaling condition

F �p� �� q� ���v� �w� � �F �p� �� q� �� v� w� for all � � ��

which makes the energy invariant under change�of�
variable in �
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This assures that the energy depends only on the
match� i�e�� the correspondence between s � s���
and t � t���� and not on the speci	c choice of maps
� �� s��� and � �� t����

We want our notion of �match� to be geometric�
so it is natural to require invariance under translation
and rotation


F �p� �� q� �� v� w� depends on p�q only through p� q �

and

F �Rp�R��Rq�R�� v� w� � F �p� �� q� �� v� w� �

for every orientation�preserving rotation R� These as�
sure that applying the same rigid motion to � and
�� leaves the energy of their match unchanged� Invari�
ance under scaling is too much to ask� but it is natural
to ask that

F ��p� ���q� �� v� w� � g���F �p� �� q� �� v� w� for � � ��

for some function g���� Thus scaling � and �� by a
common factor � changes the energy of match by a
known amount g����

These restrictions leave still considerable freedom�
The particular choice of F should depend� of course�
on the type of match one seeks�

��� Similarity Criteria

Various similarity�symmetry criteria can be consid�
ered� e�g�� co�circularity� parallelism� distance� region
homogeneity�

(b)(a)

pp qq
�

� �
�

�c�

Figure �
 �a� The co�circularity criterion is equiv�
alent to mirror symmetry and can be expressed by
the relations �q� p����� �� and �q� p�k��� ���
�b� The translation criteria can be expressed as �k��
�c� It is known� from the Gestalt school� that paral�
lelism can be more salient than co�circularity�

Co�Circularity or Mirror Symmetry� We fo�
cus on mirror symmetry� i�e�� co�circularity� and want
F �p� �� q� �� v� w� to favor

�q � p���� � �� and �q � p�k�� � ��

In other words F favors co�circularity  the existence
of a circle passing through p and q with tangents �
at p and � at q �see Figure���� It is also natural to
favor v � w� so that there are no stretchings� and to
favor p � q so that elements are matched when they
are close� Two possible choices of F �s are

F ����p� �� q� �� v� w� � ��q � p� � �� � ���
�
�v � w� ��

�q � p� � �� � ���
��

�v � w� � cjv � wjjp� qj�

and

F ����p� �� q� �� v� w� �
��q � p� � ��v � �w���

v � w
�

�
�q � p� � ��v � �w��

��
v � w

� c
jp� qj�jv � wj�

v � w
�

where c is a positive constant� We chose the latter
form� somewhat arbitrarily �from previous work ��
����
for the examples in this paper�

In practice it is often convenient to use a less sym�
metric viewpoint� specifying the match by a corre�
spondence t � t�s�� This is equivalent to taking



��s� � s� so the matching energy becomes
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With F � F ��� this amounts to
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where ��s� and ���t� are the unit tangent vectors at
x�s� and �x�t� respectively�

Translation� Other criteria may also be favorable�
and translation is one frequently interesting to be con�
sidered �see Figure���b��� For translative symmetry�
we have experimented with the following energy�

E�t�s�� �

Z �

�

n �jx�s� � �x�t�s��j� � j��s� � �� �t�s��t��s�j�
�

� � t��s�

� cjx�s�� �x�t�s��j�
j�� t��s�j�

� � t��s�

o
ds �

��� Matching a Curve with Itself

We turn now to our real goal  determining the
self�similarity of a closed curve �� Locally� our notion
of �good match� is the one introduced above� Glob�
ally� however� the situation is di�erent because we now
permit discontinuities� The matches considered in this
section are only piecewise continuous and monotone�

To explain our new notion of �match� more pre�
cisely� consider a simple closed curve � in the plane�
parameterized monotonically by x�s�� � � s � �� with
x��� � x���� Extending x�s� periodically� we may con�
sider it to be de	ned for all s � R� with x�s��� � x�s��
Let �� be �the same curve traced backwards�� param�
eterized by �x�t� � x��� t� �see Figure���� Notice that
�x is again de	ned for all t� periodic with period ��

A match between � and �� can be represented as a
binary function 	�s� t�


	�s� t� �

�
� if x�s� corresponds to �x�t� � x��� t�
� otherwise�

We visualize the match by plotting the points in the
s� t plane where 	�s� t� � � �see Figure����

x�s� �x�t�

�x�t� � x��� t�

��s� ���t�

��s� �� �t�

s� t � ��� �� continuous continuous

Figure �
 The contour ��s� and its mirror version
���t�� ��s� and �� �t� are unit tangent vectors�
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Figure �
 From left to right
 The matching space
�s � t� and the solution graph �where 	�s� t� � ���
The dashed lines represent mirror copies of the solid
ones� with respect to the line
 t � ��s� A tree graph
is then obtained�

There are some structural conditions every match
must satisfy� First� to respect the periodicity of x�s�
we require

	�s� t� � 	�s� �� t� � 	�s� t� �� for all s� t� ���

Second� to make � and �� play equivalent roles we re�
quire that

x�s� corresponds with �x�t� � x��� t�
m

�x�t� � x��� t� corresponds with x�s��

This amounts to

	�s� t� � 	��� t� �� s�� ���

Thus� the plot of 	 must be symmetric about the
line t � � � s� Third� the correspondence must be
monotone and continuous except for 	nitely many
jumps� and aside from the jumps every point on �
must have a unique correspondent on ��� In other



words� the plot of 	� restricted to the unit square
��� �� � ������ must consist of 	nitely many monotone
graphs� moreover it should cover each axis exactly
once �except for jumps� �see Figure����

Every match 	 determines a collection of proposed
shape axis� by the rule

	�s� t� � � � x�s� corresponds to �x�t� � x��� t�

	
 x�s��x���t�
� belongs to a shape axis�

Where the plot of 	 is discontinuous� so is the associ�
ated shape axis� We call such discontinuities bifurca�
tions of the shape axis� Where the plot of 	 crosses
the line t � � � s the points x�s� and x�� � t� are
identical and the associated shape axis meets �� We
call these points the leaves of the shape axis�

Of course� to detect the real symmetries of the 	g�
ure we cannot use just any match  we must use a
good one� Each continuous portion of the match is
assigned an energy by the analysis of the last section�
The total energy is obtained by adding these contribu�
tions� then adjoining �jump energies� associated with
the discontinuities�

It is frequently convenient to view the plot of 	 as
the graph of a piecewise monotone function t�s�� Then
��� becomes the condition

t��� s� � �� t�s��

In practice the curve � is given discretely� as a
sequence of N points� The data determine x�s� at
sj � j!s with !s � ��N � and x�s� is determined at
other points by interpolation� A match t � t�s� be�
tween a piece of � and a piece of �� is determined by
specifying t�sj� for the relevant values of sj � Discretiz�
ing the functional introduced in �
� and including the
cost of the jumps� the discrete matching energy be�
comes
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X
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where t��s�!s� � t�s��s��t�s�
�s � The last term is in�

terpreted as follows
 at a jump� the values t�s�� �
lim��� t�s � 
� and t�s�� � lim��� t�s � 
� are dif�
ferent� The associated jump cost can be a function of
jt�s�� � t�s��j� In practice we have used a constant
cost for jumps� Our �jumps� amount to the vertical
discontinuities one sees in the plot of 	 �see Figure����
There is no need to handle the horizontal jumps sepa�
rately because they are in one�to�one correspondence
with the vertical ones� on account of the symmetry
����

� SA Solution and SA�tree Formation
To 	nd the shape axis� we adopt the discretized

model ��� where we can list all possible solutions and
then are guaranteed to obtain the optimal solution�
The solution space is rather large because of all pos�
sible bifurcations� To reduce the complexity we have
considered using feature points� a small subset of all
contour points of �� However� this is not critical to
our approach� Our approach is to 	rst develop an al�
gorithm to represent the solution space as a solution
tree of which each path� from the root to a leaf� corre�
sponds to an SA solution� Then� we can take advan�
tage of the tree structure and apply a shortest path
�Dijkstra�s� algorithm�

Given a contour � and a set of feature points
fps� s � �� ���� ng� let S be the solution tree for 	nding
SA with possible bifurcations� Since any bifurcation in
an SA is caused by discontinuities of t�s�� this implies
that all possible SA �or correspondences� can be de�
rived as follows
 during the process of matching � and
��� we always move continuously along � in the s �
�increasing� direction but for ��� we can make jump
back and forth to one of those feature points start�
ing an unmatched contour segment� In this way� we
can exploit all possible bifurcations and to construct
a complete solution tree�

��� Constructing a Shape�Axis Tree

We now show how to go from an SA solution to an
SA�tree and derive the object parts� The SA solution�
t�s�� is a piecewise monotonic function� Let us refer
to each monotonic piece as a segment�

For each segment a square box is constructed with
one vertex �the bottom left one� being given by the
end point of the segment and the other opposite vertex
being given by its mirror version �see Figure���� Note
that segments that reach the mirror line �t � � � s�
will create a box of size zero� or to be more precise one
point size� the end point of the segment reaching the
mirror line� A tree� or box�tree� can then be created
according to the nesting parent�child relations among
all boxes�



Leaf nodes� The box leaves are the ones that have
one point size� the ones that correspond to end�points
reaching the mirror line� These are the leaf nodes� or
Leaf�T�� where T represents the tree� Moreover� the
origin �s� t� � ��� �� is also in Leaf�T�� This asymme�
try is arti	cial and can be be better understood when
reminded that the graph 	�s� t� � � is periodic ����

Bifurcation nodes� Now we are left to construct
the bifurcation nodes of SA�tree T� represented by Bi�
furcation�T�� For a non�leaf box� say B� we consider
all segments in the region between box B and all its
child boxes �e�g�� the shaded region shown in Figure�
��� A bifurcation can then be formed by grouping the
vertex de	ning box B �end�point of a segment� with
the start�points of the segments in the region� The set
Bifurcation�T� can be derived by visiting every box in
the box�tree with the grouping criteria just described
�see Figures ���

Object parts� We have now a language for de	ning
object parts� where two consecutive nodes of the tree
correspond to an object part� How much our de	ni�
tion can really describe object parts is still subject of
further investigation�

� Results

Experimental results on SA and SA�tree detection
are shown in Figure���
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Figure �
 Examples of the SA and SA�tree 	nding�
The original contour and the SA detected with the
correspondence matching are shown in �c�� �d�� �g��
�h� and �i�� The automatically generated SA�trees
are shown in �e�� �f�� �j�� �k� and �l�� In �a� and �b��
we experiment the e�ects of boundary perturbation�
When the perturbation becomes signi	cant� it will
form a part and lead to a bifurcation�


