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Abstract

Representing shapes is a significant problem for vi-
sion systems that must recognize or classify objects.
We derive a representation for a given shape by inves-
tigating its self-similarities, and constructing its shape
axis(SA) and shape axis tree (SA-tree).

We start with o shape, its boundary contour, and
two different parameterizations for the contour. To
measure its self-similarity we consider matching pairs
of points (and their tangents) along the boundary con-
tour, i.e., matching the two parameterizations. The
matching, or self-similarity criteria may vary, e.g.,
co-circularity, parallelism, distance, region homogene-
ity. The loci of middle points of the pairing contour
points are the shape axis and they can be grouped into
a unique tree graph, the SA-tree. The shape axis for
the co-circularity criteria is compared to the symmetry
azxis. An interpretation in terms of object parts is also
presented.

1 Introduction

With the goal to compare shapes, this paper aims
to develop and compute a shape representation.
1.1 Motivation: Shape Similarity

Methods to compare two shape contours based on
evaluating global deformations [10] tend to be sensi-
tive to occlusion and fail to account for local deforma-
tions (such as articulations) since these deformations
may change the global appearance of objects consid-
erably while the entire deformation is concentrated in
specific points.

A class of methods compares objects by deforming
one object into another and evaluating the amount of
deformation applied in this process, including [12, 25].
Guaranteed methods, typically, use dynamic program-
ming (time-warping) to register two contours. These
are all string (contour) matching algorithms, e.g.,
[2][6]. The problem with these approaches, as pointed
out in [2], is that they do not account for region infor-
mation and for symmetries (see Figure-1).
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Figure 1: A shape contour followed by two shapes
obtained by different deformations (stretching) into
the first one. Local string deformation methods will

fail to distinguish the dissimilarity between them
and the first one.

Our aim is to develop a shape representation of ob-
jects that allow similarity measures that account for
local deformations, symmetries, and region informa-
tion. Our representation gives a shape tree axis, where
every pair of consecutive nodes (edge) correspond to
an object part. The similarity measure between two
objects is defined by a tree matching scheme, where
the cost of matching edges is the cost of comparing two
object parts (local deformations and region informa-
tion can be accounted.) Tree-matching uses the partial
order induced by the trees but is rather more com-
plex than simple string matching algorithms. More-
over, node deletions account for occlusions and moving
nodes account for articulations. Figure-2 shows result
of using this representation for matching objects.

1.2 Shape Representation

Our formulation is a variational one. We start
with a shape, its boundary contour. We seek a self-
similarity measure to structure the representation of
shapes. Our insight is to generate two different pa-
rameterizations for the contour and to measure its
self-similarity by matching the two parameterizations,
i.e., by matching pairs of points (and their tangents)
along the boundary contour. The matching, or self-
similarity, criteria may vary, e.g., co-circularity, par-
allelism, distance, region homogeneity. The middle



Figure 2: In (a), the best match is obtained via a
cut. (a) and (b) display the advantage of performing
shape similarity via shape tree axis when dealing
with articulations and occlusions.

point of the pairing contour points gives a shape axis
and is guaranteed to yield a tree graph, or a shape
tree axis. It is also plausible to extend our work to
include curvature sign (convexity). The shape axis for
the co-circularity criteria is compared to the symme-
try axis. An interpretation in terms of object parts is
also presented.
1.3 Previous Work

Blum [4] first proposed to represent shapes by their
symmetry and thickness [4]. Binford [3] is also a pio-
neer and bring the attention to generalized cylinders.
Other early work include [1][15]. Other work addresses
affine transformations [7] and [8], and direct 3D con-
siderations are given in [19]. Pizer et al. [5] have pro-
posed a computational model for object representation
via “cores”, or regions of high medialness in inten-
sity images [5]. Ogniewicz [16] has given an efficient
method based on Voronoi diagrams. Leymarie and
Levine [14] have used the grassfire transform (from the
psychology literature) which is a simplified description
of Siddiqi and Kimia’s work [22]. Siddiqi and Kimia’s
work has given an interesting mathematical formula-
tion based on the reaction-diffusion equation, where
the symmetry axis is obtained and described by the de-
velopment of the shocks (first,second,third, and fourth
order ones). They are motivated by their framework
for shape analysis via shock-diffusion equations [13].
Our view differs from them on trying to generate a
variational formulation for the problem, arguing that

we obtain more control over the criteria to seek the
representation (our approach goes beyond the sym-
metry axis representation and allows for regulariza-
tion of the solution against small changes in shape).
Moreover, it is important to our work that the result-
ing shape axis give a SA-tree, since our interest is to
perform a shape matching based on the tree structure.
In Zhu and Yuille’s work [26], a system is proposed to
recognize and represent flexible objects from their sil-
houettes. The silhouettes are derived from skeleton
extraction and part segmentation using a deformable
circle method. Their derivation of the skeleton is of
interest, though different from ours, it is not derived
from a variational model.

2 Variational Matching of Curves

We shall determine the shape axis of a curve by
finding a “good match” between the curve and its mir-
ror image. It is convenient to begin, however, with the
more general task of finding a “good match” between
a pair of curves in the plane.

Consider a pair of parameterized curves I' = {z(s) :
0<s<1}and T = {&(t) : 0 <t < 1}. By a
match between T and T' we mean a monotone corre-
spondence between the two curves, taking endpoints
to endpoints. A match can be represented in sev-
eral different ways. One representation uses the map
s+ t = t(s) such that z(s) corresponds to Z(t(s)). A
second uses the inverse map t — s = s(t), so Z(t) cor-
responds to z(s(t)). A third alternative has the advan-
tage of treating the two curves symmetrically: it spec-
ifies a pair of monotone functions s(o) and t(o), each
defined for 0 < o < 1, such that z(s(c)) corresponds
with #(¢t(c)). (The first two alternatives are special
cases, obtained by taking s(c) = o and t(o) =0 .)

To determine a “good match” we minimize an ap-
propriate variational problem. Concentrating for the
moment on our third, more symmetrical representa-
tion, the matching energy should have the form

1
/ Fla, 752,75, ¢') do, (1)
0

where 7 = zs/|zs| and ¥ = &/|%;| are the oriented
unit tangent vectors to I' and T’ at z(s) and ().
Our notation in (1) is somewhat abbreviated: the
integrand must evaluated at the appropriate point
x = z(s(o)), T = 7(s(0)), ..., s = ds/do, and
t' =dt/do.

Our framework imposes two structural conditions
on the matching energy density F. The first is the
symmetry condition

F(p,&q,mv,w) = F(q,m;p, & w,v),



which assures that the notion of “matching” is sym-
metric, i.e., the two curves I' and T" play equivalent
roles. The second is the scaling condition

F(p,& q,m; Av, \w) = AF(p, & ¢,m30,w)  for all A >0,
which makes the energy invariant under change-of-
variable in o:

/F(l‘,T;i‘,?;j—j,j—é) do
[t ) 2
:/F(x,T;i,%;Z—jZ—é,j—iZ—é) do
:/F(x,T;a?,%;Z—é,j—é) do.

This assures that the energy depends only on the
match, i.e., the correspondence between s = s(o)
and t = t(0), and not on the specific choice of maps
o s(o) and o — t(0).

We want our notion of “match” to be geometric,
so it is natural to require invariance under translation
and rotation:

F(p,&;¢,m;v,w)  depends on p,q only through p — ¢,

and
F(Rp, R¢; Rq, Rn;v,w) = F(p, & q,m50,w) ,

for every orientation-preserving rotation R. These as-
sure that applying the same rigid motion to I' and
I leaves the energy of their match unchanged. Invari-
ance under scaling is too much to ask, but it is natural
to ask that
F(Ap, & Ag,m;0,w) = g(N)F(p, & ¢,m;0,w) - for A >0,
for some function g(\). Thus scaling ' and T by a
common factor A changes the energy of match by a
known amount g(A).

These restrictions leave still considerable freedom.
The particular choice of F' should depend, of course,
on the type of match one seeks.

2.1 Similarity Criteria

Various similarity /symmetry criteria can be consid-
ered, e.g., co-circularity, parallelism, distance, region
homogeneity.

()

Figure 3: (a) The co-circularity criterion is equiv-
alent to mirror symmetry and can be expressed by
the relations (¢ —p)L({+n) and (¢—p)I[(€—n).
(b) The translation criteria can be expressed as &||n.
(c) It is known, from the Gestalt school, that paral-
lelism can be more salient than co-circularity.

Co-Circularity or Mirror Symmetry: We fo-
cus on mirror symmetry, i.e., co-circularity, and want
F(p, & q,m;v,w) to favor

(g—p)L(E+n) and (¢—p)I(§—n)

In other words F' favors co-circularity — the existence
of a circle passing through p and ¢ with tangents &
at p and n at ¢ (see Figure-3). It is also natural to
favor v = w, so that there are no stretchings, and to
favor p = ¢ so that elements are matched when they
are close. Two possible choices of F’s are

FO(p, & q,mo,w) =[(g—p) - (E+0)] (v +w) +
[(a=p) - (€= (v +w) +co — wllp— g

and

[(q —p) - (€v + nw)]”

F? Cq.m =
(p,&50,m5v, w) p—— +
2
[(q = p) - (Ev —nqu)*] L pmallo—wp
v4w v4w ’

where ¢ is a positive constant. We chose the latter
form, somewhat arbitrarily (from previous work ([2])),
for the examples in this paper.

In practice it is often convenient to use a less sym-
metric viewpoint, specifying the match by a corre-
spondence ¢t = t(s). This is equivalent to taking



o(s) = s, so the matching energy becomes

With F = F®) this amounts to

Eli(s)]
:/1{ [(2(s) = #(t(5))) - (7(s) + 7(t()t' ()]
0 1+t'(s)
N [(@(s) = #(#(5))) - (7(5) = 7(t(s))#' ()]
1+ t(s)
+ clo(s) - j(t(s))F% Lds,

2)
where 7(s) and 7(¢) are the unit tangent vectors at
z(s) and Z(t) respectively.

Translation: Other criteria may also be favorable,
and translation is one frequently interesting to be con-
sidered (see Figure-3(b)). For translative symmetry,
we have experimented with the following energy.

_ [y ls) = E(E )P -I7(s) — (1))t ()]
Eli(s) _/0 { 1+(s)
. L=t (s)P
+ela(s) = 2P0 } ds

2.2 Matching a Curve with Itself

We turn now to our real goal — determining the
self-similarity of a closed curve I'. Locally, our notion
of “good match” is the one introduced above. Glob-
ally, however, the situation is different because we now
permit discontinuities. The matches considered in this
section are only piecewise continuous and monotone.

To explain our new notion of “match” more pre-
cisely, consider a simple closed curve I' in the plane,
parameterized monotonically by z(s), 0 < s < 1, with
z(0) = z(1). Extending z(s) periodically, we may con-
sider it to be defined for all s € R, with z(s+1) = z(s).
Let T be “the same curve traced backwards,” param-
eterized by #(t) = z(1 —t) (see Figure-4). Notice that
Z is again defined for all ¢, periodic with period 1.

A match between I’ and T can be represented as a
binary function u(s,t):

[ 1 if z(s) corresponds to Z(t) = z(1 —t)
uls:t) = { 0 otherwise.

We visualize the match by plotting the points in the
s,t plane where u(s,t) =1 (see Figure-5).

s,t € (0,1) continuous Z(t) = z(1 — t)continuous

Figure 4: The contour I'(s) and its mirror version
['(t). 7(s) and 7(t) are unit tangent vectors.
SA-tree
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Figure 5: From left to right: The matching space
(s x t) and the solution graph (where u(s,t) = 1).
The dashed lines represent, mirror copies of the solid
ones, with respect to the line: ¢ = 1—s. A tree graph
is then obtained.

A®

There are some structural conditions every match
must satisfy. First, to respect the periodicity of x(s)
we require

(s, t) = p(s+1,t) = p(s,t+1) forall s,t.  (3)

Second, to make I and [ play equivalent roles we re-
quire that

x(s) corresponds with Z(t) = z(1 —t)
Z(t) = z(1 — t) corresponds with z(s).
This amounts to

p’(s)t) :,LL(].—t,]_—S); (4)

Thus, the plot of g must be symmetric about the
line t = 1 — s. Third, the correspondence must be
monotone and continuous except for finitely many
jumps, and aside from the jumps every point on I’
must have a unique correspondent on ['. In other



words, the plot of u, restricted to the unit square
[0,1] x [0.1], must consist of finitely many monotone
graphs; moreover it should cover each axis exactly
once (except for jumps) (see Figure-5).

Every match p determines a collection of proposed
shape axis, by the rule

u(s,t) =1 & x(s) corresponds to Z(t) = (1 —t)

z(s)+a(
2

= 1-t) belongs to a shape axis.

Where the plot of u is discontinuous, so is the associ-
ated shape axis. We call such discontinuities bifurca-
tions of the shape axis. Where the plot of u crosses
the line ¢t = 1 — s the points z(s) and z(1 — t) are
identical and the associated shape axis meets I'. We
call these points the leaves of the shape axis.

Of course, to detect the real symmetries of the fig-
ure we cannot use just any match — we must use a
good one. Each continuous portion of the match is
assigned an energy by the analysis of the last section.
The total energy is obtained by adding these contribu-
tions, then adjoining “jump energies” associated with
the discontinuities.

It is frequently convenient to view the plot of u as
the graph of a piecewise monotone function ¢(s). Then
(4) becomes the condition

t(1—s)=1-—1t(s).

In practice the curve T' is given discretely, as a
sequence of N points. The data determine z(s) at
s; = jAs with As = 1/N, and z(s) is determined at
other points by interpolation. A match ¢ = t(s) be-
tween a piece of I and a piece of I is determined by
specifying t(s;) for the relevant values of s;. Discretiz-
ing the functional introduced in (2) and including the
cost of the jumps, the discrete matching energy be-
comes:

Et(s)]
= > { [(2(5) — #(£(s))) - (T(5) + F(£(s))1' (5, As))]”
T As 1+ t'(s,As)
N [(w(s) = E(t(5))) - ((s) = F(t(s)F' (5, As))H]”
1+ t'(s,As)

+ cla(s) - f(t(s))ﬁ% jas

+ Z Jump Cost

jumps

where t'(s, As) = w. The last term is in-
terpreted as follows: at a jump, the values t(s+) =
lims_o t(s + d) and t(s—) = lims_o t(s — J) are dif-
ferent. The associated jump cost can be a function of
|t(s+) — t(s—)|. In practice we have used a constant
cost for jumps. Our “jumps” amount to the vertical
discontinuities one sees in the plot of u (see Figure-5).
There is no need to handle the horizontal jumps sepa-
rately because they are in one-to-one correspondence
with the vertical ones, on account of the symmetry

(4).
3 SA Solution and SA-tree Formation

To find the shape axis, we adopt the discretized
model (5) where we can list all possible solutions and
then are guaranteed to obtain the optimal solution.
The solution space is rather large because of all pos-
sible bifurcations. To reduce the complexity we have
considered using feature points, a small subset of all
contour points of I'. However, this is not critical to
our approach. Our approach is to first develop an al-
gorithm to represent the solution space as a solution
tree of which each path, from the root to a leaf, corre-
sponds to an SA solution. Then, we can take advan-
tage of the tree structure and apply a shortest path
(Dijkstra’s) algorithm.

Given a contour I' and a set of feature points
{ps,s =0, ...,n}, let S be the solution tree for finding
SA with possible bifurcations. Since any bifurcation in
an SA is caused by discontinuities of (s), this implies
that all possible SA (or correspondences) can be de-
rived as follows: during the process of matching I and
[, we always move continuously along I" in the s &
(increasing) direction but for I, we can make jump
back and forth to one of those feature points start-
ing an unmatched contour segment. In this way, we
can exploit all possible bifurcations and to construct
a complete solution tree.

3.1 Constructing a Shape-Axis Tree

We now show how to go from an SA solution to an
SA-tree and derive the object parts. The SA solution,
t(s), is a piecewise monotonic function. Let us refer
to each monotonic piece as a segment.

For each segment a square box is constructed with
one vertex (the bottom left one) being given by the
end point of the segment and the other opposite vertex
being given by its mirror version (see Figure-6). Note
that segments that reach the mirror line (£ = 1 — s)
will create a box of size zero, or to be more precise one
point size, the end point of the segment reaching the
mirror line. A tree, or box-tree, can then be created
according to the nesting parent-child relations among
all boxes.



Leaf nodes: The box leaves are the ones that have
one point size, the ones that correspond to end-points
reaching the mirror line. These are the leaf nodes, or
Leaf(T), where T represents the tree. Moreover, the
origin (s,t) = (0,0) is also in Leaf(T). This asymme-
try is artificial and can be be better understood when
reminded that the graph u(s,¢) = 1 is periodic (3).

Bifurcation nodes: Now we are left to construct
the bifurcation nodes of SA-tree T, represented by Bi-
furcation(T). For a non-leaf box, say B, we consider
all segments in the region between box B and all its
child boxes (e.g., the shaded region shown in Figure-
6). A bifurcation can then be formed by grouping the
vertex defining box B (end-point of a segment) with
the start-points of the segments in the region. The set
Bifurcation(T) can be derived by visiting every box in
the box-tree with the grouping criteria just described
(see Figures 6).

Object parts: We have now a language for defining
object parts, where two consecutive nodes of the tree
correspond to an object part. How much our defini-
tion can really describe object parts is still subject of
further investigation.

4 Results

Experimental results on SA and SA-tree detection
are shown in Figure-7.
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Figure 7: Examples of the SA and SA-tree finding.
The original contour and the SA detected with the
correspondence matching are shown in (c), (d), (g),

(h) and (i).

The automatically generated SA-trees

are shown in (e), (f), (j), (k) and (1). In (a) and (b),
we experiment the effects of boundary perturbation.
When the perturbation becomes significant, it will

form a part and lead to a bifurcation.




