
Copyright c© IEEE 7th International Conference on Computer Vision, Kerkyra, Greece, 1999.

Approximate Tree Matching and Shape Similarity

Tyng-Luh Liu
Institute of Information Science

Academia Sinica
Nankang, Taipei 115 Taiwan

liutyng@iis.sinica.edu.tw

Davi Geiger
Courant Institute of Mathematical Science

New York University
New York, NY 10012 USA
geiger@cs.nyu.edu

Abstract

We present a framework for 2D shape contour (silhou-
ette) comparison that can account for stretchings, occlu-
sions and region information. Topological changes due to
the original 3D scenarios and articulations are also ad-
dressed. To compare the degree of similarity between any
two shapes, our approach is to represent each shape con-
tour with a free tree structure derived from a shape axis
(SA) model, which we have recently proposed. We then use
a tree matching scheme to find the best approximate match
and the matching cost. To deal with articulations, stretch-
ings and occlusions, three local tree matching operations,
merge, cut, and merge-and-cut, are introduced to yield op-
timally approximate matches, which can accommodate not
only one-to-one but many-to-many mappings. The opti-
mization process gives guaranteed globally optimal match
efficiently. Experimental results on a variety of shape con-
tours are provided.

1 Introduction

Object shapes can deform due to changes in view-
ing condition, deformations, articulations and occlusions.
In order to compare two object shapes, i.e., to assign a
match/correspondence and to give a measure of similarity,
all these issues must be modeled and accounted for.

Methods to compare two shape contours based on eval-
uating global deformations [6] tend to be sensitive to oc-
clusion and fail to account for local deformations (such as
articulations).

A class of methods compares objects by deforming one
object into another and evaluating the amount of deforma-
tion applied in this process, including [7, 19]. Guaran-
teed methods, typically, use dynamic programming (time-
warping) to register two contours. These are all string (con-
tour) matching algorithms, e.g., [2, 5]. Problems with these
approaches are that they

1. do not account for region information and for symme-
tries (see Figure-1).

2. are sensitive to topological changes. Imagine com-
paring two flowers with a stem in different sides (see
Figure-4(b)(d)). Most approaches will consider these
as occlusions and need to pay for large penalties/costs
to match them, while the fact that the “occluded” parts
are similar though at different places.

3. have problems of efficiency, since the size of occlu-
sions can make these methods drastically slow.

Γ2 Γ1 Γ3

Γ2/SA Γ1/SA Γ3/SA

COST Γ1 Γ2 Γ3

Γ1 0 11.2607 18.874
Γ2 11.2607 0 17.8634
Γ3 18.874 17.8634 0

Figure 1. Γ2 and Γ3 are derived from Γ1 by dif-
ferent deformations (same amount of stretch-
ings but at different places). While most
of the local string deformation methods will
fail to distinguish the dissimilarity between
them, Γ2 is considered more similar to Γ1 by
our method.

Our goal is to develop a shape representation of objects
that yields similarity measures that can account for local de-
formations, symmetries, and region information. We follow
the view of comparing deformable objects by measuring the
amount of energy needed to locally deform one shape into
the other. Moreover, we attempt to provide a shape compar-
ison method that considers not only local deformations but
global shape symmetries.

We start with the representation of shapes and consider a
shape axis (SA) representation [9](see Figure-2). The SA of
a given shape contour is obtained through a self-similarity
variational framework; a unique shape axis tree (SA-tree),
where every pair of consecutive nodes (edge) corresponds
to an object substructure, can be constructed to encode the
contour data and its SA. Since the SA framework is varia-
tional, we also obtain a measure of how effective the SA-
tree representation is for a given shape, namely the value of
the minimal cost.

Each shape contour is represented by an SA-tree so that
the similarity between shapes can be evaluated via a tree
matching scheme. The cost of matching edges is the cost of
comparing two object parts (local deformations and region
information can be considered). A key issue is to structure
the set of possible correspondences, and perform an effi-
cient search for the best correspondence. We also require
a cost function to determine how local differences between
the shape contours should affect their perceived similarity.

In this paper we describe a tree matching scheme that
uses the neighboring topological structure among nodes and
is much more complicated than simple string matching al-
gorithms. Any two SA-trees are not required to have the
same number of nodes; thus we seek the best approximate
tree match between the two trees [14]. Pruning and merging
vertices can be applied in the process of matching. Such a
method has to address occlusions, that is, some subtrees of
an SA-tree may not be matched. It has to account for region
information and stretching, i.e., the comparison/matching
can not only be between tree structures, but has to consider
the region and contour segments associated with a particu-
lar edge of an SA-tree. It has to deal with articulations, e.g.,
the cost for the mismatch of angles (each angle is measured
by a pair of consecutive edges) should increase sub-linearly.
As we will show, the tree-matching shape comparison algo-
rithm is very efficient and it can be applied to, e.g., anima-
tion and on-line image (shape contour) database retrieval.

1.1 Previous Work

Siddiqi et al. [17] have proposed a shape matching
method based on a shock graph grammar where to match
two nodes in the shock trees, an affine transformation is
used to align two interpolated geometric curves. The ap-
proach is interesting but can not account for articulations

occurred with respect to each node’s geometric structure.
More recently, they have presented a new framework based
on finding maximal cliques of the association graphs to
match two trees [12]. The matching scheme works well
in matching hierarchical structures. However, it is limited
to finding only one-to-one correspondences, which may not
be suitable for flexible objects with articulations where an
object part may correspond to more than one nodes.

In Zhu and Yuille’s work [20], a FORMS system is pro-
posed to recognize and represent flexible objects from their
silhouettes. The silhouettes are derived from skeleton ex-
traction and part segmentation, using a deformable circle
method. To compare two objects, say hands, they first com-
pute each object’s skeleton then match each skeleton to a
model of hand where its skeleton is well-defined. In this
way, the skeleton of each object can be refined. A pair of
parts in the two objects are matched to each other if they
correspond to the same part in the model. This implies that
the shape comparison between two object is not done di-
rectly but via referencing an additional model.

Our method in shape similarity differs from theirs on
allowing many-to-many correspondences so an edge in an
SA-tree can be matched to a path consisting of more than
one edges in the other SA-tree (note that, for simplicity, we
only consider paths consisting of two consecutive edges).
Thus the mappings between nodes of two SA-trees are not
required to be one-to-one due to the merge, cut and merger-
cut operations. Also, to compute the cost of an edge-to-edge
or edge-to-path matching, we have used a local shape com-
parison model [2] that can account for articulations. This
is important that we can easily extend our approach to seg-
mentation for real images by combining this model with an
active contour tracker. Unlike the FORMS, in our system
no model is required when comparing two shapes to derive
the correspondences.

2 Shape Representation

We adopt the shape representation framework developed
in [9], leading to a unique SA-tree. The advantages over
other related representations [3, 10, 1, 4, 11, 13, 15, 16] are
that (i) we are not seeking a symmetry axis representation
but rather, a set of correspondences along the shape con-
tour structured in a tree graph, and (ii) we use a variational
approach to establish a measurement on how good the rep-
resentation of a contour shape is (see Figure-1).

2.1 Shape Axis Tree

Given a (shape) contour (e.g., Figure-2 (a)(b)(c)), we
can represent it as a parameterized curve: Γ = Γ(s) =
{x(s), s ∈ [0, 1)} where x(s) are the coordinates of the
contour points. To find the SA of contour Γ(s), we match

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 2. Shape axis model: shape contours and their shape axes and SA-trees. In an SA-tree, the
non-leaf vertices correspond to bifurcations in the shape axes.

Γ(s) to its own mirror version Γ̃ = Γ̃(t) = {x̃(t) =
x(1 − t), t ∈ (0, 1]} using the cost functional established
in [9]. Given a correspondence t(s) between Γ(s) and Γ̃(t),
the SA of contour Γ is defined as the set of middle points
between x(s) and x̃(t), i.e.,

xSA(s) =
x(s) + x̃(t(s))

2
=

x(s) + x(1− t(s))
2

.

Also following [9], we can construct a unique SA-tree
by grouping the discontinuities in the the correspondence
t(s). In Figure-2(d)(e)(f), the dashed lines are the optimal
correspondences t(s) and the shape axes are formed by con-
necting the middle points. The corresponding SA-trees are
shown in Figure-2 (g)(h)(i).

An SA-tree is a free tree (a connected, acyclic and undi-
rected graph) and there are two types of vertices in T . The
first type of vertices contains all the leaves and the second
includes those corresponding to bifurcations (non-leaf ver-
tices). Note that each edge of an SA-tree corresponds to a
pair of shape contour segments (see Figure-2).

3 Shape Similarity and Tree Matching

Our approach makes use of both the global and local in-
formation of shapes. The global symmetries are captured by
the SA-tree representation itself. The degree of deformation
of one shape into the other is then modeled by the cost of
approximately matching one SA-tree to the other one. An
approximate matching is necessary since viewing position,
occlusion and stretching may yield different SA-trees for
the same object shape.

By formulating the shape similarity problem as an ap-
proximate tree matching one, we need to investigate the fol-
lowing issues.

• Unlike the regular approximate tree pattern matching
[14], we want to find not only the node-to-node but
also the edge-to-edge/edge-to-path correspondences.
In our case, a node of an SA-tree conveys the topo-
logical structure of shape and an edge encodes the cor-
responding shape information.

• When modeling occlusions, we need to consider the
possible deletions or merges of subtree structures and
to estimate the penalties (or costs) for them.

• When modeling articulations and stretchings, we
should have a local shape comparison model to evalu-
ate the cost of edge-to-edge/edge-to-path matching so
that it can account for articulations. By an edge-to-
path matching, we mean a stretching matching over
the tree structures. Note that while the comparison is
fully structured by the SA-trees, the cost of comparing
edges is based on the actual shapes associated with the
edges. This cost includes shape bending and stretching
and possibly other region deformations.

The optimal approximate matching between two SA-
trees can be found efficiently with an A∗ algorithm. Our
focus is to illustrate that with only local tree matching op-
erations (to be defined later), the shape comparison method
can account for topological changes, articulations, deforma-
tions and occlusions.

We now first elaborate how to find the best approximate
matching then concentrate on how to formulate the local
tree matching operations.

3.1 SA-Tree Matching Algorithm

Conceptually, we can construct a solution tree where
each node represents an edge-to-edge or edge-to-path local
matching of two SA-trees, and every path, from the root to
a leaf, corresponds to a sequence of local matchings and a
possible solution/match. Our goal is to find the best match,
and this can be achieved by using an A∗-like algorithm to
locate the optimal path in the solution tree, i.e., the best ap-
proximate match. Though there are many different ways
to solve the approximate tree matching problems in poly-
nomial time [14], the A∗ approach has the advantage to be
easily extended to real image application.

To initialize the optimization process, we begin with set-
ting up a “virtual root” of a solution tree with cost 0. Then,

generate all the root’s children, i.e., the level-1 nodes, by
considering all possible edge-to-edge or edge-to-path local
matchings where each of them must contain a leaf. Add all
the level-1 nodes into a priority queue Q together with their
respective (local) matching costs. To grow the solution tree,
the current item in Q with the minimal key (cost) is located
and this min-item corresponds to some node in the solu-
tion tree. We then extend all of its possible child nodes and
again add them into Q, taking into account the existing lo-
cal matches from the root to this current min-node as well
as properties of local matching. The optimization process
stops when we first reach a leaf in the solution tree and the
optimal path can be recovered by tracing back to the root.

Note that although an edge-to-edge or edge-to-path local
matching may appear in many different paths in a solution
tree, its shape comparison cost is only computed once, that
is, we save the local shape comparison costs in a look-up
table. This guarantees that our method can efficiently locate
the best approximate matching.

3.2 Tree Matching Operations

We now explain how shape information is encoded into
an SA-tree structure and how local tree matching operations
are applied to deal with occlusions and stretchings. To illus-
trate, we use shape contours and SA-trees in Figure-3.

We denote the edge connecting vertices u2 and u5

as e(u2, u5) and the corresponding contour segments as
CT (u2, u5) (see Figure-3 (b)) where, in this example,
CT (u2, u5) = [ΓBC

1 , ΓCD
1] . Note that the order of con-

tour segments does matter and is always arranged in a
counter-clockwise manner. This implies CT (u2, u5) =
CT (u5, u2) = [ΓBC

1 , ΓCD
1].

Next we describe some useful rules/models that we have
adopted for matching two contours via tree structures.

1. To compare the similarity between two contour seg-
ments, we use the model established in [2] to compute
the cost, i.e., given two contour segments, say Γs (pa-
rameterized by s) and Γt (parameterized by t), the cost
of shape similarity comparison is

costS(Γs, Γt) = min
t(s)

costS(Γs, Γt, t(s))

= min
t(s)

∫
Γs

[
|kt t′−ks|2
|kt t′|+|ks| + λ |t′−1|2

t′+1

]
ds , (1)

where t′ = dt/ds and ks, kt are the curvatures at
Γs(s), Γt(t), respectively. The first term in the inte-
gral of (1) is the bending cost and the second is the
stretching cost. λ weights the relative contributions of
stretching and bending. A correspondence t(s) is con-
sidered optimal if it minimizes (1). It is known that the
above model can account for articulations.

2. Given two SA-trees, say T1 and T2, we say that
e(ui, uj) ∈ T1 is matched to e(vk, vl) ∈ T2

if node ui is mapped to node vk and node uj

is mapped to node vl. The cost is denoted as
cost(e(ui, uj), e(vk, vl)) and is computed from the
cost of comparing CT (ui, uj) with CT (vk, vl) , i.e.,

cost(e(ui, uj), e(vk, vl))
= costS(CT (ui, uj), CT (vk, vl)) .

For example, in Figure-3 (a)(b)(c)(d), the cost of
matching e(u5, u2) ∈ T1 to e(v4, v1) ∈ T2 is

costS(CT (u5, u2), CT (v4, v1))
= costS(ΓBC

1 , ΓAB
2) + costS(ΓCD

1 , ΓBC
2) .

3. We require a leaf in T1 can only be matched to a leaf in
T2 , and vice versa. This gives rise to the topological
similarity (this condition can be relaxed by allowing
“stretching” matchings described next).

4. Recall that an SA-tree is a free tree. When comparing
two SA-trees, they become rooted trees with respect to
each solution path. For instance, in Figure-3, u5 and v4

become the root of T1 and T2, respectively, along a so-
lution path starting with an initial local match between
e(u5, u2) and e(v4, v1).

The above rules are not sufficient for our application. We
need to incorporate tree matching operations that can cut
or merge the substructures of a tree to derive a good match
and account for deformations and occlusions. Thus we in-
troduce local “stretching matchings” allowing an edge to
be matched to a path of length 2. The notation p(u, v, w) is
used to denote a path of two edges, namely e(u, v) followed
by e(v, w) . There are three types of stretching matching in-
troduced in this work including merge, cut and merge-and-
cut. Altogether, they address the issues of stretchings and
occlusions directly.

Merge operation: The structure of SA-trees from a same
class of objects could be different due to movements and
stretchings (see Figure-3 (b)(d)). To model the scenario,
we design a “merge” operation (M -operation for abbrevi-
ation) that an edge, say e(v2, v1) can be matched to, say,
p(u3, u2, u1) through a merge between nodes u2 and u1

(Figure-3 (g)). The newly merged node will be denoted as
[u2u1] to indicate that node u1 is merged with u2 and all
child nodes of u1 become children of u2 . For each merge,
a penalty cost, denoted as costM , needs to be paid and it is
proportional to the product of total length of contour seg-
ments being merged and some positive real-valued function
of the difference of the neighboring configurations between
the merged node, [u2u1], and its matched node, v1 . More

C

A

B

D

E

F

G

u0

u1

u2

u3 u4

u5
u6

C

DB

A E

v0

v1

v2 v3

v4
v5

A

B

C

w0

w1

w2
w3

w4

w5

(a) Γ1 (b) T1 (c) Γ2 (d) T2 (e) Γ3 (f) T3

Merge

u1

u2

u3

v1

v2

p(u3, u2, u1)←→
M

e(v2, v1)

CUT

C E

A

B

G

F
A

C

B

D

u1

u2

u3 u4

v1

v2

p(u3, u2, u1)←→
C

e(v2, v1)

Γ1 Γ2

CUT

MERGE

u1

u2

u3 u4

v1

v2

p(u3, u2, u1)←→
MC

e(v2, v1)

(g) (h) (i)

Figure 3. (a)-(f) are human shape contours and their SA-trees. (g) An example of stretching match
via a merge operation (M -operation). (h) An example of stretching match via a cut operation
(C-operation) overlapped with its shape contour. (i) An example of stretching match via a merge-
and-cut (MC-operation).

specifically, the total cost of this match via an M -operation
is

cost(p(u3, [u2u1]), e(v2, v1))
= costS(CT (u3, u2), CT (v2, v1)) + costM ([u2u1], v1) ,

where

costM ([u2u1], v1)

= α×CT (u2, u1)
× (1 + |deg([u2u1])−deg(v1)|

max(deg([u2u1]),deg(v1))
) .

In most cases, the parameter α is set to 0.2. The no-
tation deg(u) is the number of adjacent nodes of u andCT (u2, u1)

 is the length of contour segments of
CT (u2, u1). In Figure-3 (g), we have deg([u2u1]) =
deg(v1) = 4. The penalty costM is defined in the way
that, after a merge, the less similar in the topological con-
figurations are, the more expensive costM is.

Cut operation: A “cut” operation (C-operation) is ap-
plied to a stretching match to remove extra subtree struc-
tures. This is especially useful in dealing with occlusions
while some part structures of an object are missing due to
changes of viewing direction.

In Figure-3 (h), p(u3, u2, u1) is matched to e(v2, v1) via
a “C-operation”. We use the notation u3û2u1 to indicate

that except e(u3, u2) and e(u2, u1), all edges (including
their subtrees) connecting to u2 are cut from the SA-tree.
Similar to the merge case, we need to estimate the penalty
cost, costC , for a C-operation.

cost(p(u3, û2, u1), e(v2, v1))
= costS(CT (u3, u2) ∪CT (u2, u1), CT (v2, v1))

+costC(u3û2u1) ,

where

costS(CT (u3, u2) ∪ CT (u2, u1), CT (v2, v1))
= costS(ΓAB

1 ∪ ΓBC
1 , ΓAB

2) + costS(ΓCD
1 ∪ ΓFG

1 , ΓBC
2)

and

costC(u3û2u1)
= β × (

CT (u2, u4)
 + Gap(e(u3, u2), e(u2, u1))) .

Gap(e(u3, u2), e(u2, u1)) is the length of total gaps be-
tween CT (u3, u2) and CT (u2, u1) and it is equal to the
distance between point D and F in contour Γ1 of Figure-
3 (h). Again, β is a parameter to be adjusted and we have
used β = 0.2 . Note that a C-operation is not just deleting
some subtrees form a contour but also creating a gap (see
Figure-4 (g) and Figure-5(e)). Thus, both factors should be
considered in formulating a reasonable costC .

Merge-and-Cut operation: A merge-and-cut (MC-
operation) is a combination of M -operation and C-
operation as shown in Figure-3 (i). Therefore, the cost of
a stretching match with an MC-operation is

cost(p(u3, [û2u1)]), e(v2, v1))
= costS(CT (u3, u2), CT (v2, v1)) + costMC(u3[û2u1]) ,

where

costMC(u3[û2u1]) = costM ([u2u1], v1)+costC(u3û2u1) .

4 Examples and Discussion

Some of the experimental results are shown in Figure-
4 and 5. In each example, we show the best approximate
match between the two contours and the comparison cost.
The quadruple includes the sizes of contours associated
with the two SA-trees and the sizes of omitted contour seg-
ments of the best match due to cuts or merges. It takes less
than one minute to complete a shape comparison task on a
Pentium-II PC, if the SA structures are given.

We have developed a tree matching framework combin-
ing local and global approach for shape comparison based
on a shape axis model. The issues of occlusions and ar-
ticulations are handled by formulating the comparison task
as an approximate tree matching problem. We use A∗ al-
gorithm to find the comparison cost and best matching be-
tween a pair of contours. Our method can be extended to
real images because (1) the region information can be used
in modeling the tree matching operations, and (2) the A ∗

scheme is easier to be combined with a tree structure-wise
grouping process.

Acknowledgments

T-L. Liu is supported in part by the Institute of Infor-
mation Science, Academia Sinica of Taiwan. D. Geiger is
supported in part by an NSF career award grant.

References

[1] H. Asada and M. Brady. The Curvature Primal Sketch. IEEE
PAMI, Vol. 5, pp. 2–14, 1983.

[2] B. Basri, L. Costa, D. Geiger, and D. Jacobs. Determine
Shape Similarity. IEEE workshop in Physics Based Vision,
Boston, June 1995.

[3] H. Blum. Biological Shape and Visual Science. J. of Theoret-
ical Biology, 38:205-287, 1973.

[4] C.A. Burbeck and S.M. Pizer. Object Representation by
Cores: Identifying and Representing Primitive Spatial Re-
gions. Vision Research, Vol. 35, pp. 1917-19301995.

[5] Y. Gdalyahu and D. Weinshall. Measures for Silhouettes Re-
semblance and Representative Silhouettes of Curved Objects.
4th ECCV, Cambridge, UK, April 1996.

[6] D. Huttenlocher, G. Klanderman, and W. Rucklidge. Com-
paring Images Using the Hausdorff Distance. IEEE PAMI,
15(9):850-863, 1993.

[7] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
Contour Models. Int. J. Comput. Vision 1(4):321-331, 1998.

[8] K. Kupeev and H. Wolfson. On Shape Similarity. Proceedings
Int. Conf. on Pattern Recognition, pp. 227-237, 1994.

[9] T-L. Liu, D. Geiger and R. V. Kohn. Representation and Self-
Similarity of Shapes. ICCV, pp. 1129-1135, Bombay, India,
1998.

[10] R. Nevatia and T. O. Binford. Description and Recognition
of Curved Objects. Artificial Intelligence, Vol. 8, pp. 77–98,
1977.

[11] R. Ogniewicz. Discrete Voronoi Skeletons. Hartung-Gorre,
1993.

[12] M. Pelillo, K. Siddiqi and S. W. Zucker. Matching Hierar-
chical Structures Using Association Graphs. ECCV, Freiburg,
Germany, 1998.

[13] W. Richards and D. D. Hoffman. Codon Constraints on
Closed 2D Shapes. CVGIP, 31(2):156-177, 1985.

[14] D. Shasha, J. Wang and K. Zhang. Exact and Approximate
Algorithm for Unordered Tree Matching. IEEE Trans. Sys-
tems, Man, and Cybernetics, 24(4), pp. 668-678, 1994.

[15] K. Siddiqi and B. B. Kimia. Parts of Visual Form: Compu-
tational Aspects. IEEE PAMI, Vol. 17, No. 3, pp. 239-251,
March, 1995.

[16] K. Siddiqi and B.B. Kimia. A Shock Grammar for Recogni-
tion. CVPR, pp. 507-513, S. Francisco, 1996.

[17] K. Siddiqi, A. Shokoufandeh, S. Dickinson and S.Zucker.
Shock Graphs and Shape Matching. ICCV, Bombay, India,
1998.

[18] D. Terzopolous, A. Witkin,A. and. M. Kass. Symmetry-
seeking models and 3D object recovery. Int. J. Comput. Vi-
sion, 1, pp. 211-221, 1987.

[19] S. Ullman. Aligning Pictorial Descriptions: An Approach to
Object Recognition. Cognition, 32(3):193-254, 1989.

[20] S. C. Zhu and A. L. Yuille. FORMS: a Flexible Object
Recognition and Modeling System. ICCV, Boston, 1995.

(a) F1 (412) (b) F2 (601) (c) F3 (601) (d) F4 (613)

(e) Cost: 25.2766 (601, 613, 0, 0) (exact matching)

(f) Cost: 43.3587 (601, 601, 0, 52) (merge)

(g) Cost: 63.561 (422, 601, 0, 277) (cut)

Figure 4. (a), (b), (c) and (d) are examples
of flower-shape contours and the numbers
in the parentheses are their sizes. The de-
gree of similarity is measured by the cost of
best match while the quadruple includes the
sizes of contours and the sizes of omitted
contour segments of the best match due to
cuts or merges. Example (e) is to demon-
strate that our method is not a sequential
one. The optimal match in (f) is derived with
an M -operation between the two branches of
F2. The size of contour segments omitted,
due to the merge, is 52. In (g), a C-operation
to remove the two branches (total size is 277)
is required to obtain a good matching.

(a) Cost: 70.6646 (668, 714, 0, 0) (exact matching)

(b) Cost: 75.7528 (738, 711, 0, 0) (exact matching)

(c) Cost: 78.5166 (714, 738, 0, 0) (exact matching)

(d) Cost: 112.913 (501, 738, 0, 211) (cut)

(e) Cost: 109.784 (739, 477, 299, 0) (cut)

Figure 5. Results (a), (b) and (c) are ex-
amples that the SA-tree shape comparison
method can account for articulations and
global shape information. To handle occlu-
sions is also straightforward as shown in (c)
and (d) with a C-operation.

