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Abstract

We describe a generalized shape-axis (SA) model for
representing both open and closed planar curves. The SA
model is an effective way to represent shapes by compar-
ing their self-similarities. Given a 2D shape, whether it
is closed or open, we use two different parameterizations
(one parameterization is oriented clockwise and the other
counterclockwise) for the curve. To study the self-similarity,
the two parameterizations are matched to each other via a
variational framework, where the self-similarity criterion is
to be defined depending on the class of shapes and human
perception factors. Useful self-similarity criteria include
symmetry, parallelism and convexity, and so forth. A match
is allowed to have discontinuities, and the optimal match
can be computed by a dynamic programming algorithm in
O(N4) time, where N is the size of the shape. We use a
grouping process for the shape axis to construct a unique
SA-tree, however, when a planar shape is open, it is possible
to derive an SA-forest. The generalized SA model provides a
compact and informative way for 2D shape representation.

1 Introduction

An effective and compact shape representation system is
a critical element for various computer vision application
and consequently, the subject has been studied extensively
[3, 4, 11, 14, 15, 2, 6, 12, 16, 17, 20, 9, 19, 21, 8].

If shapes are represented with global descriptors, then lo-
cal deformations can not be escribed so articulated objects
tend to be dissimilar since these deformations may change
the global appearance of objects considerably while the en-
tire deformation is concentrated on specific points. Alterna-
tively, if shapes are described by local boundary descriptors
[2], then they do not account for region information, object
parts, and global properties such as symmetries.

A good representation system of shapes should not be
sensitive to small changes of appearance; otherwise similar
objects of a same class will be represented very differently.

The shape-axis model [9] is a variational framework for
2D closed shapes/curves (see Figure 1) and is considered to
be (i) complete, i.e., all the object information is stored in
the representation, (ii) simple and compact, that is, redun-
dancies are removed by capturing symmetries, region infor-
mation, articulations (local deformations), and dividing the
object into “object parts” with as few parts as needed for
any level of specified details, (iii) stable, i.e., robust under
small variations of the shape (including noise variations and
articulations) and (iv) easily computable, i.e., easy to find its
representation and to manipulate with it.
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Figure 1. (a) Two shape contours extracted
from real images. (b) Matching correspon-
dences and shape axes. (c) SA-trees.

Our goal is to extend the shape-axis model so it can be
applied to both open and closed planar shapes. Compared to
other recent related work [17, 19, 20, 21], such extension is
significant and is the first shape representation model to be
capable of dealing with open shapes. After the shape axis
of a shape contour has been recovered, a grouping process
based on analyzing the discontinuities of a shape axis can be
carried out to construct the unique SA-tree [9]. In case that a
planar curve is open it is possible to derive an SA-forest (see
Figure 4(c)). With the SA-tree/forest structure, comparing
shapes with deformations, articulations and occlusions can
be formulated as solving a tree matching process [8].



Previous Work Blum first proposed to describe shapes
by their symmetry and thickness [4]. Binford [3] is also a
pioneer and brought the attention to generalized cylinders.
Other early work includes [1, 11]. Pizer et al. have pre-
sented a computational model for object representation via
“cores”, or regions of high medialness in intensity images
[5]. Leymarie and Levine [10] have simulated the grass-
fire transform (from the psychology literature). Ogniewicz
[12] proposed an efficient Voronoi skeleton algorithm. Sid-
diqi and Kimia’s work [16] has an interesting mathematical
formulation, preserving the intuition of the grassfire idea.
It is a development of a reaction-diffusion equation where
the symmetry axis is obtained and described by the devel-
opment of shocks. It is motivated by the framework for
shape analysis via shock-diffusion equations [7]. Tari and
Shah [19] extended their level-set approach to shapes of ar-
bitrary dimensions. The FORMS by Zhu and Yuille [20]
was based on transforming shapes into skeleton graphs for
recognition. Recently, Zhu has proposed a stochastic jump-
diffusion process for computing medial axes [21]. Liu et al.
[9] have addressed the shape representation problem via a
variational approach, and it goes beyond the symmetry axis
representation. The resulting shape axis can be partially in-
side and partially outside a shape, and it has a unique SA-
tree structure which can be used for shape recognition [8].

2 Variational Matching of Planar Curves

Given a planar curve, two parameterizations, where one
is oriented counterclockwise and the other clockwise, can
be used to describe it (see Figure 2(a)). Let’s denote them
as Γ = {x(s) : 0 ≤ s ≤ 1} and Γ̃ = {x̃(t) : 0 ≤ t ≤ 1}.
We may think of Γ̃ as the mirror image of Γ since x̃(t) =
x(1−t), and when the curve is closed we have x(0) = x(1).

By a match between Γ and Γ̃ we mean a monotone corre-
spondence between the two parameterizations. To represent
a match we specify a pair of monotone functions s(σ) and
t(σ), each defined for 0 ≤ σ ≤ 1, such that x(s(σ)) cor-
responds with x̃(t(σ)). Notice that the end points are not
required to be mapped to end points in the other parameter-
ization. It is convenient to represent a match between Γ and
Γ̃ as a binary function µ(s, t):

µ(s, t) =
{

1, if x(s) corresponds to x̃(t) = x(1 − t),
0, otherwise.

The plot of µ is symmetric with respect to the mirror line
s + t = 1 since µ(s, t) = µ(1− t, 1− s). Therefore, it suf-
fices to consider only the lower triangular part of the (s× t)
matching space (see Figure 2(b)). The shape axis is defined
to be the loci of the midpoints of the correspondences, i.e.,

{
x(s) + x̃(t)

2
| µ(s, t) = 1

}
.
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Figure 2. (a) Two parameterizations of a
shape contour and its shape axis and SA-
tree.(b) The piecewise monotone and con-
tinuous correspondences, i.e., the solution
path µ(s, t) = 1 is plotted in the matching
space (s, t). Notice the jumps/discontinuities
in the match are grouped together to form the
degree-4 bifurcation node in the SA-tree.

To determine a “good match” we minimize an appropri-
ate variational problem with the matching energy of the fol-
lowing form

∫ 1

0

F (x, τ ; x̃, τ̃ ; s′, t′) dσ, (1)

where F is the energy density, and τ = xs/|xs| and τ̃ =
x̃t/|x̃t| are the oriented unit tangent vectors to Γ and Γ̃ at
x(s(σ)) and x̃(t(σ)), respectively. Following [9], we define
the energy/cost of a match as

E[t(σ), s(σ)]

=
∫ 1

0

{
F (x, τ ; x̃, τ̃ ; s′, t′) + θ(σ) · JumpCost

}
dσ

=
∫ 1

0

{ [(x(s) − x̃(t)) · (τ(s)s′(σ) + τ̃(t)t′(σ))]2

s′(σ) + t′(σ)

+

[
(x(s) − x̃(t)) · (τ(s)s′(σ) − τ̃ (t)t′(σ))⊥

]2

s′(σ) + t′(σ)

+ c |x(s) − x̃(t)|2 |s
′(σ) − t′(σ)|2
s′(σ) + t′(σ)

+ θ(σ) · JumpCost
}

dσ ,

(2)

where the penalty term θ(σ) · JumpCost is interpreted as
follows: at a jump, the values t(σ+) = limδ→0 t(σ + δ)



and t(σ−) = limδ→0 t(σ − δ) are different. The associated
jump cost can be a function of |t(σ+)− t(σ−)|. In practice
we have used a constant cost, JumpCost, for jumps. The
energy density F defined in (2) is to favor symmetry and
closeness so two points are more likely to match to each
other if the distance between them is not large and the cor-
responding tangents are symmetric. It can be shown that F
has several nice structural and geometric properties includ-
ing parameterization invariant under change-of-variable in
σ, translation invariant and rotation invariant.

3 Generalized Shape-Axis Algorithm

We describe a generalized shape-axis algorithm based on
dynamic programming for solving the variational matching
problem (2) for both open and closed planar curves. The
method does not put any restriction on the degree of a bi-
furcation in a shape axis so it can be applied to a variety of
complex planar shapes.

In practice a planar curve is given discretely, as a se-
quence of N + 1 points (if it is an open curve of N points,
we just copy the first point and append it to the end, that
is, x(sN ) = x(s0)). Then it is straightforward to derive a
discrete matching energy for equation (2)

E[t(σ), s(σ)]

≈ 1

N

N−1∑
k=0

(1 − θ(σk)) · F̂ (s(σk), t(σk), s(σk+1), t(σk+1))

+
∑
jumps

JumpCost , (3)

where

F̂ (s(σk), t(σk), s(σk+1), t(σk+1))

=
[(x(s(σk)) − x̃(t(σk))) · (τ(s(σk))s′(σk) + τ̃(t(σk))t′(σk))]2

s′(σk) + t′(σk)

+

[
(x(s(σk)) − x̃(t(σk))) · (τ(s(σk))s′(σk) − τ̃(t(σk))t′(σk))⊥

]2

s′(σk) + t′(σk)

+ c|x(s(σk)) − x̃(t(σk))|2 |s
′(σk) − t′(σk)|2
s′(σk) + t′(σk)

, (4)

s′(σk) = s(σk+1)−s(σk)
N and t′(σk) = t(σk+1)−t(σk)

N . The
indicator function θ(σk) is defined to be 1 at σk if a jump
occurred and 0 otherwise.

Our task now is to search in {si × tj ; i, j = 0, 1, ..., N}
for an optimal solution path {µ∗

ij = µ∗(si, tj) = 1 | i, j =
0, ..., N} that yields the minimum energy of (3).

3.1 Dynamic Programming

As stated before, due to the mirror property of µ we
shall focus only on the lower triangular part of the dia-
gram {si × tj}. Any possible match, including the optimal

one, can be obtained by searching and scanning downward
along diagonal lines, 45 degrees, starting from the mirror
line t = 1−s (or j = N − i for the discrete form). Each di-
agonal line can be indexed by l that varies over {0, 1, ..., N}
and represented as t = l

N − s. So, l = N corresponds to
the mirror line and l = 0 corresponds to the origin (s0, t0)
(see Figure 3). For convenience, we switch from the repre-
sentation of matching points (i, j) → (si, tj) (or µij = 1)
to the representation [i, l] → (si,

l
N − si) (or µil = 1).

Dynamic programming sets an initial cost along the mir-
ror line l = N and iterates on l = N − 2, ..., 0 (note
that l = N − 1 does not need to be considered since it
will cause a path to reach the mirror line at a non-lattice
point, i.e., we can simply set the costs to infinity at the line
l = N − 1). Along each diagonal line l it visits every
(si,

l
N − si), i = 0, ..., l , solving the subproblem “What

is the cost of the best path passing through (si,
l
N − si)?”.
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Figure 3. The subproblem being solved is
(si,

a
N − si), i.e., to find Cost[i, a]. The candi-

date predecessors can either come from DS

to form a smooth transition or from DJ to
form a bifurcation where the grey areas rep-
resent subproblems that have been solved.
Notice that for the bifurcation case, we only
need to search the domain DJ since for each
[i, b] ∈ DJ the third point, [N − b + i, N − b + a],
will be automatically determined.

We use the matrix Cost[i, l] to store the best cost of each
subproblem at (si,

l
N − si). With this representation, the

second index gives the index l of the diagonal line and the
first index fixes the position on the diagonal line l. A sketch
of the algorithm is as follows.

1. Initialization: Initially, all Cost[i, l]’s are set to ∞ ex-
cept those on the mirror line. The mirror line represents
“self matches”, i.e., matches between points along the shape
contour with themselves. Most often they occur at points of
locally maximum/minimum curvature. Thus, one could in-
stead of setting



Cost[i, N ] = 0 , for i = 0, ..., N ,

put a bias for points along the contour that their curvatures
are local maxima/minima, that is, raise the costs for the
other points.

2. Iterations on l: Suppose we have solved the subprob-
lems up to line l = a + 1, i.e., Cost[i, l], i = 0, 1, ..., l and
l = N, N−1, ..., a+1, are computed. Then, Cost[i, a], i =
0, ..., a of diagonal line l = a can be derived by

Cost[i, a] = min
{

GS [i, a], GJ [i, a]
}

, (5)

where

GS [i, a]

= min
[j,b]∈DS [i,a]

{
F̂ (si, ta−i, sj , tb−j) + Cost[j, b]

}
,

(6)

GJ [i, a]

= min
[i,b]∈DJ [i,a]

{
Cost[i, b] + Cost[N − b + i, N − b + a]

+ [(3 − 2 × J [i, b] − 2 × J [N − b + i, N − b + a])

× JumpCost]
}

, (7)

and

J [i, a] =
{

1, if Cost[i, a] = GJ [i, a],
0, if Cost[i, a] = GS [i, a],

DS [i, a] = {[i + 1, d] : a + 1 < d <= N}
∪{[i + k, a + 1 + k] : 0 < k < N − a} ,

DJ [i, a] = {[i, d] : a + 1 < d < N − 1} .

The notation GJ represents the cost of grouping the two
branches to be part of a bifurcation (due to jumps) and GS

represents the cost of having the predecessor in a smooth
path (continuation). DS and DJ are the domains where dy-
namic programming searches for possible predecessors to
form a smooth path or a bifurcation, respectively (see Fig-
ure 3). The binary matrix J [i, a] defined above is to guar-
antee that each (vertical) jump is penalized only once, and
the penalty term in (7) makes sure a degree n bifurcation to
be charged JumpCost exactly n times.

To backtrack the optimal solution, the algorithm also
keeps the predecessors

Back[i, a] =




{[j∗, b∗]}, if Cost[i, a] = GS [i, a],

{[i, b∗], [N − b∗ + i, N − b∗ + a]},
if Cost[i, a] = GJ [i, a].

(8)

3. Optimal solution and backtracking: In the end this
iterative process, from l = N to l = 0, will provide
Cost[0, 0], the total cost of the optimal match. The final
stage, l = 0, requires special attention when the contour
is closed and [0, 0] has two “continuous” predecessors, say
J [0, b] = J [N − b, N − b] = 0. Then unlike the usual
“jump” case, it does not imply a bifurcation, due to the pe-
riodicity of a closed curve, and in this case the origin does
not represent any match, but only the end of the algorithm.

To construct the corresponding SA-tree, we start at the
origin [0, 0], and the value Back[i, a] will take at each step
to the predecessor(s). It is either only one predecessor or
two, depending on if it is a continuation or a bifurcation.
When there is one predecessor it continues accumulating
(retrieving) the segment path. When it gives two predeces-
sors we can group them together and argue it has reached
a bifurcation node of the tree. To complete a bifurcation
node, backtracking should be applied to each of the two
predecessors in parallel, and each process is again carried
out recursively until reaching a point with only one prede-
cessor. Then all the points visited will be grouped together
to complete the bifurcation node, and the backtracking pro-
cess starting again from each of them.

Complexity: There are O(N 2) subproblems to be solved
(evaluating Cost[i, l] for i = 0, ..., l and l = N − 1, ..., 0),
and the complexity of each subproblem is O(N 2) (the size
of total searching spaces DS and DJ is O(N) and the com-
plexity of F̂ (si, ta−i, sk, td−k) is also O(N), assuming uni-
form matching). Therefore, the complexity of this algo-
rithm is O(N 4).

4 Experimental Results and Conclusion

We have proposed a generalized shape-axis model based
on dynamic programming for planar shape representation.
The approach generalizes the variational framework pre-
sented in [9], and can be used for both open and closed
planar shape contours. The shape axis obtained can be inter-
preted as the optimal solution to a well-defined variational
matching problem. This is also where the power of the ap-
proach relies, where by changing the optimality criterion
we can obtain different representations. Worth noticing that
(i) the number of branches in a bifurcation is allowed to be
arbitrary, thus data driven and (ii) the shape-axis solution is
rather stable against small perturbations on the boundary of
a planar shape. A set of experimental results are provided
in Figure 4.
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Figure 4. (a), (b) Experimental results for
closed and open shapes. (c) Examples of
SA-forests for open shapes.


