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Abstract

We describe a probabilistic framework based on trust-
region method to track rigid or non-rigid objects with au-
tomatic optimal scale and orientation selection. The ap-
proach uses a flexible probability model to represent an ob-
ject by its salient features such as color or intensity gra-
dient. Depending on the weighting scheme, features will
contribute to the distribution differently according to their
positions. We adopt a bivariate normal as the weighting
function that only features within the induced covariance
ellipse are considered. Notice that characterizing an object
by a covariance ellipse makes it easier to define its orienta-
tion and scale. To perform tracking, a trust-region scheme
is carried out for each image frame to detect a distribu-
tion similar to the target’s accounting for the translation,
scale, and orientation factors simultaneously. Unlike other
previous work, the optimization process is executed over a
continuous space. Consequently, our method is more robust
and accurate as demonstrated in the experimental results.

1. Introduction

We aim to develop a general framework for tracking ob-
jects in real-time with optimal scale and orientation selec-
tion. Our contribution is to establish a trust-region tracker to
accomplish the task in the context of probabilistic tracking.

Visual tracking is an important area of research in com-
puter vision. There are trackers that are devised to track
contours by the presence of locally detected edges. Is-
ard and Blake introduced CONDENSATION/ICONDENSATION

algorithms to track curves in clutter via stochastic analy-
sis and factor/importance sampling [7], [8]. Their meth-
ods are superior to previous Kalman filter based approaches
due to the use of multimodal density. As an alternative to
CONDENSATION-based contour tracking techniques, Freed-
man and Brandstein [5], [6] formulated contour tracking
problems as optimization problems. Without assuming a
dynamical model, the subset of contour space has to be

learned in advance. The tracker then utilizes learned in-
formation to find the correct contours among all observa-
tions. In [9], Toyama and Blake presented a probabilistic
exemplar-based approach for visual tracking. They pro-
posed a metric mixture model to combine exemplars in a
metric space with a probabilistic treatment.

In [2], Bradski proposed a CAMSHIFT system for use
in a perceptual user interface to track face. The method is
based on non-parametric technique and mean shift to find
the peak mode of a color probability distribution. Comani-
ciu et al. [3] apply mean shift analysis to real-time tracking
for non-rigid objects. They measured the similarities be-
tween objects using a Bhattacharyya coefficient. Birchfield
has proposed an algorithm for head tracking by modeling it
as a vertical ellipse with a fixed aspect ratio [1].

Wu and Huang [10] have formulated a non-stationary
color tracking problem as a transductive learning problem
of training color classifiers. A discriminant-EM algorithm
was used to transduce color classifiers and to select a good
color space. More recently, they proposed a co-inference
approach based on the idea that the process of inference in
a higher dimensional state space can be factorized into the
process of inference in lower dimensional state spaces in
an iterative fashion [11]. A sequential Monte Carlo tech-
nique was applied to approximate the co-inference process
between the shape and color models.

Our approach relies on probabilistic distributions to char-
acterize rigid or non-rigid objects by their salient features.
Since the focus is to track objects with automatic scale and
orientation selection, a covariance ellipse model based on
bivariate normal distribution is used for the representation.
Therefore, to track an object is equivalent to find a similar
feature distribution accounting for the factors of translation,
rotation and possible non-uniform scaling along the princi-
pal axes of the ellipse. Unlike other previous work, e.g., [1],
[3], where the scale and orientation are limited only to some
pre-determined values, we formulate a trust-region tracker
to derive an optimal solution. The implication is that by do-
ing the optimization in a continuous and well-scaled space,
we are able to derive better tracking performances.



2. Trust-Region Methods with Scaled Norm

2.1. Trust-Region Algorithm

A trust-region method solves an optimization problem
iteratively. Its concept can be better understood by consid-
ering a typical unconstrained optimization problem,

min
x∈V

f(x) , (1)

where V is a vector space, and f is some objective function
to be minimized. Unlike line-search based algorithms, e.g.,
the steepest descent, where at each iterative step the gradient
descent direction is the only consideration for finding the
next iterate to reduce the value of objective function further.
Instead, a trust-region method chooses a more intelligent
approach by first constructing a model m to approximate f
in a region containing the current iterate, then computing a
model minimizer in the region to determine the next iterate.

Essentially, there are three elements of any trust-region
methods: (i) trust-region radius, to determine the size of
a trust region, (ii) trust-region subproblem, to approximate
a minimizer in the region, and (iii) trust-region fidelity, to
evaluate the accuracy of an approximating solution. To
illustrate, suppose an initial guess x0 and an initial trust-
region radius �0 > 0 are given. Let η1 and η2 be some
constants satisfying 0 < η1 ≤ η2 < 1. For each iteration
k ≥ 0, we first define an iteration-dependent norm ‖ · ‖k

and iteration-dependent inner product< ·, · >k by

‖s‖2
k =< s, s >k

def= < s,Mks > ,

where < ·, · > is the inner product, and Mk is an iteration-
dependent matrix. (We will discuss how to determine Mk

later.) Then, at iteration k with current iterate xk, and trust-
region radius �k, the following three steps are performed.

1. Trust-region subproblem: We first construct a model
mk to approximate f within the current trust region. In this
work, a quadratic model is used for the approximation, i.e.,

mk(xk + s) = mk(xk)+ < gk, s > +
1
2
< s, Hks > ,

where mk(xk) = f(xk), gk = ∇xf(xk), and Hk is the
Hessian of f at xk. For visual tracking with optimal scale
and orientation selection, we consider a 5-dimensional vec-
tor space V so thatHk = ∇xxmk(xk) is a 5-by-5 symmet-
ric matrix to approximate ∇xxf(xk). WhenHk �= 0, mk is
said to be a second-order model. A trust-region subproblem
is then to compute an sk, where ‖sk‖k ≤ �k, such that the
model mk is “sufficiently reduced”, that is,

min
‖s‖k≤�k

ψk(s) =< gk, s > +
1
2
< s, Hks > . (2)

2. Trust-region fidelity: After solving the subproblem,
the trial point xk + sk will be tested to see if it is a good
candidate for the next iterate. This is evaluated explicitly
by the following formula:

rk =
f(xk) − f(xk + sk)

mk(xk) −mk(xk + sk)
.

If rk ≥ η1, then the trial point is accepted, i.e., xk+1 =
xk + sk. Otherwise, xk+1 = xk. Since η1 is a small pos-
itive number, the above rule favors a trial point only when
the value of objective function f is also reduced. When mk

approximates f well and yields a large rk, the trust-region
radius will be expanded for the next iteration. On the other
hand, if rk is smaller than η1 or is negative, it suggests that
the objective function f is not well approximated by the
model function mk within the current trust region. There-
fore, the trust-region radius will be reduced to derive a more
appropriate subproblem for the next iteration.

3. Trust-region radius: The new trust-region radius can
be updated as follows.

∆k+1 ∈




max {α1‖sk‖k,∆k} if rk ≥ η2,

∆k if rk ∈ [η1, η2),
α2‖sk‖k if rk < η1,

where following [4] we have used η1 = 0.05, η2 = 0.9, and
α1 = 2.5, α2 = 0.25. The iterative optimization process
for (1) will be repeated until the sequence of iterates {xk}
converges.

2.2. Trust-Region Scaled Norm

When an objective function f(x) in (1) has variables
whose values are of different orders of magnitude, the op-
timization problem becomes rather tricky. To resolve such
dilemma, trust-region methods provide a convenient way to
re-scale the variables. The re-scaling will be done for each
iteration k with a nonsingular matrix Sk to make sure ev-
ery trust-region subproblem is solved in a reasonably scaled
space. In particular, we have used nonsingular diagonal ma-
trices to scale variables where the diagonal entries corre-
spond to typical values of the respective variables. It fol-
lows that the new variables, say x̃, in the scaled space are
derived by x̃ = S−1

k x . Clearly x̃ will be of comparable
scales after the re-scaling. Nevertheless, as proved in [4],
it is not necessary to reformulate a trust-region subprob-
lem using the new variables since re-scaling the variables
is equivalent to using an iteration-dependent scaled norm
defined by

‖s‖2
k =< s,Mks >=< s, S−T

k S−1
k s > , (3)

where Mk = S−T
k S−1

k is an iteration-dependent matrix.
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3. Tracking via Covariance Ellipses

Since our main interest is to track rigid or non-rigid ob-
jects using a non-stationary camera, it is convenient to use
color distributions to represent objects. Other image fea-
tures may also be useful. We have been working on combin-
ing the color and intensity gradient information for tracking,
and the results will be reported somewhere else. To begin
with, first divide the RGB color space into n bins, and then
define a bin assignment function b by pixel’s RGB value as
b : xi 	→ {1, . . . , n}, where xi is any pixel in an image.

3.1. Covariance Ellipse Representation

To model an object reasonably, a weighting scheme is re-
quired so that color features at different locations are treated
differently. We adopt a bivariate normal distribution to ac-
count for translation, scaling and rotation. It is defined by

φ(x,µ,Σ) =
1

2π|Σ|1/2
e−(x−µ)T Σ−1(x−µ)/2 ,

where x = (x1, x2)T , µ = (µ1, µ2)T is the mean vector,
and Σ is the covariance matrix. Let ρ = σ12/σ1σ2 and σ =
(σ1, σ2)T . When |ρ| < 1, the bivariate normal distribution
can be rewritten as

φ(x; ζ) =
1

2πσ1σ2

√
1 − ρ2

exp
{
−ε(x; ζ)

2

}
, (4)

where we have used ζ = (µ,σ, ρ)T to simplify the nota-
tion, and

ε(x; ζ) =

{
(x1−µ1)

2

σ2
1

− 2ρ (x1−µ1)(x2−µ2)
σ1σ2

+ (x2−µ2)2

σ2
2

}
1 − ρ2

.

Equation (4) implies lines of constant φ correspond to con-
stant exponents, i.e., ε(x; ζ) = constant. Each such equa-
tion represents an ellipse centering at µ. Among them,
there is a special one called covariance ellipse, ε(x; ζ) = 1,
where it will be used to compute the color distribution.

Let I0 be the first image frame and ζ0 = (µ0,σ0, ρ0)T .
Then, initially, a target centering at µ0 can be associated
with A(ζ0) = {x | ε(x; ζ0) ≤ 1}, the area enclosed by
the corresponding covariance ellipse. Furthermore, its color
probability distribution, denoted as p(u; ζ 0), is defined by

p(u; ζ0) =
1
Cp

∑
xi∈A(ζ0)

w(xi; ζ0)δ(b(xi) − u) ,

where δ is the Kronecker delta function and w is a weight
function derived from the bivariate normal distribution, i.e.,

w(xi; ζ0) = exp
{
−ε(xi; ζ0)

2

}
.

To make p(u; ζ0) a probability, we have the total weight
Cp =

∑
xi∈A(ζ0) w(xi; ζ0). The notation p(u; ζ0) will be

abbreviated into p(u) since ζ0 only describes the target’s
initial state. Analogously, during tracking, an image area
enclosed byA(ζ), its color probability distribution, denoted
as q(u; ζ), is

q(u; ζ) =
1
Cq

∑
xi∈A(ζ)

w(xi; ζ)δ(b(xi) − u) ,

where Cq is the total weight such that
∑n

u=1 q(u; ζ) = 1.

3.2. A Trust-Region Scheme for Tracking

With the representation, a tracking process for an arbi-
trary target can be characterized by an evolution dynamics
of a covariance ellipse, ε(x; ζ t) = 1. We simply denote the
process as ζ0 → ζ1 → ζ2 → · · · . For each image frame
It, a target is tracked by applying a trust-region method with
scaled norm to solve the following optimization problem,

min
ζ∈Ωt

f(ζ) =
n∑

u=1

p(u) log
p(u)
q(u; ζ)

+
λ

σ1σ2
, (5)

where λ is a parameter, and Ωt denotes the space consisting
of all the possible ζ’s for any combination of translation,
scale, and orientation. The objective function in Equation
(5) is indeed the familiar Kullback-Leibler distance plus a
regularization term to favor a larger region when there are
several “good” q(u; ζ)’s to be considered. The advantage
of such modification is most noticeable when tracking an
object of monotone color or of uniform pattern.

4. Experimental Results

We have presented a tracking framework using a scale-
norm trust-region method. Each target is modeled as a prob-
ability distribution within a covariance ellipse. To test our
algorithm, a variety of experiments have been carried out,
and the outcomes show that a trust-region tracker is very ef-
ficient and reliable. Three sets of results are provided (see
Figure 1). In each experiment, the RGB space is divided
into 16× 16 × 16 = 4096 bins, and the tracking frame rate
is above 30 fps on a Pentium-4 1.5GHz PC. The first two are
taken by a hand-held digital video camcorder, and the last
one by a pan/tilt/zoom camera. We show that our system
can track (i) an object with assorted changes in shape and
orientation, (ii) multiple objects with simple interactions,
and (iii) an object with automatic pan/tilt/zoom adjustment.
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(a) Hand 001 (b) Hand 405 (c) Hand 538 (d) Hand 630

(e) Tennis 001 (f) Tennis 141 (g) Tennis 156 (h) Tennis 222

(i) Face 001 (j) Face 043 (k) Face 396 (l) Face 397

Figure 1. (a)-(d) Hand sequence. The experiment demonstrates that the tracker can track a target
comfortably, and accounts for changes in target’s orientation, shape, and rapid motion along with
partial occlusion. (e)-(h) Tennis sequence. Overlapping occurs during the 150th frame to the 210th
frame, and one player is totally occluded at the 196th frame. The tracker continues to track the two
players correctly after the overlapping. (i)-(l) Face sequence. Our system can automatically adjust
the pan/tilt/zoom factors so that a target is tracked and displayed appropriately.
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