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Abstract

We address the problem of detecting objects/shapes with
large deformation and articulation in cluttered images. The
approach requires a shape prior that describes the approx-
imated outline and articulation property of a given model.
While dynamic programming is often used in solving shape
detection, our focus is on formulating a more effective en-
ergy function to evaluate the optimality of a matching be-
tween the shape prior and image features. For efficiency, the
detection via optimization is carried out over a non-uniform
elastic grid based on referencing the edge information. Ex-
perimental results are included to illustrate our method.

1. Introduction

Detecting objects (or shapes) with large deformation and
articulation is an important and difficult task in vision re-
search. While exploiting global non-rigid transformations
alone for finding similar counterparts of a given model in
image would be infeasible, the problem can often be alle-
viated with a proper object representation, and then reason-
ably solved via an effective solution grouping process.

The recent work of Felzenszwalb [5] provides a good
example that representing and detecting deformable shapes
are accomplished by coupling a triangulated polygon repre-
sentation with an elegant dynamic programming argument.
Motivated by his work [5], we propose a more general ap-
proach to represent and detect shapes withlarge articula-
tion and deformation. Specifically, the detection is carried
out by referencing a given shape prior, of which knowledge
about the flexibility of its part structures is specified, andby
examining image features over a non-uniform elastic grid,
where the solution is derived by energy minimization.

1.1. Previous work

A number of techniques for detecting deformable shapes
have been developed over the years, including the very
primitive work by Thompson [13], where he finds that two

similar but not identical shapes can often match each other
by a simple coordinate transformation. In [6], Fischler and
Elschlager use an energy function to describe the deforma-
tion and the quality of the mapping between two shapes. It
is a recognition-by-partsapproach that the spatial arrange-
ment of all parts is constrained bysprings. Grenander [9]
proposes the well-known pattern theory to describe com-
plex shapes. Jain et al. [10] integrate the ideas from sev-
eral previous works with their proposed deformable model
and probability function to establish a systematic approach
for shape detection. In addition, they use a coarse-to-fine
scheme to speed up the detection. The same acceleration
method is also adopted by Gavrilla and Philomin [7] to de-
tect objects in a real-time vision process. However, they use
multiple models to represent one deformable shape (with
possible articulation) such as a pedestrian. Thesnake(or
active contour model) introduced by Kass et al. [11] has
been very successful, especially for processing medical im-
ages. Cootes et al. [4] later extend it to anactive shape
model, where the shapes are deformed under constraints
learned from a training set. Zhao [14] has an interesting
result in human shape detection, but her method needs pre-
segmentations of images.

2. Shape Representation and Image Features

The most straightforward way to represent 2-D shapes
is to describe them by their bounding contours. However,
though such a representation has the advantages of com-
pactness and simplicity, it captures only the local character-
istics. On the other hand, representations designed to en-
code global properties of shapes may not be appropriate for
detecting shapes with large deformation and articulation,
since they would change the global appearances of shapes
considerably. In [1], Amit et al. propose to usegraphical
templatesanddynamic programmingfor elastic matching.
These graphical templates satisfy the definition of adecom-
posable graph, and thus have therunning intersection prop-
erty for a dynamic programming implementation. More re-
cently, Felzenszwalb [5] describes an efficient method to
represent and detect deformable shapes based on a triangu-
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Figure 1. (a) The triangulation of a polygon and its dual grap h. The numbers are an instance of
a perfect elimination order. (b) A triangulated polygon hum an shape model. (c) A flexible human
shape prior. (d) Uniform Cartesian grid (blue contours are e dges). (e) Non-uniform elastic grid.

lated polygon model and a dynamic programming scheme.
Since a triangulated polygon is also a decomposable graph–
these two approaches are indeed closely related.

2.1. Shape priors and articulation

Similar to Felzenszwalb’s work [5], we choose the tri-
angulation of a polygon as our shape model because a rep-
resentation of this kind combines the advantages of local
description and region information in depicting a shape.

To construct a model, we first segment the shape from a
silhouette. (Only 2-D shapes with no holes are considered.)
Then, we compute a polygon and its triangulation to ap-
proximate the outline of the resulting shape. Typically, the
number of vertices of a polygon needed for an adequate rep-
resentation is much fewer than the number of points of the
original shape [12]. In Figure 1b, it takes36 and8 vertices
to represent the human shape and each arm, respectively.

While the triangulated polygon is useful in detecting de-
formable shapes, it still can not handle those with articu-
lation. Nevertheless, the issue can be addressed properly
by embedding prior knowledge into the model. Again, us-
ing Figure 1b and 1c to illustrate, if we aim to detect hu-
man shapes with possible arm articulation, the deformation
penalty in the energy function (defined later) for those trian-
gles in the areas that articulation occurs could be lessened
to accommodate large changes. That is, these areas can be
considered flexible regions of the resultingshape prior.

2.2. Image features and elastic grid

For the sake of computational efficiency, we carry out
the detection task over a coarse grid of a testing image.

We apply the Canny edge detector [3] on an imageI
to derive a binary edge map, and then partition the edge

map into a Cartesian grid ofm′ lattice points, say, spaced
equally by a distancew. Then, at each lattice point, a cir-
cular region of radiusw/2 is considered: If there exist edge
points within the region, the lattice point will be replaced
by the nearest edge point. Otherwise, the lattice point will
be removed. We shall further assume that a final grid has
m lattice points, and denote this set of grid points asQ. In
Figure 1d, the original uniform Cartesian grid and the edges
(those blue contours) are plotted together. The derived non-
uniform elastic gridQ is shown in Figure 1e.

3. Detection via Energy Minimization

Each triangulated polygon implicitly defines a dual
graph that has theperfect vertex elimination scheme[8].
This fact implies that whenever a vertex is deleted from a
triangulation, exactly one triangle is eliminated and the re-
maining part is still a triangulation of somesimplifiedpoly-
gon (see Figure 1a). This is an important property that guar-
antees the feasibility of dynamic programming in solving
the problem.

Let P andT be a polygon and its (Delaunay) triangula-
tion for representing a given shape prior, respectively. To
account for articulation, we further divide the triangulation
by T = T1 ∪ T2, whereT2 contains those triangles located
at the regions of possible articulation. An indicator function
θ is defined to describe this classification, whereθ(t) = 1
if t ∈ T2, and0, otherwise. The problem to detect a sim-
ilar shape inI can now be reduced to finding anoptimal
mappingf : V → Q ⊆ I, whereV denotes the set of all
vertices of the polygonP . Then the mapping of the whole
polygon can be estimated by interpolation. In the follow-
ing, we formulate an energy function that would be used to
quantify the optimality of a candidate mappingf .



3.1. Energy function

In shape matching, a typical energy function often has
two terms: The first term is to measure thedeformationbe-
tween the correspondences induced by a mapping, and the
second is to measure thefitnessbetween the mapped fea-
tures and salient features in the image.

Deformation cost: For every trianglet ∈ T , we want
to estimate the cost induced by deformation betweent and
f(t) ∈ I. (We have somewhat abused the notation here, but
it is clear thatf(t) denotes the mapped triangle obtained by
interpolations between the mapped vertices.) Amit et al. [1]
have constructed a deformation cost between two triangles
by measuring sum of squared differences of thelog-ratios
for the corresponding lengths. In [5], thelog-anisotropy
cost is used for the same purpose. Since both criteria give
comparable detection results in our experiments, we will
simply denote them asCℓ. The Cℓ is scale-invariant in
evaluating the deformation cost betweent andf(t). How-
ever, it does not guarantee to yield a target shape satisfying
ti : f(ti) ≈ tj : f(tj), ∀ ti, tj ∈ T . We define below a
uniformity factorU to reinforce this constraint.

U(t, Tt,ℓ, Tt,r, f) =∏
s,s′∈{t,Tt,ℓ,Tt,r},s6=s′

max(A(f(s))/A(s),A(f(s′))/A(s′))
min(A(f(s))/A(s),A(f(s′))/A(s′)) ,

whereTt,ℓ andTt,r are the two subgraphs adjacent tot and
all the triangles in them should be eliminated beforet ac-
cording to the perfect elimination scheme (see Figure 1a).
A(s) is the area of the region, excluding those triangles in
T2, enclosed bys. Finally, the deformation costCD be-
tweent andf(t) is

CD(t, f) = θ(t)× U(t, Tt,ℓ, Tt,r, f)× Cℓ. (1)

Fitness cost: There are many different measures to evalu-
ate the fitness of a mappedf(t) and the image features. We
consider a typical normalized snake model:

Cs(f(u), f(v)) =
1

|f(u)f(v)|

∫ f(v)

f(u)

[
1

E(x)
+ β · k(x)] dx,

(2)
whereE(x) = 1 if pixel x is an edge point, and0.01 (a
rather small number relative to1), otherwise. Furthermore,
k(x) means the curvature atx, andβ is a parameter. Let the
three vertices of a trianglet beu, v, andw. Then the fitness
cost can be defined as follows.

CF (t, f) = C
′

s(f(u), f(v)) + C
′

s(f(v), f(w))

+ C
′

s(f(w), f(u)) ,
(3)

where C
′

s(f(u), f(v)) = Cs(f(u), f(v)) if (u, v) is an
edge of the polygonP , and0, otherwise.

With (1) and (3), we are ready to define the energy func-
tion C and the optimality off :

f∗ = argmin
f

C(f ; T ) =
∑
t∈T

COST (f, t), (4)

whereCOST (f, t) = CD(f, t) + λCF (f, t), andλ is a
parameter to balance the importance betweenCD andCF .
In passing, we note that other distance measures, such as
the Chamfer distance[2], may also be used for defining a
proper fitness function (see Figure 2m and 2n).

3.2. Detection through dynamic programming

The optimization problem (4) can be solved via dynamic
programming [1], [5]. We will follow the formulation de-
scribed in [5] to illustrate the solution grouping process.Let
{v1, v2, ..., vn} be vertices of the triangulationT indexed by
the perfect vertex elimination order. It follows that, at the
ith eliminating stage,vi is the vertex to be removed and be-
longs to exactly one triangle of the remaining triangulation.
Let vj andvk be the other two vertices of the same trian-
gle of vi, of which the two indices can be referenced from
two pre-defined functionsgj and gk, i.e., j = gj(i) and
k = gk(i). Then,vi must appears beforevj andvk in the
elimination order. Also,vi, vj , andvk are assumed to be po-
sitioned in a counter-clockwise manner. Form Algorithm 1,
it is clear thatV [j, k](q, r) records the optimal cost for map-
ping the polygon(s) formed by thei deleted triangles to a
subset ofQ, subject to the constraint thatf : vj , vk 7→ q, r.

Algorithm 1: Dynamic Programming [5]

for q, r ∈ Q ∧ (vi, vj) ∈ edge(P ) do
V [i, j](q, r) = 0

for i← 1 to n− 2 do
j ← gj(i)
k ← gk(i)
for q, r ∈ Q do1

V [j, k](q, r) = min
p∈Q

COST (i, j, k, p, q, r)
2

+V [i, j](p, q) + V [k, i](r, p)

Find q, r ∈ Q minimizingV [n− 1, n](q, r), and then
backtrack to get the mappings for all other vertices.

To reduced the computational complexity, in flag 1 of
Algorithm 1, we select only those position pairs(q, r) such
that0.8 · |vjvk| ≤ |qr| ≤ 1.2 · |vjvk| if vjvk is an edge of
some triangle fromT1. (|vjvk| is the length of the edge.)
Moreover, the best position ofp stated in flag 2 is predicted
by a similarity transformation, which mapsvj andvk to q
andr respectively, and the searching ofp is taken only in
the neighborhood of the estimated position. The two sim-
plifications reduce the time complexity toO(nm).
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Figure 2. Two shape priors, (a) and (b), are used to detect sha pes with articulation and deformation
in images of the upper and the lower row, respectively. The de tected shapes are plotted on top
of their original images and also over the edge maps so that it is easier to evaluate the quality
of solutions. Notice that the results in (m) and (n) are deriv ed by replacing the snake costwith
the Chamfer distancein the energy function. In this case, some vertices of the lef t elbow and the
connected forearm are mapped to unsatisfied positions.

4. Experimental Results and Discussions

For each testing image, we create a grid with a spacing
widthw = 6 pixels. The edge map is made by a Canny edge
detector using the default parameter settings in Matlab 6.5.
Once the non-uniform elastic grid is available, we could ini-
tiate the dynamic programming process to find the optimal
shape in the image. The values of the two parametersβ and
λ are set to0.255 = 0.001× 255 and0.51 = 0.002× 255,
respectively. We report several results for detecting shapes
with deformation and articulation in Figure 2. Notice that
all the experiments are with complex backgrounds, and the
detections are accomplished without any initialization. It
takes about 4 to 6 minutes on a P-4 2.53 GHz PC for run-
ning each experiment with image size around240 × 320
pixels. Overall, we have established an efficient method to
detect shapes with deformation and articulation. Our ex-
perimental results are satisfactory but can still be improved.
Encoding more global information into the representation
and formulating more effective energy function are the two
main directions for our future work.
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