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Abstract

We propose a color-based tracking framework that in-
fers alternately an object’s configuration and good color
features via particle filtering. The tracker adaptively se-
lects discriminative color features that well distinguishfore-
grounds from backgrounds. The effectiveness of a feature is
weighted by the Kullback-Leibler observation model, which
measures dissimilarities between the color histograms of
foregrounds and backgrounds. Experimental results show
that the probabilistic tracker with adaptive feature selection
is resilient to lighting changes and background distractions.

1 Introduction

Methods to track moving objects in a dynamic back-
ground mainly depend on two mechanisms: the appearance
model and the search algorithm. The appearance model
induces the similarity measurement of the target and can-
didates; the search algorithm finds the most possible state
of the object according to the similarity measurement. Is-
ard and Blake propose to track an object’s contour by the
CONDENSATION algorithm [6]. The contour is modeled by
control points, which should be located at edges or corners
during tracking. In their probabilistic formulation, the simi-
larity is estimated by the likelihood function—a conditional
distribution that yields the probability of observing the ob-
ject in an image frame under the predicted contour configu-
ration. Toyama and Blake [10] introduce an exemplar-based
probabilistic tracker that does not require parametric mod-
els but compares shapes in a metric space.

Most region-based tracking algorithms use texture or
color information as the appearance models. For example,
Jepson et al. apply the wavelet-based texture features to
represent objects [7]. As to the color information, it has
been demonstrated that color histograms are effective ob-
servation models for real-time visual tracking [1], [2], [4],
[8]. Generally, a color-based tracking algorithm relies on
some similarity functions, e.g. the Bhattacharyy coefficient,

to compare the color histograms of the target and the candi-
dates, and incorporates a deterministic [4] or a stochastic[8]
algorithm to search the state space efficiently. In this kindof
tracking framework, the color histograms are usually com-
puted under a fixed color space such as RGB or HSV during
the whole tracking process. Therefore, the features used to
construct the appearance model are fixed regardless of the
changes in circumstances for tracking.

While previous color-based tracking algorithms are quite
efficient, the lack of adaptation in color models leads to per-
formance deficiency in handling situations such as illumi-
nation changes or background distractions. Shi and Tomasi
[9] have pointed out that good features are as important as
good tracking algorithms. Similar arguments on the impor-
tance of features are also set out for object-detection prob-
lems, e.g. [11]. While testing a tracking algorithm, one can
easily observe how severely the performance may degrade
with inadequate features. Typically, bad features result in
an objective function with so many local minima that even
a versatile algorithm loses its track in the maze.

We address the problem of adaptive feature selection for
real-time tracking. Our goal is to select adaptively a com-
bination of appropriate color features while the tracking
process proceeds. A related work is proposed by Collins
and Liu [3]. They embed online feature selection into a
mean-shift tracker that estimates the translation of an object
using the most discriminative color features. The features
are selected from a set of parameter settings that resemble
different color spaces. Similar ideas on discriminating fore-
ground and background were suggested earlier by Wu and
Huang in [12], where transductive learning is used to clas-
sify color distributions in the form of Gaussian mixture.

Our contribution to adaptive feature tracking is that we
integrate feature selection and visual tracking in a unified
probabilistic framework consisting of particle filters. The
states of the features and the object’s configuration are in-
ferred iteratively in a Bayesian formulation. The experi-
mental results indicate that our method can adaptively se-
lect good features to prevent background distraction and to
accommodate illumination changes and rapid motion.



2 Particle Filtering for Tracking

The concept of applying particle filters to real-time ob-
ject tracking can be best captured by investigating the
CONDENSATION algorithm [6]. Owing to its simplicity, we
shall use the formulation of CONDENSATION to describe here-
after the steps of particle filtering. Further details on the
theoretical issues and applications of particle filters canbe
found in [5].

Essentially, the idea of filtering is to infer the marginal
posterior distribution of the stateXt, given previous ob-
servationsZ0:t. From the Bayes’ formula and the Markov
prior, we can derive a recursive form of the posterior

p(Xt|Z0:t) ∝ p(Zt|Xt)

∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Z0:t−1) .

(1)
The recursive form allows us to use the posterior at time

step t − 1 as the prior for time stept. A particle filter
approximates the posteriorp(Xt−1|Z0:t−1) by a finite set
{Xk

t−1}
K
k=1 of K particles; each particle is associated with

a weightπk
t−1 to form {Xk

t−1, π
k
t−1}

K
k=1. To carry out the

recursion of particle filtering, we still need two probabili-
tiesp(Zt|Xt) andp(Xt|Xt−1), which correspond to an ob-
servation model and a dynamic model respectively. We will
explain how we choose these two probabilities in the fol-
lowing sections. For now we just outline the steps in one
iteration of particle filtering:

1. Resample{Xk
t−1, π

k
t−1} into {X̃k

t−1, 1/K};

2. Predict by sampling fromXk
t ∼ p(Xt|Xt−1 = X̃k

t−1)
to generate{Xk

t , 1/K};

3. Measure and weight byπk
t ∝ p(Zt|Xt = Xk

t ) to gen-
erate{Xk

t , πk
t }, normalized so that

∑K

k=1 πk
t = 1.

Note that we will create two particle sets{Xk
t , πk

t }
K
k=1

and{Fm
t , ωm

t }
M
m=1 to estimate the states of object configu-

rations and color features based on the recursion.

3 Adaptive Feature Selection

In color-based tracking various features can be obtained
by manipulating the parameters of color spaces. We adopt
the assumption proposed in [3] to choose better color fea-
tures for tracking. Briefly, the most significant feature is the
one that best distinguishes the foreground object from the
background scene. Based on different features, we compute
the color histogram of foreground (background) region in
different color spaces. The effectiveness of a feature is thus
relevant to thedissimilaritybetween each pair of foreground
and background color histograms. We propose to measure

the dissimilarity of two histograms by the Kullback-Leibler
distance (the relative entropy).

To begin with, we have to define the foreground and
background regions for a target. We apply the center-
surround concept proposed in [3]. However, our approach
includes the spatial information to make the representa-
tion model more appropriate, by applying different spatial
weighting schemes. The foreground is the region inside a
bounding box that just encompasses the object; the back-
ground is the region, excluding the foreground, inside a
larger bounding box. The widths (heights) of foreground
and background bounding boxes are kept at the ratio of
1 : 2.2 for all the experiments presented in this paper. For
the foreground region, a 2D Gaussian is incorporated to give
the pixels closer to the center higher weights. As for the
background region, we use a reverse 2D Gaussian to give
the pixels that are farther from the center higher weights.

3.1 Feature selection via particle filtering

Assume now we know the stateXt = (xt, yt, wt, ht)
of the object’s configuration. Let the state of a feature be
denoted asFt = (αt, βt, γt). Then, given a pixelIt(u), we
can compute the inner product between its RGB values and
Ft, i.e., 〈It(u),Ft〉 = αtR + βtG + γtB. By uniformly
dividing the possible range of the inner products intoN =
128 bins, we can calculate the weighted histogramsq1

t and
q2
t inside the foreground and background regionsR1

t (Xt)
andR2

t (Xt) by

qi
t(n;Xt,Ft) =

Ci
t

∑

u∈Ri

t
(Xt)

gi(|u− xt|)δn,b(u;Ft) , i = 1, 2 , (2)

wheren is the bin index andxt = (xt, yt) denotes the cen-
ter of bounding box. Note thatq1

t andq2
t are weighted spa-

tially by the Gaussiang1(·) and the reverse Gaussiang2(·).
The mappingb(·) returns the histogram bin index based on
the quantization of〈It(u),Ft〉. The Kronecker delta helps
to add the Gaussian weights of pixels belonging to binn.
The normalization termCi

t ensures
∑N

n=1 qi
t(n) = 1.

We estimate the best feature by the recursion of parti-
cle filtering. At time stept − 1 we have the particle set
{Fm

t−1, ω
m
t−1}

M
m=1 that representsFt−1. Each particleFm

t−1

consists of a3-tuple (αm
t−1, β

m
t−1, γ

m
t−1). Recall that we

need to define the dynamic modelp(Ft|Ft−1) for particle
filtering. Here we use simple, unconstrained Brownian mo-
tion: Fm

t = F̃m
t−1 + v

m
t , wherev

m
t ∼ N (0, Σ). Each

new feature particleFm
t determines a pair of histograms

q1
t (n;Xt,Ft = Fm

t ) andq2
t (n;Xt,Ft = Fm

t ), and the ob-
servation model of feature state is then defined by

p(Zt|Ft = Fm
t ) ∝ 1− exp{−λKL(q1

t ‖q
2
t )} , (3)



where KL(q1
t ‖q

2
t ) =

∑N

n=1 q1
t log(q1

t /q2
t ) denotes the

Kullback-Leibler distance betweenq1
t andq2

t . Plugging in
all we need for the recursion, we obtain an update particle
set{(Fm

t , ωm
t )}Mm=1 for the next time step.

3.2 The likelihood images

Each feature particleFm
t is associated with a likeli-

hood image of the same size as current image frameIt.
We denote the likelihood image asLm

t ≡ Lm
t (It; F

m
t ).

Each pixelLm
t (u) in the likelihood image is computed

by first projecting〈It(u), Fm
t 〉 to get the bin indexn∗,

and then deriving the pixel value from the log-ratio
log(q1

t (n∗;Xt, F
m
t )/q2

t (n∗;Xt, F
m
t )). Combining all fea-

ture particles, we get a compound likelihood imageL̂t as

L̂t(It;Ft) =

M
∑

m=1

ωm
t Lm

t (It; F
m
t ) . (4)

Fig. 1 illustrates a cropped image frame and the corre-
sponding compound likelihood image.

(a) (b)

Figure 1. (a) A cropped image frame. (b) The
compound likelihood image of (a).

4 Color-Based Probabilistic Tracking

The color-based probabilistic tracking is performed
on compound likelihood images. Another particle filter
{Xk

t , πk
t }

K
k=1 is used to infer the current configuration state

of object. The observation model of a configurationXk
t =

(xk
t , yk

t , wk
t , hk

t ) is straightforward: According to the pre-
dicted configuration, we add together the pixel values inside
the foreground regionR1

t (X
k
t ) in the compound likelihood

image, then we map the sum by a logistic function to make
the observation model constrained in[0, 1]. In short, the
observationp(Zt|Xt) is approximated by

p(Zt|Xt = Xk
t ) ∝

(

1+exp
(

−A
∑

u∈R1

t
(Xk

t
)
L̂t(u)

)

)−1

.

(5)
As to dynamic models, we use a first-order autoregressive
process to model the state transition:Xk

t = X̃k
t−1 + Bw

k
t ,

wherewk
t is a vector drawn from a standard normal distri-

bution andB is a scaling matrix. Algorithm 1 summarizes
the iterative steps for feature selection and tracking.

Algorithm 1: Color Feature Tracking

Input : Image frames{It}Tt=0, object’s initial con-

figuration, the number of tracking particles

K, and the number of feature particlesM .

Initialization: Generate the tracking particles

{Xk
0 , πk

0}
K
k=1 and the feature particles

{Fm
1 , ωm

1 }
M
m=1; Sett← 1.

while t ≤ T do

1. Acquire a new image frameIt;

2. Construct the compound likelihood̂Lt =
∑M

m=1 ωm
t Lm

t (It; F
m
t );

3. Apply particle filtering on̂Lt to get

{Xk
t , πk

t }
K
k=1;

4. EstimateX̂t from {Xk
t , πk

t }
K
k=1 for

displaying, and get the new center-surround area;

5. Apply particle filtering for feature selection

and get{Fm
t+1, ω

m
t+1}

M
m=1;

6. t← t + 1;

5 Experimental Results

The experiments of color-based tracking and feature se-
lection are carried out using Algorithm 1. We useK = 50
particles for tracking andM = 20 particles for feature se-
lection. The object’s configuration is given for the initial
image frame. At the initial stage of Algorithm 1, a feature
particle set{Fm

1 , ωm
1 }

M
m=1 must be constructed by trying

all the combinations of3-tuple {(α1, β1, γ1)|α1, β1, γ1 ∈
{−2,−1, 0, 1, 2}}, to find the top20 features. The values
of weights{ωm

1 }
M
m=1 are estimated by the Kullback-Leibler

observation model defined in (3).
In the first experimental result we compare the perfor-

mances of a normal tracker and the tracker with feature se-
lection. The normal tracker selects the best feature in the
initial frame, and then keeps on using this feature to track
the moving object subsequently. When the object moves to-
wards a background region of wrongly estimated, high like-
lihood values, the tracker will be distracted, like in Fig. 2.
On the other hand, the tracker with adaptive feature selec-
tion can find good discriminative features to prevent distrac-
tion, see Fig. 3. The second experimental result highlights
the tracker’s capability of handling motion blur and illumi-
nation changes. Some sample frames are shown in Fig. 4.



Figure 2. Top: The tracking results of a nor-
mal tracker with a fixed feature. Bottom: The
corresponding likelihood images.

Figure 3. Top: The results of tracking with
adaptive feature selection. Bottom: The com-
pound likelihood images.

6 Conclusion

The feature selection scheme of our approach maintains
a flexible set of weighted color features rather than using a
fixed one. We have presented that particle filtering, when
integrated with the Kullback-Leibler observation model, af-
fords us a probabilistic manner to choose good features.
Furthermore, it provides a good way to construct a com-
pound likelihood image according to the feature weights.
Tracking an object in a compound likelihood image is more
robust than in the original image, since possible locations
of the target are emphasized and background distractions
are suppressed, by the discriminative features. Although we
address the problem of selecting color features, the formula-
tion can be extended to selecting other types of features. For
example, including gradients or textures into the feature set
may be useful when no significant color features are found.

Figure 4. Real-time tracking under motion
blur and illumination changes.
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