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Abstract

We introduce a method for segmenting a shape from an
image and simultaneously determining its symmetry axis.
The symmetry is used to help the segmentation and in turn
the segmentation determines the symmetry. The problem is
formulated as one of minimizing a goodness of fitness func-
tion and Dijkstra’s algorithm is used to find the global min-
imum of the cost function. The results are illustrated on real
images.

1. Introduction

The importance of symmetric shapes has long been re-
alized in the vision community [2, 3, 4]. Such symmetries,
when detected, contain useful information about the shape
which can be used for shape description and for breaking
shapes up into symmetric parts. In addition, it is clear that
human observers are highly sensitive to symmetry and make
use of it in their processing of images [21].

Most work on symmetry has assumed that the shape has
first been segmented from the background. In practice,
however, image segmentation is often very difficult to do
correctly. It is therefore unrealistic to assume that current
general purpose segmentation techniques will be able to de-
termine the shapes’ silhouette. In addition, such techniques
will often output large numbers of edges in the image and a
grouping process will be needed to determine which edges
correspond to the shape and which do not.

This motivates us to devise a method to segment the
shape and determine its symmetry axis simultaneously. In
this method, the symmetry helps the segmentation process
and, in turn, the segmentation guides the symmetry detec-
tion. Our method involves defining a goodness of fitness

function, which embodies our notion of symmetry, and of
using the shortest path algorithm (i.e., Dijkstra’s algorithm,
an A∗ like algorithm that uses the best-first search principle)
to find a global minimum of this function.

2. Previous Work

There have been many papers on symmetry detection.
In [2, 3, 4] Blum proposed the symmetry axis (or skeleton)
as a shape description for objects. A radius function and a
curvature function are defined for points on the symmetry
axes. These functions together with the symmetric axes can
then be used as a shape descriptor. More recent work has
included variants such as SLS [5] and PISA [13]. More-
over, much progress has been made applying multiresolu-
tion schemes and/or smoothing [17], ([16], via Voronoi di-
agrams), [18], ([19], via reaction-diffusion equation), [22].
In [14], a variational framework based on self-similarity of
shapes is presented.

These methods, however, assume that the silhouette of
the shape has first been extracted. But image segmentation
is a difficult problem and, in addition, edge grouping would
be required in order to determine which edges correspond
to the object’s silhouette. For color images it is possible to
segment using regional cues [11], but these methods have
not yet been extended to grey-scale images where regional
properties are typically less informative. More relevant is
the work on finding roads by dynamic programming [1].

On the other hand, there has been success using high
level object models to perform segmentation of flexible ob-
jects [12, 10, 8]. These methods, however, are too object
specific for our purposes. We require a method that uses
more knowledge than a typical low level segmentation al-
gorithm but less than an object specific model. Symmetry
axes are a good intermediate level representation and their



output could be used as input to shape representation and
recognition systems such as [19, 22, 14]. Ad hoc approach
uses symmetry axis can be found in [7] but here we address
it in a principle way.

Our approach will use Dijkstra’s algorithm, where in ob-
ject recognition is introduced in [10]. This algorithm is re-
lated to dynamic programming which has been used in sev-
eral vision applications, for example [15, 1, 9, 8]. Dijkstra’s
algorithm is guaranteed to find the optimal solution and is
typically considerably faster than dynamic programming.

3. The Representation of Symmetry and Shape

Our approach involves first defining a representation
model for the shape and its symmetry axis. Next we de-
fine a goodness of fitness function which measure how well
the model fits the data. Finally we describe how Dijkstra’s
algorithm can be used to minimize the goodness of fitness
function.

We represent the shape via a symmetry axis as follows.
For each point �ai in the symmetry axis we define a pair of
corresponding points (�p l

i , �p
r
i ) on the left and right bound-

aries of the shape, see figure (1). Moreover, a i = 1
2 (�p l

i +
�p r

i ) so that the symmetry axis is defined by the correspond-
ing pair of boundary points. We define rib vectors { �Ri} so
that �Ri = (�p r

i − �ai) = −(�p l
i − �ai) = 1

2 (�p r
i − �p l

i ).
We can choose to describe the shape in terms of either the

left and right boundaries or the symmetry axis and the rib
vectors. In this paper we use the left and right boundaries as
the fundamental representation of the shape. The symmetry
axis and the rib vectors are then treated as derived quantities
which can be treated as functions of the boundaries.

Another derived quantity which we will also use is the

rib angles {θr
i } and {θl

i}, where cos θr
i = ̂(�ai − �ai+1) · �̂Ri

and cos θl
i = − ̂(�ai − �ai+1) · �̂Ri. We use .̂ to denote the unit

vector. Observe that θr
i + θl

i = π for each i.
Finally, we define the curvature angles {φi}. These an-

gles are a measure of straightness of the symmetry axis.
They are defined by cosφi = ̂(�ai+1 − �ai) · ̂(�ai − �ai−1).

4. The Goodness of Fitness Function

We now define a goodness of fitness function to deter-
mine how well the shape model fits the data. The fitness
function must satisfy several desirable properties. The first
property is that it must ensure that the boundaries of the
shape should generally be at places of high intensity gradi-
ent pointed across the boundary. For the second property,
the symmetry axis should be fairly smooth so that large
changes in direction are discouraged. The third property
requires that the length of neighboring rib vectors should
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Figure 1. The representation of the shape
and the symmetry axis. The left and right
boundary points, {�p l

i } and {�p r
i } are shown.

So are the symmetry axis {�ai} and the rib
angles {θl

i} and {θr
i }.

be similar. This will ensure that the boundary of the shape
does not fluctuate rapidly. The fourth property states that
the vector joining pairs of symmetric boundary points, �p l

i

and �p r
i , should be roughly perpendicular to the symmetry

axis.
After some experimentation, we have settled on the fol-

lowing fitness function

E[{�p l
i }, {�p r

i }] =
N∑

i=1

Ei(�p l
i−1, �p

r
i−1, �p

l
i , �p

r
i , �p l

i+1, �p
r
i+1)

where

Ei(�p l
i−1, �p

r
i−1, �p

l
i , �p

r
i , �p l

i+1, �p
r
i+1) =

1

ε +
∣∣∣∣�∇I(�p l

i+1) · �̂Ri+1

∣∣∣∣
+

1

ε +
∣∣∣∣�∇I(p r

i+1) · �̂Ri+1

∣∣∣∣
+λ1|φi(�ai−1,�ai,�ai+1)|2 + λ2|

∣∣∣�Ri+1

∣∣∣ −
∣∣∣�Ri

∣∣∣ |2
+λ3|θl

i+1 − θr
i+1|2. (1)

Recall that, in the previous section, the Ri,�ai, θ
l
i, θ

r
i and φ

have been defined as functions of the �p l
i and �p r

i .
The first two terms of the right hand side of the equa-

tion enforces the first property. The third, fourth and fifth
terms enforce the second property (smoothness of the sym-
metry axis), the third property (smoothness of rib vectors),
and the fourth property (perpendicularity of axis and rib)
respectively.

This goodness of fitness function can be given a prob-
abilistic interpretation using the Gibbs distribution and
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Bayes’ theorem. In this interpretation, the first two terms
of the energy function will correspond to the likelihood
function for generating the image. Observe that the terms
only constrain the image intensity at the boundaries of the
shapes. In the probabilistic interpretation this is equivalent
to assuming that the rest of the image is generated by a uni-
form intensity distribution pointwise. The remaining three
terms in the energy function will correspond to the prior
probability of the shape.

Symmetry axis and articulation: When applying the
symmetric-axis principle to design a segmentation algo-
rithm, one needs to consider the following scenario which is
encountered very often. Suppose the image to be segmented
contains objects with articulations. Then, we would pre-
fer that a symmetric axis can go along those places where
articulations occurred without losing the desired symmet-
ric property. More precisely, in Figure 2, we see, for the
symmetry axis to maintain a good correspondences between
points on the two boundaries, it is necessary for those points
on the outer boundary moving in a faster pace along the
corner compared to those on the inner boundary (One can
imagine as if there were an inner tangent circle rolling and
passing around the curved part of Figure 2). The fitness
function in (1) has such property as we have added the per-
pendicularity term ( the last term in (1) ) in its definition.
Later we will show some experimental results regarding to
this aspect.

Symmetry Axis

θ l
i

θr
i

Figure 2. A symmetry axis generated by
the left and right boundary moving along
corner. This is often encountered for
shapes/objects with articulations.

5. Dijkstra’s Algorithm with Hashing

We consider the search for the best sequence of pair of
points (�p l

i , �p
r
i ), given an initial pair (�p l

0.�p
r
0 ). The following

graph is constructed. Each node in the graph represents a
pair of points (�p l

i , �p
r
i ) from the image plane (see Figure 3).

Thus, each node represents a point in a four dimensional
space (since a pair of points from two dimensional lattice

rp
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lp
i

rp

lp
0

0

M

Image 
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k

h(k)

Hash Function
h
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Figure 3. The diagram for the Dijkstra’s algo-
rithm with hashing scheme. Notice that in
the image plane, the 8-connected neighbor
structure is adopted.

have four coordinates). Each graph-edge contains the cost
computed from the fitness function (1) to select a pair of
nodes as part of the segmentation solution.

To segment a region in an image, all possible paths are
generated starting from the initial node (�p l

0.�p
r
0 ). Each path

corresponds to a candidate segmentation. Notice that, with-
out considering occlusion, every path is a continuous curve
in a four dimensional space as seen in Figure 3. A seg-
mentation is derived whenever a path has its left and right
boundary, thus their symmetry axis, all reaching a same
node in the graph. The solution we look for is an optimal
path/segmentation with minimal cost.

The Dijkstra’s algorithm is implemented with a Fi-
bonacci heap, so it leads to a very efficient optimization
computation. To resolve the massive amount of memory re-
quired for a global optimization process over a graph with
four-dimension nodal structure, the hashing with chaining
scheme is adopted. Every four dimensional node in the Di-
jkstra diagram is mapped by a function M to a key, say k, as
the input of a well-defined hash function h. In this way, the
program is not limited by the size of RAM and can handle
images of almost all sizes.

(�p l
i , �p

r
i ) M−→ k

h−→ Hash Table .

The hash function used in our program is based on the
division method. An alternative choice is to derive a hash
function using the universal hashing approach. To construct
a good hash function is a pivotal issue, we will not go into
details and refer the readers to, e.g., [6].

We have tested our software on both the Silicon Graphics
challenge GR and Pentium II PCs. The experimental results
are shown in next section.
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(a) (b) (c)

Figure 4. Examples of segmentation.

6. Experimental Results

A variety of experiments have been carried out to test the
segmentation algorithm. Due to the limited space, we show
two sets of experimental results here.

The results in Figure 4 are to illustrate the basic idea of
how seeking the symmetry axis can help to segment an im-
age. It can be seen that the algorithm succeeds both at seg-
mentation and at symmetry axis detection and representa-
tion. If we relax the straightness (or smoothness) restriction,
we derive a segmentation such as the one in Figure 4(b). On
the other hand, if the straightness condition is emphasized,
the algorithm may override the local edge information in
order to find a good symmetry axis. In Figure 4(c) the algo-
rithm creates an artificial “second thumb” on the right hand
side so as to be symmetric with the real thumb (on the left).

The second set of experiments is to segment images con-
taining human objects. The test images are Figure 5(a), 5(b)
and 5(c). Let us first look at their gray-level gradient im-
ages, shown in Figure 5(d), 5(e) and 5(f), respectively (The
images are generated from a gradient operator provided in
KHOROS 2.1). Though the human object in each image
appears to be perceptible, it is difficult to group edges or
segment the images correctly. The problem is that , for ex-
ample, in Figure 5(a) and 5(b), to segment the legs shown
in either image, there are other significant edges at junc-
tion points stronger than the desired ones. Also, the edges
along the legs break where can be seen from the gradient
images. With symmetry axis, our algorithm is able to locate
and segment symmetric parts of the human shape correctly
as displayed in Figure 6.

Figure 6(f) shows that the symmetry axis is detected even
when the axis is bent, sometimes quite severely. This sup-
ports the observation we make to utilize the perpendicular-
ity property to help the axis moving around the curved parts
of an articulated shape.

7. Discussion

This paper describes a method for simultaneously seg-
menting shapes and detecting their symmetry axes. Our

current work involves generalizing this work in three direc-
tions. Firstly, the model should be generalized to include
regional properties which can be used to help the segmen-
tation. Secondly, the model must be extended to allow for
bifurcations in the symmetry axis. Thirdly, we must develop
techniques for automatically initializing the algorithm. The
first two of these problems can be solved by modifying the
goodness of fitness function and increasing the state space.
The third problem can be solved by using corner detectors
as initial guesses and dynamically selecting the right ones
using the procedure described in [10]. Alternatively we
could use dynamic programming to search for symmetry
axes everywhere in the image by adapting the work of [9]
and/or [8].
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