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Abstract

We are given an image I and a library of templates L, such that L is an overcomplete basis for I . The templates

can represent objects, faces, features, analytical functions, or be single pixel templates (canonical templates).

There are infinitely many ways to decompose I as a linear combination of the library templates. Each decompo-

sition defines a representation for the image I , given L.

What is an optimal representation for I givenL and how to select it? We are motivated to select a sparse/compact

representation for I , and to account for occlusions and noise in the image. We present a concave cost function

criterion on the linear decomposition coefficients that satisfies our requirements. More specifically, we study a

“weighted Lp norm” with 0 < p < 1. We prove a result that allows us to generate all local minima for the

Lp norm, and the global minimum is obtained by searching through the local ones. Due to the computational

complexity, i.e., the large number of local minima, we also study a greedy and iterative “weighted L p Matching

Pursuit” strategy.

1 Introduction

1.1 Image decomposition

In the field of signal processing and computer vision an input signal or image is a function f over some subset

of R or R
2. To represent, manipulate and analyze f , it is useful to introduce a linear decomposition into basis

elements fj , i.e., f =
∑

j cjfj . An example of a well known and useful decomposition of this type is the Fourier

series expansion.

Many times the image comes from a class of images where various examples are already known. For instance,

when studying images of faces, Kirby and Sirovich [21] as well as Turk and Pentland [33] utilized various

exemplary images of faces. They have considered a method to construct basis functions, the principal component

analysis (PCA), where the functions are chosen adaptively, according to the exemplars. For the case of faces they

referred to the adaptive basis functions as eigenfaces. Then, given a new face image, this approach will uniquely

decompose the image into the basis. A sparse representation is obtained when very few basis functions for such



decomposition, the principal components of PCA, well approximate the image.

1.2 Overcomplete representations

Let us now consider a library L, an overcomplete basis, and study how the problem of function decomposition

changes. Say, in one dimension, L consists of two classes of basis functions, sinusoids and functions of the

form 1/(k + x) (k ∈ N). Assume that f(x) = sin 2x + 4
(3+x) is our target function (our image) so that L is

an overcomplete basis. It is clear that only two terms from the prototype library are sufficient to represent f(x).

However, one could write f(x) using either sinusoids alone or as combinations of 1/(k + x) alone, but either

representation would require many terms. Indeed, there are infinitely many decompositions (representations) for

f(x).

In object recognition the library of templates is overcomplete with respect to the space of all possible images,

or to the smaller space of a class of images, e.g., faces (see proof in section 2). Thus, given a library with faces

and various other templates, to represent an image of face, we would like to decompose it using a face template,

and not other possible decompositions. In this way the recognition problem is a problem of representation, of

choosing the optimal decomposition of an image.

1.3 Optimal criteria and solution

What makes a decomposition optimal? For object recognition, this is a cognitive question. Why do we see a

face in a face image, even when 50 % of the pixels are occluded, if instead we could simply see the image as

a collection of independent gray value pixels (yet another decomposition)? We argue that the optimal represen-

tation criterion is to seek a compact representation of an image, to utilize as few templates and yet explain the

data as accurate as possible. We are interested in image decompositions that can account for large occlusions.

Notice that most work on recognition addressing occlusions, e.g., [17, 22, 23], which we are aware of, does not

formulate it as a function decomposition, nor provides a way to incorporate occlusions as in our approach.

We argue that the objective function should be an “Lp norm” on the utilized coefficients of the decomposition.

The issue is that the optimization problem will generally have multiple local minima. We show that it is possible

to characterize all local minima and obtain the global one by visiting all of them. Since the number of local

minima grows exponentially with the size of the template library we are forced to consider an alternative greedy

algorithm.

1.4 Matching pursuit

Inspired by Mallat and Zhang’s work [25] (see also Bergeaud and Mallat [5]), we consider a matching pursuit

strategy where, at each stage, a best selection is based on minimizing an image residue. In regression statistics,

this decomposition method is known as projection pursuit regression , a non-parametric method that is concerned

with “interesting” projections of high dimensional data (see Friedman and Stuetzle [15], Huber [18]).

Our algorithm is a multi-stage iterative algorithm that at each stage (i) apply the L p “best-matching” template

and, (ii) update the image by removing (subtracting) the object matched by the selected template.
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1.5 Background

Let us first remark that our results (not the greedy approach) were first presented in a technical report [11] in

1993. Since then various interesting and related work (obviously independent from us) has arrived [4, 14, 26, 6,

7, 28, 35]. We will try to give a today’s (post-facts) view of the field.

Our approach resonates with the following concepts (i) Barlow [2] viewed that the brain is a coding system

with redundant representations seeking sparse ones. David Field [14] has followed Barlow’s view. (ii) Rissanen’s

minimum length encoding (MDL) [29] description proposed optimal representations for a system, utilizing the

least set of parameters (in our case, the parameters are the coefficients of the decomposition). (iii) In mathe-

matics and signal processing, Coifman and Wickerhauser [8] studied the problem of decomposing a signal into

overcomplete basis functions. In particular they focused on combining multiple wavelets. An “entropy” criterion

was then applied to select the coefficients. Mallat and Zhang [25] have devised a matching pursuit strategy, not

committed to any particular form of bases, and to select the coefficients they used an L 2 error norm. At the

same time as us, Chen and Donoho [6, 7] studied the overcomplete signal representation problems with L 1 norm

optimization. Their optimization method is based on linear programming. Similar techniques were also studied

earlier by others [3, 32].

Neural Networks: Feed-forward Neural Networks behave as a function decomposition machinery, e.g., Poggio

and Girosi [27]. Thus, one can have overcomplete representations. Poggio and Girosi [28] have recently studied

relation between neural networks and sparse representation. Their criterion to the selection of the functions and

coefficients is the least squares, i.e., L2 errors with a smoothness constraint (regularization networks). Olshen

and Fields [26] as well as Bell and Sejnowsky [4] did consider the study of sparse representations within the

realm of neural networks, at the same time as us. Their approach is to construct error functions to encourage

sparse representations and use typical gradient descent techniques to obtain local minima. As we point out again

in this paper, the number of local minima of error functions encouraging sparse representations is typically large

and so careful study of the landscape of an error function is critical for optimal solutions.

Template Matching: A special case of our approach is when applied to only one object template and various

one pixel templates. In this case it is very similar to p-norm minimization (where p = 2 is correlation). Correla-

tion methods are known to be optimal for detecting templates in the presence of additive Gaussian noise, but fail

miserably when dealing with occlusions or more realistic noise. Minimizing a p-norm, for 0 < p < 1, is more

resistant to occlusions. Ben-Arie and Rao [1] have studied alternative methods for template matching based on

non-orthogonal basis functions and minimizing the discriminative signal-to-noise ratio. For one template detec-

tion the method is an expansion matching and, as pointed out in their paper, it is different from match filtering.

Their method gives a better performance than correlation methods for severe occlusion cases since the responses

are more peaked than correlation ones. They have also extended the approach to multiple template matching.

The comparison with ours is difficult because the formalism is different, not an optimization one, but rooted on

linear methods.
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2 Template Library and Image Decomposition

In our formulation, a template library, say L, consists of one canonical template and many non-canonical (object)

templates. The canonical template ε1 of size N has zero gray value pixels everywhere except one pixel at the

extreme left and top corner where the gray value is 1. More precisely, ε 1[j] = δ1j , where δij = 1 for i = j and

δij = 0 otherwise.

First let us consider a lemma about the canonical template and basis functions followed by a proposition on the

overcompleteness of the template library,

Lemma 1 Canonical template ε1 plus a set of all translations form a basis for the image space.

Proof: Given an image I of size N , let Ai denote a translation by i pixels (we order the pixels from top to bottom

and left to right), i.e., Ai(ε1) is such that the first template pixel of ε1 is positioned at the i-th image pixel of I .

So, the set of all translation is {Ai | i = 1, ..., N} . Thus, {Ai(ε1) | i = 1, ..., N} is a basis for the image space

of size N . This follows directly from

I[j] =
N∑

i=1

I[i]δij =
N∑

i=1

I[i]Ai(ε1)[j] =
N∑

i=1

ciAi(ε1)[j] where ci = I[i] .

�

Proposition 1 With the set of all translations, a library L containing non-canonical templates (e.g., edge-

templates, eye-templates), as well as canonical template ε1 is overcomplete.

Proof: From the previous lemma, the canonical template plus all possible translations form a basis. Adding to

this basis, or to any basis, a set of different (non-canonical) templates, say eye-templates, face-templates, will

create an overcomplete library. �
More generally {Ai(·)} denotes some group transformations, possibly accounting for deformations [16],

applied to the templates. In our experiments we have just considered the group of translations. Our results

here do not offer efficiency when using larger group of transformations, i.e., we would simply increase the

search space by the number of new degrees of freedom introduced by larger group of transformations. Further

investigation to reduce the search is necessary. Moreover, the space of possible object poses and articulations is

enormous and the study of these transformations is beyond the scope of this present work.

2.1 Coordinate transformations

Assume template library L = {τj : j = 1, ..., M}, where we have used τ1 ≡ ε1 to represent the canonical

template. Let the image data be I of dimension N and each template τ j be of dimension Nj (we assume all Nj

to be perfect square numbers). Note that N1 = N , i.e., the canonical template is of image size. Furthermore, let

Qj = {1, 2, ..., Nj} be the pixel set of τj . Again, a translation Ai(τj) is such that the first template pixel of τj is

positioned at the i-th image pixel. We can explicitly describe such relations as follows:

Qj −→
Ai

Γij ⊂ {1, 2, ..., N} (denoted as Ai(Qj) = Γij )

q ∈ Qj �−→
Ai

γ ∈ Γij (denoted as Ai(q) = γ) (1)
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where Γij represents the set of pixels in the image that the template τj is occupying after applying the translation

Ai. The mapping formula between γ ∈ Γ ij and q ∈ Qj is 1

γ = i + (� q − 1√
Nj

� ×
√

N) + (q − 1− �q − 1√
Nj

� ×√Nj) .

Denote Tij = Ai(τj) and Ti1 = Ai(τ1) = Ai(ε1) = εi1 = εi where εi[j] = δij . Notice that Tij [γ] =

Ai(τj)[γ] = τj [q] .

2.2 Image decomposition equations

We can finally write the image decomposition equations where, for 1 ≤ x ≤ N ,

I[x] =
N∑

i=1

M∑
j=1

cijTij [x]

=
N∑

i=1

ci1εi1[x] +
N∑

i=1

M∑
j=2

cijTij [x] (denote ci1 as ck)

=
N∑

k=1

ckεk[x] +
MN∑

λ=N+1

cλTλ[x] (2)

where λ = λ(i, j) = i + (j − 1)×N . For the remainder of this paper, we will use ck and cλ to distinguish the

coefficients associated with canonical template and non-canonical ones, respectively.

3 Optimization Criteria and Solution

Our approach is to construct an objective function F (c) (c is a vector of decomposition coefficients) that when

minimized selects a best representation, c∗, among all solutions c that satisfy (2). Of course, we have also to be

able to solve for c∗.

3.1 Criteria

The modeling focuses on/requires

1. Sparse Representation: to represent (decompose) an image using as few templates as possible in order to

have an economical (minimal) representation.

2. Occlusions: to allow for partial occlusions, i.e., the cost of fitting a template must take into account that

portions of the template may have a “bad match”.

3. Noise: to model noise via “noise templates” or canonical template, accounting for the difference between the

template fit and the image.

1The expression �x� denotes the greatest integer less than or equal to x.
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Let us start by focusing the attention on the coefficients related to the canonical template, c k for k = 1, ..., N

in equation (2). The canonical template plus translations play a special role of “repair”, i.e., they complete the

image from the other templates’ work. More precisely, focusing on one pixel, say k ∈ {1, ..., N}, and using that

εk[k] = δkk = 1, equation (2) becomes

ck = I[k]−
MN∑

λ=N+1

cλTλ[k] . (3)

Therefore, a cost on the norm of the canonical template coefficients is equivalent to a cost on the fidelity of fitting

all the object templates to the data.

The lack of fidelity can be due to occlusion or image noise. The noise model requires the cost function to

escalate with the magnitude of ck. Modeling occlusion suggests equal penalties regardless the magnitude of c k.

Both, noise and occlusion, yield the compromise that the rate of increase in cost as a function of |c k| should

decrease.

The above consideration leads us naturally to adopt concave objective functions. In particular, we will pri-

marily study the objective function

Fp(c) =
MN∑
i=1

ωi|ci|p
(

=
N∑

k=1

ωk|ck|p +
MN∑

λ=N+1

ωλ|cλ|p
)

, (4)

where, again, N is the number of possible (translations) transformations and M is the size of the template library.

The scalars ωi’s are positive weights and setting their values is the topic of the next section.

Our previous consideration can now be synthesized. The sparse representation suggests p = 0 to count

the number of utilized templates (weighted by ω i). Selections related to the canonical template receive special

attention, since their roles are to model occlusions and noise. Occlusions suggest the penalty not to depend on

ck, i.e., p = 0. However, noise modeling of any ck requires a cost penalty depending on how large the error

|ck| = |I[k] −∑MN
λ=N+1 cλTλ[k]| is. The balance between both processes, occlusions and noise modeling, lead

to 0 < p < 1.

Comments: Penalties on |cλ|, for the non-canonical templates, will bias templates to fit in dark regions since

the coefficients get smaller and noise gets smaller. Thus, everything else being equal, the errors get smaller in

dark regions.

From equation (3), penalties on |ck|, for the canonical template, become penalties on |I[k]| wherever a

template is not present. These penalties encourage (i) non-canonical templates to be present at bright regions

(and leave out dark regions instead, i.e., small I[k]), and (ii) brighter images to request larger size templates so as

not to leave image regions left out (cluttered regions). The resulting balance does not let non-canonical templates

to either strongly bias dark or bright regions (still biasing towards larger size templates for brighter images).

3.2 Setting ωλ

There are many (translated) canonical templates used on an image decomposition (used often to “repair” the

decomposition), and we do not want them to dominate the cost. We then normalize the costs by setting the
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weights proportional to the corresponding template size, i.e., ωλ ∝ Nj , except for the canonical templates where

we set their weights to 1 (the number of nonzero pixels). It is also reasonable to encourage templates that exhibit

more contrast to be preferred over plain constant templates. The rational is that a high contrast template that

appears in an image is a more significant fact (i.e., less likely) than a plain one (most images have background

with plain regions and various regions of various images are smooth). A way to measure this complexity is to

use the template variances, possibly with a p
2 power (p < 1) to shorten the effect, i.e., we set ωλ ∝ V ar(τj)

p
2 .

Note that the canonical template has V ar(ε1)
p
2 ≈ 1. We then propose

ωλ = ωλ(i,j) = Nj · V ar(τj)
p
2 .

One can think both criteria, the template size and variance, as a measure of the template complexity, the higher

the complexity the more favorable to select it.

3.3 Optimization procedure

Equation (2) can be written in matrix notation as

Tc = I , (5)

where

T =




ε1[1] · · · εN [1] TN+1[1] · · · TMN [1]

ε1[2] · · · εN [2] TN+1[2] · · · TMN [2]
...

. . .
...

...
. . .

...

ε1[N ] · · · εN [N ] TN+1[N ] · · · TMN [N ]


 ,

c = (c1, c2, . . . , cMN )t and I = (I[1], I[2], . . . , I[N ])t .

Note that if the prototype library forms a basis (linearly independent), then M = 1, and there is no freedom in

choosing the coefficients (ci); the coefficients are uniquely determined by the constraint. If M > 1, then there

are linear dependencies in the prototype library (the prototype library over-spans) and the set of all solutions (c i)

to the constraint forms an (M − 1)N dimensional affine subspace in the MN -dimensional coefficient space.

Let S denote this solution space, i.e., dim(S) = (M −1)N . Using the above matrix notations, our optimization

problem can be written as:

min
c

Fp(c) = min
c

MN∑
i=1

ωi|ci|p subject to Tc = I , (6)

where T ∈ R
N×MN , c ∈ R

MN , I ∈ R
N , M > 1. The constraint space, S, is the set of all c satisfying Tc = I,

and is an affine subspace of dimension (M − 1)N .

It is natural when analyzing Fp in (6) as a function in the coefficient space (c i) to decompose the domain

into octants, where each coefficient is of constant sign. This allows the removal of the absolute values in (6), so

we may treat Fp as a smooth function inside each octant. For example, if we consider the restriction of F p to the
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Figure 1: Illustration of a domain restriction polytope obtained from the intersection of a 2 dimensional constraint

space S with a rectangular solid bound domain D in a 3 dimensional coefficient space. In this example the

intersection is a non-regular pentagon. If the restricted objective function F is concave, then its local minima

occur at the vertices of the pentagon.

octant consisting of all points c such that c1 < 0, c2 < 0, and ci > 0 for i ≥ 3, then the cost function in (6)

becomes

Fp(c) = ω1(−c1)p + ω2(−c2)p +
MN∑
i=3

ωi(ci)p .

Moreover, it is clear that Fp(c) → ∞ as ‖c‖ → ∞, so for minimization purposes it suffices to consider

bounded c. The bound will depend upon the constraint equation (5), but, for example, if c 0 is any solution to (5),

then it suffices to consider only those c satisfying |ci| ≤ (Fp(c0)/ωi)
1/p for all i. Recall that each ωi is a positive

scalar and can be computed in advance. When combined with the restriction to octants, we have a decomposition

of the pertinent domain of Fp into MN -dimensional cubes of edge length (Fp(c0)/ωi)
1/p.

The intersection of the constraint space S with these domain cubes gives rise to convex polytopes, as illus-

trated in Figure 1. The system of domain restrictions can be written out explicitly. For the first (positive) octant

they are

Tc = I

ci ≤ di, 1 ≤ i ≤MN (7)

−ci ≤ 0, 1 ≤ i ≤MN, (8)

where previously we considered the case that each d i is at least as large as (Fp(c0)/ωi)
1/p. The relation c1 =

(1, 0, . . . , 0)t · c ≤ d1 describes a half-space in the coefficient space c, and the entire collection (7) and (8)

together describe the intersection of 2MN halfspaces, i.e., a polytope with at most 2MN faces. The general

inequality defining a half-space is v · c ≤ di, where v is a vector normal to the bounding hyperplane, and

di determines an offset from the origin. So an arbitrary convex polytope having N ′ faces can be described in

the form Bc ≤ d, where B ∈ R
N ′×MN , d ∈ R

N ′
, and the inequality is interpreted coordinatewise. So the
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generalized constraint relations can be written:

Tc = I

Bc ≤ d.

These relations can be viewed as defining a polytope inside the affine space S. If we were to perform

a bases transformation to obtain coordinates conducive to representations inside S, then F p under the same

transformation would loose its simple form. Even without this consideration, it is useful to study more general

objective functions. The specific property of Fp of interest to us is concavity. A function F mapping from a

convex domain Ω of a vector space X to R is concave if

F (βx + (1− β)y) ≥ βF (x) + (1 − β)F (y)

for all x and y in Ω and β ∈ [0, 1]. The result we desire (Proposition 2) actually requires only a weaker property,

which we call pseudo-concave. A function F : Ω→ R as above is pseudo-concave if

F (βx + (1− β)y) ≥ min{F (x), F (y)}

for all x and y in Ω and β ∈ [0, 1]. Clearly any concave function is also pseudo-concave.

Proposition 2 Let Ω be a closed, bounded, convex polytope in a vector space X , and let F : Ω → R be

pseudo-concave. Then the global minimum of F on Ω occurs at a vertex of Ω.

Proof: Let x ∈ Ω. We show that there is a vertex v of Ω such that F (x) ≥ F (v), from which the proposition

follows.

It is well known that x can be represented as a convex combination of vertices of Ω, i.e., there exists vertices

v1, v2, . . . , vn of Ω and corresponding strictly positive coefficients a1, a2, . . . , an, with
∑n

i=1 ai = 1, such that

x =
n∑

i=1

aivi.

If n = 1, then a1 = 1, and so x = v1 is a vertex and there is nothing to prove. Otherwise we have by pseudo-

concavity that

F (x) = F

(
a1v1 + (1 − a1)

n∑
i=2

ai

1− a1
vi

)

≥ min {F (v1), F (
∑n

i=2 aivi/(1− a1))} . (9)

If n = 2, then a2 = 1 − a1, so F (x) ≥ min{F (v1), F (v2)}, and we are finished. Otherwise simply iterate the

decomposition on the last term in (9) until

F (x) ≥ min {F (v1), F (v2), . . . , F (vn)}

is obtained. �

9



4 One Template Matching

In many cases we do not want the representation (2) to use more than one non-canonical template. For example,

if we are to find a specific face in an image, then it suffices to use only one face template. Also, when various

object templates are present in an image, but no overlapping, it can be reduced to a combination of one template

matching problems. The non-canonical template represents a key feature and the canonical template ε 1 ≡ τ1 (of

size N ) plus translations represent non-interest elements, e.g., noise.

Let the non-canonical template be τ2 (of size N2) and assume Ai is the translation applied to τ2. Since

Ai(τ2) = Ti2 = TN+i, this implies that we look for a decomposition of the form:

I[x] = cN+iTN+i[x] +
N∑

k=1

ckεk[x] . (10)

It is clear that, from (1) and (2), ck = I[k] if k is outside the template domain, i.e., k /∈ Γi2 . Thus, the equation

(5) can be restricted to




εAi(1)[Ai(1)] · · · εAi(N2)[Ai(1)] TN+i[Ai(1)]

εAi(1)[Ai(2)] · · · εAi(N2)[Ai(2)] TN+i[Ai(2)]
...

. . .
...

...

εAi(1)[Ai(N2)] · · · εAi(N2)[Ai(N2)] TN+i[Ai(N2)]







cAi(1)

...

cAi(N2)

cN+i


 =




I[Ai(1)]
...

I[Ai(N2)]


 .

Again, using εi[j] = δij , we can rewrite the equation above as


1 0 · · · 0 τ2[1]

0 1 · · · 0 τ2[2]
...

...
. . .

...
...

0 0 · · · 1 τ2[N2]







cAi(1)

...

cAi(N2)

cN+i


 =




I[Ai(1)]
...

I[Ai(N2)]


 ,

where we have used TN+i[Ai(q)] = τ2[q] (note that Ai(1) = i). We can also assume that τ2[q] �= 0 for

q = 1, . . . , N2 (otherwise, we can redefine either τ2 or the pixel ordering to get a smaller value for N2).

It follows from Proposition 2 that the local minima of Fp(c) can be found by setting cN+i, cAi(1), . . . ,

cAi(N2) to zero one at a time. If we set cN+i = 0 then we get ck = I[k] for all k. This is the “pure noise”

solution. The first nontrivial (τ2-template using) solution sets cAi(1) = 0. This forces the template coefficient

cN+i = I[Ai(1)]/τ2[1], from which it follows cAi(q) = I[Ai(q)]− cN+i · τ2[q], for q = 2, . . . , N2. The Fp cost

of (10), when setting cAi(1) = 0, can then be explicitly calculated as

Fp(c) = ωN+i|cN+i|p +
N2∑
q=1

ωAi(q)|cAi(q)|p +
∑

k

′
ωk|ck|p , (11)

where
∑′

k denotes the summation over k ∈ {1, ..., N} − {Ai(q) | q = 1, ..., N2}. The solution determined by

setting cAi(q) = 0 (2 ≤ q ≤ N2) can be calculated in an analogous fashion.

Finally, the corresponding value for Fp(c), when the solution is determined by setting cAi(j) = 0, for j =

1, ..., N2, is then
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Fp(c) = ωN+i

I[Ai(j)]
τ2[j]


p

+
N2∑
q=1

ωAi(q)

(I[Ai(q)]− I[Ai(j)]τ2[q]
τ2[j]


p

− |I[Ai(q)]|p
)

+
N∑

k=1

ωk|I[k]|p

= N2 · V ar(τ2)
p
2

I[Ai(j)]
τ2[j]


p

+
N2∑
q=1

(I[Ai(q)]− I[Ai(j)]τ2[q]
τ2[j]


p

− |I[Ai(q)]|p
)

+
N∑

k=1

|I[k]|p ,

where we used ωN+i = N2 · V ar(τ2)
p
2 and ωk = 1 for weights associated with the canonical template. The

optimal cost of the match of the template in the (translation) position i is the smallest of the values of F p(c)

across all N2 + 1 solutions c, i.e., cN+i = 0 or cAi(q) = 0 for q = 1, ..., N2. One can perform a similar analysis

for all template translations, and define the matching position of the template to be the position which generated

the smallest match cost.

4.1 Simulations

We have designed a sequence of experiments focused on the effects of noise and occlusions to demonstrate both

the weighted and unweighted (all weights are set to 1) Lp decomposition methods are superior to the conventional

correlation techniques.

The experiments consist of numerous trials on random images with fixed occlusion size and fixed noise variance.

The latter determines the signal-to-noise ratio (SNR) for the experiment, defined here as the ratio of the standard

deviation of the image to the standard deviation of the noise.

Each trial has four components: an image, a template, an occlusion, and noise. The image is 64 pixels wide

by 64 pixels high, randomly generated using an uncorrelated uniform distribution across the range (−256, 256).

The template is a 4 pixel by 4 pixel subimage of the image. After selecting the template, a portion of the

image from which the template is drawn is “occluded” by redrawing from the same distribution that formed the

image, i.e., from an uncorrelated uniform distribution with range (−256, 256). (Occlusion sizes range from 0–14

pixels, from a total subimage size of 16 pixels.) Finally, noise is added to the (occluded) image, drawn from an

uncorrelated Gaussian mean-zero random variable.

Translates of the template are compared against the noisy, occluded image, using both weighted and un-

weighted Lp-norm decomposition method. (Because both the template and the image are drawn from zero-mean

random variables, there is little difference between 2-norm error minimization and standard correlation.) For

each method the translation position yielding the best score is compared with the position of the original subim-

age from which the template was formed. If the two agree then the match is considered successful, otherwise the

match fails for the trial in question. The first experiment, displayed in Figure 2-(a), displays the percentage of

successful match trials at various occlusion sizes and no noise. Dashed curves there show the results from un-

weighted Lp-norm optimization for p = 0.125, 0.25, 0.5. Solid curves correspond to results obtained from our

11



proposed technique, the weighted Lp-norm optimization, for the same p-values and in addition for p = 1.0, 2.0,

and 4.0. (We do not currently have an appropriate formulation of our method for p > 1.) Note that smaller values

of p outperform larger values, and that for a given p value our method performs slightly better than minimizing

with respect to the corresponding unweighted Lp-norm, providing nearly 100% correct results with p = 0.125

for occlusions as large as 11 (out of 16) pixels.

This result is somewhat artificial, however, since noise is generally present in real images. Figure 2-(b)

presents results for when noise is present at a SNR of 37. Here we note that p = 0.125 still performs very well,

although good results can not be obtained if the occlusion is larger than half the template size. Notice that the

results using larger values of p are less affected by noise, especially those with p > 1.

Figure 2-(c) displays the results for varying noise levels with a constant occlusion size of 5 pixels. Note again

that larger values of p produce results which are less sensitive to noise. For example, the results for p = 0.125,

which are best for large SNR, are poorest for SNR of less than about 3.

The final graph, Figure 2-(d), shows the results obtained by varying the p-value for fixed occlusion and noise

levels. We see there that for high noise levels (SNR=2) with no occlusions the best p value is 2. For an occlusion

size of 4/16 and a SNR of 9.2, the best p value for our weighted L p method is somewhere between 0.25 and 0.5,

whereas the optimal p value for the unweighted method is somewhat smaller. The remaining curve corresponds

to no noise and an occlusion size of 8/16. Also note that for small p (generally best for large occlusions), the

performance difference between the weighted and unweighted L p decomposition method is smallest.

To conclude, these experiments show that both our proposed weighted and unweighted L p decomposition

method with p < 1 are superior to standard correlation for template matching in the presence of occlusions and

low levels of (Gaussian) noise. Smaller values of p tend to be more robust against occlusions at the cost of greater

sensitivity to noise.

4.2 Real image results

To properly gauge the effectiveness of the proposed decomposition approach it is necessary to apply it to natural

images. We performed a simple study on one (non-canonical) template matching with real images (see Figure 3).

The image in Figure 3-(a) is a a cropped unobstructed view of the subject’s face. It is used as a template

for matching against an image with the subject’s face partially occluded, which we refer to as the match image,

Figure 3-(b). We then experimented our proposed L p decomposition method against the standard L2 correlation

approach.

To conduct the match, the template is overlaid at each position in the match image, and a match score is

obtained (at each position). This is displayed visually as match result images in Figures 3-(c), (d), (f) and (g).

Each pixel in these images denotes the match score for the template centered at that position in the corresponding

match image, with darker pixels denoting a better match. We constrained the template overlay to remain com-

pletely inside the match image, so there is a zero border around each match result image with width equal to half

the template size.

Correct recognition results with the Lp decomposition, e.g., see Figures 3-(e), while the L2 correlation failed

to identify the subject’s face due to occlusion (Figures 3-(h)). Notice that the match result images, Figures 3-(c)

and (f), were derived with a similarity ratio threshold (to be defined later) set to 0.75, where Simil = 0 means

12
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Figure 2: (a)Experimental matching accuracy as a function of occlusion size with no noise. The solid

curves correspond to our proposed weighted L p decomposition, dashed to the unweighted Lp decomposition.

(b)Experimental matching accuracy as a function of occlusion size at a SNR of 37. The solid curves correspond

to our proposed method, dashed to the unweighted L p method. (c)Experimental matching accuracy as a function

of noise level at a fixed occlusion size of 5 (out of 16) pixels. The solid curves correspond to our proposed

method, dashed to the unweighted Lp method. (d)Experimental matching accuracy as a function of p, at various

noise levels and occlusion size. The solid curves correspond to our proposed method, dashed to the unweighted

Lp method.
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similarity threshold is not used.

5 Multiple Templates and Matching Pursuit

The complexity of dealing with many templates is large and the number of local minima to consider grows

exponentially with the number of templates. Alternatively, we devise a greedy iterative method where at each

stage only one template is selected and thus, we can rely on the result of previous section. This is inspired by

Mallat and Zhang’s work on matching pursuit [25] and Bergeaud and Mallat [5].

The original matching pursuit is based on the standard L 2 (Hilbert space ) method. To extend to an Lp

matching pursuit, 0 < p < 1, the Hilbert space (inner product) is lost. However, the notion of projection

can be recaptured by the optimization criterion for a template to be “best matching” or “closest” to the image.

This modification improves robustness of the pursuit scheme but the convergence of L p pursuit is now not

guaranteed. The energy conservation equation and so Jones’ proof [20] of convergence of projection pursuit no

longer holds. Despite these limitations, the advantages of efficiency are enormous and we have experimented

with this approach.

Let us assume that the residue at the initial stage is the input image, i.e., R0I = I . Then, at stage n, if a

translated template Tλn(= Tinjn = Ain(τjn)) and coefficient cλn are chosen, the n-th residual image can be

updated by “projecting” the (n− 1)-th residue in the direction of T λn . More precisely,

RnI[k] = Rn−1I[k]− cλnTλn [k](1−O[k]) , (12)

where k = 1...N and λn = (jn − 1) ×N + in. Note that Tλn is only of dimension Njn and we have assumed

that Tλn [k] = 0 if k /∈ Γin as defined in (1).

We have introduced the occlusion unit O[k] to avoid additive/repetitive removal of the overlapping pixels.

O[k] = 1 if pixel k is covered by some template recovered in the previous (n−1) stages and O[k] = 0, otherwise.

The cost function Fp in (6) is the total cost and is a function of a vector c. The pursuit process is an iteratively

greedy algorithm. Let us denote the (iterative) cost function, at stage n, as F n
p to be distinguished from the global

Fp. Then, at every stage we pursuit one template by minimizing F n
p , i.e., the cost function F n

p is a function of a

scalar c.

The cost function Fn
p , using the Lp norm and taking possible overlappings into consideration, is defined as

Fn
p (cλn) = ωλn |cλn |p +

∑
k∈Γin

(|rk|p − |I[k]|p)(1 −O[k]) (13)

where rk = |Rn−1I[k]−cλnTλn [k]| is the residue at pixel k. The weight is defined as ωλn = (βλn×V ar(τjn)
p
2 ,

where βλn is the number of pixels covered by Tλn .

Clearly, by minimizing the greedy cost F n
p at each pursuit stage does not guarantee a global minimization of

Fp, the total cost.

An alternative cost we have considered is to divide (13) by the template coefficient |c λn |p. This cost will

guarantee that the template coefficient is not small and so will drive the template away from dark regions. In
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(a) Face Template

(b) Test Image

Lp

(c) Simil Threshold = 0.75

(d) Simil Threshold = 0

(e) Best Match with Lp

L2

(f) Simil Threshold = 0.75

(g) Simil Threshold = 0

(h) Best Match with L2

Figure 3: (a) Face template used in the experiments. (b) Test image with the target face partially occluded. (c),

(d) and (e) Results using Lp with p = 0.50 . (c) and (d) Results indicating the matching “response” where the

gray level value (darker is better) at each pixel corresponds to the possibility of a potential match. The occluded

face is successfully recognized with the Lp method as shown in (e). (f), (g) and (h) Results using standard L 2

correlation. Notice that false recognition has occurred in (h).
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this case there is no need for the second term that encourages templates to be placed at bright regions. Thus, an

alternative cost is

F2n
p (cλn) = 1 +

∑
k∈Γin

|rk|p
ωλn |cλn |p

(1 −O[k]) . (14)

5.1 Simplifications

As discussed in section 3 the local minima to F n
p (c) are at the vertices of the polytope, each defined by rk = 0,

k ∈ Γin and O[k] = 0. For each hyperplane rk = 0 the solution of the constraint equation (5) is ck =

I[k]/Tλn(k). We now construct a definition for the solution space associated with each template T λn .

Definition 1 At pursuit stage n, we define the coarse solution space Sλn generated by Tλn (with respect to I)

as:

Sλn =
{
ck : ck = [Rn−1I(k)/Tλn(k)]∗, k ∈ Γin , O[k] = 0, I[k] · Tλn(k) �= 0

}
.

The notation [x]∗ is defined as

[x]∗ =

{
[x], when |x| ≥ 1
1

[1/x] , otherwise

where [x] denotes the closest integer to x. The coarse solution space Sλn can be classified into subsets by

grouping same value of ck’s.

Definition 2 Assume that, after grouping, Sλn = Sλn,1∪̇Sλn,2∪̇ · · · ∪̇Sλn,l of which mλn = |Sλn,1| ≥ |Sλn,2| ≥
· · · ≥ |Sλn,l| and l, mλn are some positive integers. Then a sub-solution set Sλn,k, k ∈ {1, 2, · · · , l}, is said to

be a maximal sub-solution set if |Sλn,k| = mλn .

As an example of illustration, let Sλn = {2, 2, 2}∪̇{4, 4} then |Sλn,1| = |{2, 2, 2}| = 3 and that the representa-

tive (scalar) of Sλn , in this example, is 2.

With the above definition, we make the following approximation. At pursuit stage n, if T λn is indeed embed-

ded in image I and its principal contrast scalar is cλn , then

Fn
p (cλn) = min

c∈Sλn

Fn
p (c) � min

c∈Sλn,1
Fn

p (c) .

That is, the optimal cost when matching Tλn can be approximated by only considering for those maximal sub-

solution sets of Tλn . For p = 0 and the unweighted Lp pursuit, the above approximation becomes exact, since in

this case, to minimize the cost Fn
p is equivalent to minimize the number of nonzero residues.

Similarity Ratio: We further reduces the search via an “interesting” operator to further filter possible solu-

tions. improve our algorithm.

Definition 3 At pursuit stage n, for each candidate template Tλn , we define the following interesting operator,

SimilTλn
=
|Sλn,1|
|Sλn |

.

Clearly, 0 < SimilTλn
≤ 1 and it is called the similarity ratio of Tλn to its corresponding area in image I .
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Applied SimilTλn
to, e.g. the tasks of face recognition as a filter threshold, we may set SimilThreshold =

0.85 then this suggests any face template Tλn can match to any interesting object in I only when it resembles the

object more than 85%.

5.2 Algorithm

The algorithm is illustrated by the execution of one iterative stage, say stage n, and the stopping criterion. Let

L0 = L be the initial template library. We use an auxiliary set Overlapped to memorize pixels matched by more

than one templates in the pursuit process. Also, we assume that each non-canonical template can appear only

once in the image I . The completion of every stage n is done by executing the following three steps.

A. Matching step : For each non-canonical template τj in the template library Ln−1 and for each possible

translation Ai, let Tλ = Ai(τj) :

(A–1) compute the solution space Sλ and the representative cλ for Tλ.

(A–2) compute SimilTλ
. If SimilTλ

is less than SimilThreshold this indicates that Tλ is not a candidate

for possible matching. Otherwise, proceed to (A-3).

(A–3) compute COSTλ and record the quadruple entry (Tλ, cλ, SimilTλ
, COSTλ) into n-th cost cat-

alogue Cn. In fact, for n > 2, COSTλ for Tλ can be looked up directly from the previous cost

catalogue Cn−1 if the position of Tλ is not overlapped with the best matching template selected in

the previous stage. So, in most cases, matching step (A) can be reduced to a single look-up operation.

If all costs in catalogue Cn are greater than COSTThreshold, this suggests we have recovered all interested

objects in the image I then the algorithm jumps to the stopping stage. Otherwise, continue to the next selection

step.

B. Selection step : Choose a template which “best” matches the residual image Rn−1I by looking up the cost

catalogue Cn. A best matching template Tλ∗(= Ti∗j∗ = Ai∗(τj∗ )) to image Rn−1I is a template that has the

minimal COSTλ∗ .

C. Updating step : Remove τj∗ from Ln−1, that is, Ln ← Ln−1 − {τj∗}. We then update the residual image

according (12) and leave the possible overlapping ambiguities to the end.

Stopping stage : When we are at the stopping stage, it implies that we have recovered the main decomposition

for I and the remaining task is to check if there are overlapping regions happened during the whole matching

pursuit process.

If the set Overlapped is not empty, we then decompose it into one or several overlapping regions. In each

region, we compute the matching costs restricted on it for all selected templates covered this region. The tem-

plate producing the smallest cost will be considered as the top most one. This is like “back projection’ of the

matching pursuit to assume the best approximation achieved by these selected templates. Once all occlusion

ambiguities have been resolved, we can matched the residual image in the main decomposition areas by the

canonical template ε1.
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6 Matching Pursuit Experiments

A small library of face templates has been established (see Figure 4 (a)-(j)). The dimension of all templates is

64 × 64. Numerous experiments have been carried out to test our algorithm. To illustrate, consider the three

real images, I1 - I3, in Figure 4 (a)-(c). We obtained decomposition results R1, R2 and R3 shown in Figure

4, for p = 0.25 (Similar results were derived for p = 0.50, 0.75). For each experiment, it took approximately

30-40 seconds to complete when executed on a Pentium-II PC. When p = 2, it is indeed the L 2 matching pursuit

method and the recognition results are R4, R5 and R6. Our proposed Lp matching pursuit has the robustness

advantage over the L2 one.

We have presented a sparse representation for image decomposition problems. Our method is an L p func-

tional analysis approach. We have shown the Lp sparse representation can account for occlusions where the

conventional L2 correlation will fail. To overcome the complexity of a concave optimization process, we make

use the matching pursuit scheme to approximate the global solution.

Appendix: Special Cases of Optimization Criteria

This section presents results to the optimization problem (6) for some special values of p. Typically the finite

dimensionality of the spaces R
N and R

M plays a prominent role.

Case p = ∞
Let us define

F∞(c) = lim
p→∞ (Fp(c))

1/p (15)

= lim
p→∞


 M∑

j=1

|cj |p



1/p

(16)

= max
1≤j≤M

|cj |. (17)

(Note that we take the pth root of Fp to normalize the limit.) So for p =∞ the minimization criterion is

min
c∈S∗

F∞(c) = min
c∈S∗

lim
p→∞ (Fp(c))

1/p
. (18)

= min
c∈S∗ max

1≤j≤M
|cj | (19)

The minimizing solution c∗ is the element of S∗ which has smallest maximal component |c∗j |. Furthermore, for

all p > 0,

min
c∈S∗

F∞(c) ≤ min
c∈S∗

(Fp(c))
1/p ≤M1/p min

c∈S∗
F∞(c),

so

min
c∈S∗

F∞(c) = lim
p→∞ min

c∈S∗
(Fp(c))

1/p .

Therefore, for p large enough, the minimizing solution c ∗ for Fp will have maximal component |c∗j | close to the

smallest possible subject to the constraint in (6).
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T1 T2 T3 T4 T5 T6

T7 T8 T9 T10 T11 T12

(a) I1

(b) I2

(c) I3

Lp

(d) R1

(e) R2

(f) R3

L2

(g) R4

(h) R5

(i) R6

Figure 4: T1 - T12: Templates used in the experiments. (a), (b) and (c) Test images. (d), (e) and (f) Results of

image decomposition using Lp method with p = 0.25 (similar results are obtained for p up to 0.75). (g), (h) and

(i) Results of image decomposition with L2 correlation where occluded faces are not recovered.
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Case p = 0

Let us define

F0(c) = lim
p↓0

Fp(c) (20)

= |{cj �= 0 | j = 1, 2, . . . , M}|, (21)

and the minimization criterion for p = 0 is

min
c∈S∗

F0(c) = min
c∈S∗

|{j | cj �= 0, j = 1, 2, . . . , M}|.

In other words, the minimizing solution c∗ minimizes the number of nonzero components c ∗
j . It will be shown

later in this document that there exists a finite set S∗∗ ⊂ S∗ such that for each 0 < p < 1, the minimizing point

c∗ ∈ S∗ of Fp(c) satisfies c∗ ∈ S∗∗. It follows from this that

min
c∈S∗

F0(c) = lim
p↓0

min
c∈S∗

Fp(c),

and so for small enough p, the minimizing solution c∗ for Fp will be an element of S∗ which has the minimal

number of nonzero components.

Case p = 1

Equation (6) becomes

min
c

Fp(c) = min
c

MN∑
i=1

ωi|ci| subject to Tc = I .

This problem becomes a linear programming problem as pointed out in [6, 7] and [3][32].

Case p = 2

The Hilbert space structure arising when p = 2 allows for a closed form solution to the constrained optimization

problem. In fact, this is a classical least squares minimization problem.

Let UDIN×MV be the singular value decomposition of A, where U ∈ C
N×N and V ∈ C

M×M are unitary,

D ∈ R
N×N is diagonal, and IN×M is the matrix with ij-th entry equal to the Kronecker delta δ ij . The diagonal

entries of D are the singular values of A, and are strictly positive since A is assumed to have full rank. The

optimization problem can then be written as

Minimize
M∑

j=1

c2
j (22)

subject to

UDIN×MV c = b. (23)

We can rewrite the constraint as

IN×MV c = D−1ŪT b, (24)
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where ŪT denotes the conjugate transpose (which is the inverse) of U . Since unitary matrices preserve the

L2-norm, minimizing the norm of c is equivalent to minimizing the norm of V c. But clearly the last M − N

components of V c, (V c)N+1, (V c)N+2, . . . , (V c)M are unconstrained, so the solution with minimal norm has

these components set to 0. This means that the minimal solution satisfies

V c = IM×ND−1ŪT b, (25)

or

c = V̄ T IM×ND−1ŪT b. (26)

The matrix AI = V̄ T IM×ND−1ŪT is called the pseudo-inverse of A. (See [10].)

Theorem 1 The minimizing point c∗ ∈ S∗ of F2(c) is given by

c∗ = AIb.

A special case occurs when the singular values Dii are identical:

Theorem 2 If the singular values of A are identically equal, say D ii = σ for all i = 1, 2, . . . , N , then the

minimizing point c∗ ∈ S∗ of F2(c) is given by

c∗ = σ−2AT b.

Proof: Using the preceding theorem and D = σIN×N we get

c∗ = V̄ T IM×ND−1ŪT b

= σ−1V̄ T IM×N ŪT b

= σ−2V̄ T IM×NDŪT b

= σ−2AT b.

�
As an example, if the matrix A is composed of columns forming separate sets of orthonormal bases (for R

N ),

then the solution is given after proper renormalization by projecting b onto each column.

Corollary 1 Let p = 2 and assume N divides evenly into M . Suppose, moreover, that the columns A kN+1,

AkN+2, . . . , A(k+1)N of A form an orthonormal basis for R
N for each k = 0, 1, . . . , (M/N) − 1. Then the

minimizing point c∗ ∈ S∗ of F2(c) is given by

c∗j =
N

M
〈Aj , b〉 , (27)

and

F2(c∗) =
N

M
‖b‖22. (28)

Proof: The rows of A are pairwise orthogonal, and have magnitude (with respect to the 2-norm in R
M ) of√

M/N . Therefore the N singular values of A are identically equal to
√

M/N , and the result follows immedi-

ately from the preceding theorem. �
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Unconstrained optimization

The singular value decomposition presented above for p = 2 can be used in general to recast the constrained

optimization problem as an unconstrained optimization problem. Recall that we want to minimize F p(c) subject

to the constraint Ac = b, which can be rewritten

IN×MV c = D−1ŪT b.

Letting c̃ denote the vector V c, note that the first N components of c̃ are fixed by the constraint, but the last

M −N are unconstrained. So the original optimization problem is equivalent to

min
c̃N+1,c̃N+2,...,c̃M

Fp(V̄ T c̃) (29)

where 


c̃1

c̃2

...

c̃N


 = D−1ŪT b. (30)

This result cannot be used to provide a closed form solution for p �= 2 because the matrix V does not in general

preserve the p-norm.
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